
Computing the Pseudoprimes up to 1013

Michal Mikuš ?

KAIVT FEI STU, Ilkovičova 3, Bratislava, Slovakia

Abstract. The paper extends the current known tables of Fermat’s
pseudoprimes to base 3 with the bound of 1013. The paper is motivated
by works of C. Pomerance (1980), G. E. Pinch (2000), William Galway
(2002) and Jan Feitsma (2009) who provided tables of pseudoprimes with
base 2 up to 1013 (Pinch), 1015 (Galway) and 1017 (Feitsma).

1 Introduction

Many public key cryptosystems (RSA, ElGamal, etc.) require a fast generation
of prime numbers. The common algorithms generate odd integers and test them
for primality. Because the deterministic testing algorithms are slow in practice,
faster (non-deterministic) algorithms with some non-zero (but arbitrary low)
error probability are used instead.

One of the fastest algorithms is the Fermat primality test; Fermat pseu-
doprimes being defined as such composite numbers that pass this test. More
formally, we call an integer number N a Fermat pseudoprime with respect to
base B, if

BN−1 ≡ 1 (mod N)

There are more sophisticated tests used in practice, such as Baille-PSW pri-
mality test, that are based on the Fermat primality test. The existing tables of
pseudoprimes are used to prove the desired properties of these tests. For example
the Baille-PSW test is flawless up to 1017 – it has been verified with the help of
the pseudoprime tables that no composite integer N < 1017 passes this test.

Our contribution and related work
The first paper in this area was due to C.Pomerance, L.Selfridge and S.Wagstaff,
who computed pseudoprimes up to 25.109 [1]. Later R.Pinch in [2] extended their
tables up to 1013 and provided a quite detailed documentation of the algorithms
used. Further improvements were due to W.Gallway [3] and J.Feitsma [4], who
computed pseudoprimes up to 1015 and 1017 respectively. To the best of our
knowledge there have been no published improvements in the method since R.
Pinch..

Our work was aimed at two goals: extending the pseudoprime tables with
respect to base 3 and providing a complexity analysis of the algorithm described
by R.Pinch. We have slightly improved this algorithm and provide results for
base 3 with the bound of 1013.
? This material is based upon work supported under the grant NIL-I-004 from Iceland,

Lichetenstein and Norway through the EEA Financial Mechanism and the Norwegian
Financial Mechanism. The computing facilities were also provided by the GRID
laboratory (supported by project VG 1/0649/09) at FIIT STU.



2 Algorithm analysis

In this section we shortly describe the algorithms used for finding pseudoprimes.
Fully detailed documentation is in [2]. In the second part we describe our mod-
ification that leads to slightly better time complexity of the search algorithm.

The algorithm is divided into two main phases: precomputation and search.
Input of the algorithm is the bound X for pseudoprimes and base B; we imple-
mented two cases: X = 1013 and B = 2 and 3. The first one B = 2 for the check
of our implementation and most importantly for measuring the running times
of individual phases of the algorithm. The second run with base B = 3 was to
extend the pseudoprime tables and comparation with the base 2.

2.1 Precomputation

The precomputation phase prepares tables of primes up to the bound with their
multiplicative orders modulo B; the multiplicative order of pi being the smallest
number f(pi) such that 2f(pi) ≡ 1 mod pi. The precomputation is divided into
three parallel parts, the longest one took us approx. 54 hours of CPU time for
both bases.

2.2 Search

The search phase takes the precomputed tables of primes and their orders and
output is the list of pseudoprimes up to desired bound X. The search is also
divided into three distinct parts, each of them can be carried out separately:

1. squarefree pseudoprimes:
(a) with all factors less than 109 (main search)
(b) with one factor greater than 109 (large factor)

2. pseudoprimes with repeated factor

The technique used is an exhausting search in each case, but this categoriza-
tion enables us to use some properties of pseudoprimes and dramatically reduce
the search space. The running time of whole search is dominated by the main
search – with distinct factors up to 109. The main search is further divided by
the number of factors of N , which was between 2 and 10 for the bound 1013.
The main search can be parallelized for distinct d. Resulting time for each d will
be shown in section 3. The rest two parts take negligible time for base 2. For
detailed description of the techniques used in each case we refer the reader to
[2]. We focus our attention on the modification of the search.

Modification of the search
The search for squarefree pseudoprimes is divided by a bound for large primes –
R.Pinch set it to 109. It is clear that the smaller bound will reduce the space for
main search while expand the space for the large factor search. Smaller bound



seems to be a reasonable choice because the large factor search takes negligible
time with the bound 109 and the main search is the most time-consuming part
of search. We considered lowering the bound to the 107.

The simple lookup in the precomputed prime tables shows that there are
423036 permitted primes up to 109 and 358846 permitted primes up to 107.
Permitted primes are such pi that pi · f(pi) < 1013 – the condition is a require-
ment for pseudoprime N < 1013 and it reduced space for the exhaustive search
significantly. By setting the bound for large primes to 107 we expected the time
needed for main search to be reduced substantially. However, the experimental
results showed less than 1% time improvement in the worst case d = 4. This
results from the fact that the main search algorithm is much more sophisticated
than the brute-force search. We have not been able to explain this result by
analytical methods yet.

3 Computation results

In this section we provide the experimental results. The computations were per-
formed on the FIIT STU GRID laboratory. On the GRID 20 AMD 64-bit proces-
sors were used, 2GHz and 1GB RAM each. All the algorithms were implemented
in language C with the use of NTL library routines [6].

Main search for bounds 109 and 107

In this first part we provide experiments with the bound for large factor: 109

and 107. The time for the large factor search was negligible for both cases. The
running time for the main search is shown in the following table.

bound 109 bound 107

d time (s) time (s) spared (s)
2 2415 2275 140
3 19235 18968 267
4 26971 26786 185
5 15805 15737 68
6 4635 4614 21
7 783 783 0
8 102 101 1
9 11 11 0

The improvement in running time was less than expexted: for the longest run
d = 4 we spared 0.68%. The other cases of d were computed paralelly, so the
overall improvement was 0.68%.

Results for base 2
Following table displays the distribution of pseudoprimes according to the num-
ber of factors, repeated factor and large factor search for both bounds 109 and



107.

bound 109 bound 107

d number of PSP number of PSP
2 123621 99530
3 19807 19060
4 35232 34530
5 49470 49290
6 29063 29060
7 6306 6306
8 407 407
9 2 2

rep.f. 54 54
large.f. 277 26000

There are 264239 pseudoprimes with base 2.

Results for base 3
In the second part we show new results for base B = 3 along with the running
time of each case of algorithm. The bound for large primes was 109. There are
264461 pseudoprimes up to 1013.

d number of PSP time (s)
2 128484 4145
3 21328 20139
4 35534 22341
5 43478 12026
6 22576 3285
7 4405 402
8 242 51
9 3 4

rep.f. 7667 ≈ 28 hrs.
large.f. 344 ≈ 0

The results are very similar to those with base B = 2. The running time was
dominated by the repeated factor search, because of the prime 11. The integer
121 is a pseudoprime mod 3 and therefore1 every q · 121 is possible candidate
for repeated factor pseudoprime. The situation for base 2 was easier because the
smallest such prime was 1093 and the search was 104 times faster.

Interesting is also the observation that there is approximately the same num-
ber of pseudoprimes mod 2 and mod 3: only 222 more Fermat’s pseudoprimes
with base 3.

1 For detailed explanation see [2].



4 Open questions

The obvious goal for further research is the search for pseudoprimes modulo 5, 7,
etc. and comparation of their statistics. A more challenging goal is to search for
larger pseudoprimes – this was done by W.Gallway and J.Feitsma. Since they
haven’t explained their methods, even more interesting and challenging will be
improvement of the algorithm and reduction of the running time – this will also
result into reaching higher bounds for pseudoprimes.

References

1. Pomerance, C., Selfridge, J.L., Wagstaff, S.S. : The pseudoprimes to 25.109. Math.
Comp. 35, pp 1003–1026 (1980)

2. Pinch, R.G.E.: The Pseudoprimes up to 1013. Lecture Notes in Computer Science
1838, pp 459–474, Springer-Verlag (1980)

3. Gallway, W.: The Pseudoprimes below 1015.
Url: http://www.cecm.sfu.ca/Pseudoprimes/

4. Feitsma, J.: The Pseudoprimes below 1017.
Url: http://www.janfeitsma.nl/math/psp2/database

5. Brillhart, J., Lehmer, D.H., Selfridge, J.L., Tuckermann, B., Wagstaff, S.S. jr: Fac-
torizations of bn ± 1. (2nd ed) American Mathematical Society, Providence, R.I.
(1988)

6. Shoup, V.: NTL: A Library for doing Number Theory.
Url: http://www.shoup.net/ntl/


