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Introduction to Cybernetica AS

• Founded in 2000
• At present 15 employees
• A spin-off company from the 

research groups in process control  
and engineering cybernetics at 
SINTEF, NTNU and Statoil

Background

• Office in Trondheim, Norway
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Products: Overview

• Model based control - Cybernetica CENIT
• Optimal grade transitions - Cybernetica CENIT
• Plant optimization - Cybernetica PlantOptimize
• Batch process optimization - Cybernetica BatchOptimize
• Controller tuning - Cybernetica MultiTune
• Dynamic simulation - Cybernetica SIMON
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Applications: Overview

Polymer industry Light metals Oil and gas
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Description of distillation column model
Inputs for MPC:

• reflux rate
• temperature setpoint 

at 19th tray 

Outputs for MPC:

• n-butane fraction at 
top

• i-butane fraction at 
bottom
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Model description

• mass balance per component for each tray, sump 
and reflux drum

• Energy balance for each tray, sump and reflux drum

• Complete flash at all trays, sump and in refluxdrum.

• Vapour-liquid equilibrium is based on Soave-
Redlich-Kwong equations



Model description

• Vapour flow rates between trays depend on 
pressure differences between trays.

• Liquid flow rates between trays depend on liquid 
level on trays (weir equation)

• 4 PI controllers included in the model

Summary of equations

,
1 1, 1 1, , , +specific feeds for feed tray, sump and reflux drumk i

k k i k k i k k i k k i

dM
L x V y L x V y

dt − − + += + − −

1 1 1 1 specific feeds for feed tray, sump and reflux drumL V L Vk
k k k k k k k k

dU
L h V h L h V h

dt − − + += + − − +

474 differential equations, of the type :

k = tray number {1...94}

i = component number {1,2,3,4}



Summary of equations

Outputs of the model: x, y, T, P, levels in sump and refluxdrum 

[L, V, x, y, h, T, P, levels]T = g(M,U)  

g(M,U) contains 188 implicit (non)linear algebraic equations , 
e.g. SRK-equations

Conclusion: Many equations have to be integrated and solved 
using DAE-solvers, which leads to high computational 
loads

Purpose of model reduction

( )= , , ,
dx

f x z u d
dt

474 differential equations:

188 algebraic equations: ( )=0 , , ,g x z u d

( ), ,y h x z d=2 output equations:

Equations used in a distillation model and its application:

f f
x z
g g
x z

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

Problem: Computation of u is too slow for fluctuations in d.

This leads to sub-optimal values for u.

Cause: Computation and use of large Jacobian:

Application: compute optimal input trajectories u with MPC
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Reduction methods and reduced models

Two used methods:

1. Tray aggregation (Andreas Linhart)

2. POD-grey box modeling (Reinout Romijn)
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Tray aggregation
Reduction of number of state and algebraic equations:

Step 1: Reducing number of state equations (f), which leads to 
new state equations (f1) and new implicit algebraic equations (f2).

Step 2: Reducing number of implicit algebraic equations (f2 and 
g), including those created in step 1 by calling for their solutions 
that are stored in tables.

Step 3: Efficient computation and storage of non-zero Jacobian 
ellements for system that is obtained with steps 1 and 2.

Result (Linhart): reduced model is 6 times faster than full model at  
accuracies that are dominated by simulation errors. 
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Tray aggregation
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POD and grey-box modeling
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dx
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Open-loop validation

Follwing characteristics for full model and reduced 

models are compared:

• relative gain array (RGA)
• condition number 

• simulations with input step changes that show 
directionality

Explanation of RGA
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Numbers in RGA matrix for full model and reduced 

models should be the same:

where

Easy computation:



RGA results
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Condition number

Condition number of linearized full model and linearized reduced

models should be the same:

where is computed by carrying out 

a singular value decomposition on G(0)t: ( )t
0 TG W V= Σ

( )1 2 3, , , , mdiag σ σ σ σΣ = �

max

min

σ
γ

σ
=



Condition number
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Simulations with input step changes
100 simulations with initial conditions set at at steady state values
and step changes in u1 and u2 such that: 2 2

1 2 1u u∆ + ∆ =
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Relation simulation results ↔ directionality

Axis directions of steady state output ellipses are the colums of W-
matrices obtained by carrying out a singular value decomposition on 
G(0):

The σ-s in determine the length of 
the axes.

This reasoning can be extended to non-linear systems although 
they do not have transfer function matrices and perfect ellipses of 
output values.

( )0 TG W V= Σ

( )1 2 3, , , , mdiag σ σ σ σΣ = �

Summary

• Presentation of a large DAE-model for a distillation process.

• Relation between large Jacobian of DAE-models and large 
computational loads.

• Presentation of two reduced models, their reduced Jacobians and 
reduced computational loads.

• Explanation of open-loop validation tools for reduced models: 
RGA, condition number, simulations with input step changes that 
show directionality.

• Presentation of validation results for the reduced models.


