

Nonlinear MPC via Novel Multiparametric Programming Techniques

Centre for Process Systems Engineering

Outline

- Framework and objectives
- Nonlinear Multiparametric discrete-time MPC
 - Formulation & overall strategy
 - □ Off-line strategy
 - Parametric Algorithm
 - On-line strategy
 - Research and Development Achievements
- Concluding remarks and future work

Imperial College London

controller

🔆 🔆 Centre for Process Systems Engineering Nonlinear Multiparametric discretetime MPC

- Formulation & overall strategy
- Off-line strategy
- Parametric Algorithm
- On-line strategy

Imperial College London

- Centre for Process Systems Engineering

Formulation & overall strategy

Traditional MPC:

min Objective Function (U, x(t), z(t))

Dynamic Model (U, x(t), z(t))s.t.

Process Constraints (U, x(t), z(t))

Initial Conditions

Multiparametric MPC:

min Objective Function (U, θ)

Dynamic Model (U, θ) s.t.

Process Constraints (U, θ)

Parameter Space Definition

Imperial College London

- Requires specification of initial conditions
- Optimal inputs calculated for the vector of initial conditions
- States/disturbances recast as parameters (θ)
- The space of expected parameters defined as an independent space
- Problem is solved for all combinations of parameters (semi-infinite problem)

5

Formulation & overall strategy

Off-line strategy

🔆 Centre for Process Systems Engineering

- 1) Select parameters
 - 1) States
 - 2) Load disturbances
- 2) Define parameter space
 - e. g. Reactor temperature between 25 and 75C

min Objective Function (U(x(t))(z(t)))

s.t. Dynamic Model (U, x(t), z(t))Process Constraints (U, x(t), z(t))Initial Conditions

min Objective Function (U, θ)

s.t. Dynamic Model (U, θ) Process Constraints (U, θ)

min Objective Function (U, θ)

s.t. Dynamic Model (U, θ) Process Constraints (U, θ)

Parameter Space Definition

Imperial College

🔆 Centre for Process Systems Engineering

Off-line strategy

- 3) Discretise time domain
 - Need to express state constraints with finite number of equations
- 4) Discretise controls and load disturbances
 - 1) Control vector parameterization

9

Off-line strategy

🔆 Centre for Process Systems Engineering

🔆 Centre for Process Systems Engineering

Off-line strategy

 $\min_{U} \text{ Objective Function} (U, \theta)$

s.t. Dynamic Model (U, θ)

Process Constraints (U, θ)

Parameter Space Definition

- Vector of inputs (finite)
- Inputs parameterized
- States discretised in time
- Vector of constraints (finite)

- Driven by accurate active-set characterization of parameter space
- Vertex search method
- Valid for convex formulations

Components of the new algorithm

□ Search of vertices

London

- Construction of critical regions
- □ Approximation of optimal solutions

- The vertices are just points of the parameter space!
- How to use this information to approximate the critical regions?

Centre for Process Systems Engineering

Parametric Algorithm

Stage 2: Boundary construction

- We take the vertices found for each boundary and create linear approximations, based on the defined solution tree
- The accuracy is assessed

London

Stage 3: Parameterization of optimal solutions

- Convex hulls
- Linear Interpolation
- Assess the error
- Create partitions

27

Centre for Process Systems Engineering	± ↓ ↓ ↓ ↓	Ргоматсн
Parametric Alg	Locals Name Question	Value
Final Solution: Map of critical regions:	Control Contro	[3]({m_NormalVector=[2](0.31622776601683794,0.94868329805051377) m {m_NormalVector=[2](0.31622776601683794,0.94868329805051377) m_Cc [2](0.31622776601683794,0.94868329805051377) -0.029646353064078555 -1
1 2 3		(m_normal/secon=[z](0.00000000000000000000000000000000000
	→ m_Constant → m_Sign → 0 [1] → 0 [2] → 0 [3]	0.000000000000000000000000000000000000
ى يە		[3]({m_NormalVector=[2](-0.40905590409290915,0.91250932451495126) r [3]({m_NormalVector=[2](-0.63059257030990912,0.77611404462871458) r [3]({m_NormalVector=[2](0.82530726124983178,0.56468391559199016) m [3]({m_NormalVector=[2](1.000000000000000,0.0000000000000000000
	Name	Value [8]([3]]({m_NormalVector=[2](0.31622776601683794,0.9486832980505137; [8]({m_ParametricSolutions=[2]([3](0.66666700000000001,-0.666880000000 [9]({m_ParametricSolutions=[2]([3](0.66666700000000001,-0.66688000000001; [2]([3](0.666667000000000001,-0.6668800000000000000000000000000000000
$\begin{array}{c} 8 \\ 7 \\ 6 \\ \theta_1 \end{array} $		[3](-0.3338670000000002,1.331199999999999,1.1667000000000001) [m_ParametricSolutions=[2]([3](0.6636280000000000,-0.67599699999995 [m_ParametricSolutions=[2]([3](0.2368170000000000,-8.2580600000000 [m_ParametricSolutions=[2]([3](0.2366820000000000,2.22044999999999 [m_ParametricSolutions=[2]([3](0.0153048000000000,0.1066340000000)
Imperial College London	⊞ ♀ [5] ⊕ ♀ [6] ⊕ ♀ [7]	<pre>{m_ParametricSolutions=[2]{[3](0.000000000000000000,0.140775000000000 {m_ParametricSolutions=[2]([3](5.55112000000000000-016,5.55112000000 {m_ParametricSolutions=[2]([3](0.0000000000000000,0.00000000000000)</pre>

On-line strategy

- X Centre for Process Systems Engineering

Ð Performs only linear 3 calculations 1 5 Consists of an input-output 2 methodology based on the multiparametric solution $CR_i: \Phi_i \theta \leq \phi_i$ $U(\theta)_i = \omega_i + W_i \theta$ **Imperial College** 31 London 🔆 Centre for Process Systems Engineering

Research and Development Achievements

- Theoretical framework completed
 - □ On-line strategy
 - Parametric Algorithm
 - □ Off-line strategy
- Software has been developed (C++/gPROMS)
 Parametric Solver (Implementation of Algorithm)
 Off-line strategy

Concluding remarks

- A novel framework for the use of Multiparametric MPC has been developed;
- Theoretical and practical developments have been made for each of its components;
- Novel developments on the Parametric Solver will enable to solve more complex problems;
- Small chemical engineering problem solved;
- Further testing will enable to improve the methodology.

London

Example

🔆 Centre for Process Systems Engineering

Example

Final Solution:

Map of critical regions:

Parametric solutions for Critical Region 1:

$$\begin{cases} F_1^1 = 1.029 - 0.284\theta_1 - 0.278\theta_2 - 0.010\theta_3 \\ F_2^1 = 1.385 - 0.473\theta_1 - 0.466\theta_2 - 0.019\theta_3 \\ F_3^1 = 1.461 - 0.513\theta_1 - 0.509\theta_2 - 0.025\theta_3 \end{cases}$$

Reduction of the control/optimisation model

- Order of reduction, p, is defined (size = n)
 - $\Box x_1 \text{first } n-p$ components of x
 - $\Box x_2 \text{last } p \text{ components}$ of x
- Relevant partitions of the states vector and matrices are made

$$\begin{split} \min_{U} J(U, \bar{x}(t)) &= \begin{bmatrix} \bar{x}_{1} \\ \bar{x}_{2} \end{bmatrix}_{t+N_{y}|t}^{T} \left(\frac{P_{11}^{b} \mid P_{12}^{b}}{P_{21}^{b} \mid P_{22}^{b}} \right) \begin{bmatrix} \bar{x}_{1} \\ \bar{x}_{2} \end{bmatrix}_{t+N_{y}|t} + \\ &+ \sum_{k=0}^{N_{y}-1} \begin{bmatrix} \bar{x}_{1} \\ \bar{x}_{2} \end{bmatrix}_{t+k|t}^{T} \left(\frac{Q_{11}^{b} \mid Q_{12}^{b}}{Q_{21}^{b} \mid Q_{22}^{b}} \right) \begin{bmatrix} \bar{x}_{1} \\ \bar{x}_{2} \end{bmatrix}_{t+k|t} + u_{t+k}^{T} R u_{t+k} \end{split}$$

 $\&s.t. \quad y_{min} \le y_{t+k|t} \le y_{max}, \ k = 1, ..., N_c$

$$u_{min} \leq u_{t+k} \leq u_{max}, \ k = 0, 1, ..., N_{c}$$

$$\begin{bmatrix} \overline{x}_{1} \\ \overline{x}_{2} \end{bmatrix}_{t|t} = \begin{bmatrix} \overline{x}_{1}(t) \\ \overline{x}_{2}(t) \end{bmatrix}$$

$$\begin{bmatrix} \overline{x}_{1} \\ \overline{x}_{2} \end{bmatrix}_{t+k+1|t} = \left(\frac{A_{11}}{A_{21}} | A_{22} \right) \begin{bmatrix} \overline{x}_{1} \\ \overline{x}_{2} \end{bmatrix}_{t+k|t} + \left(\frac{B_{1}}{B_{2}} \right) u_{t+k}, \ k \geq 0$$

$$y_{t+k|t} = \left(C_{1} | C_{2} \right) \begin{bmatrix} \overline{x}_{1} \\ \overline{x}_{2} \end{bmatrix}, \ k \geq 0$$

$$u_{t+k} = \left(K_{1} | K_{2} \right) \begin{bmatrix} \overline{x}_{1} \\ \overline{x}_{2} \end{bmatrix}, \ N_{u} \leq k \leq N_{y}$$

Imperial College London

Centre for Process Systems Engineering **Combined Balanced Truncation/ mp** control – framework

- Iterate with order reduction
- Objective: find the minimum order reduction for which feasibility and optimality are guaranteed

- Full size closed loop response is close to open loop response
- Reasonable performance for small order reductions
- Appropriate control design is key!

Imperial College

Optimal Model Reduction order: from 30 to 20 states

41

