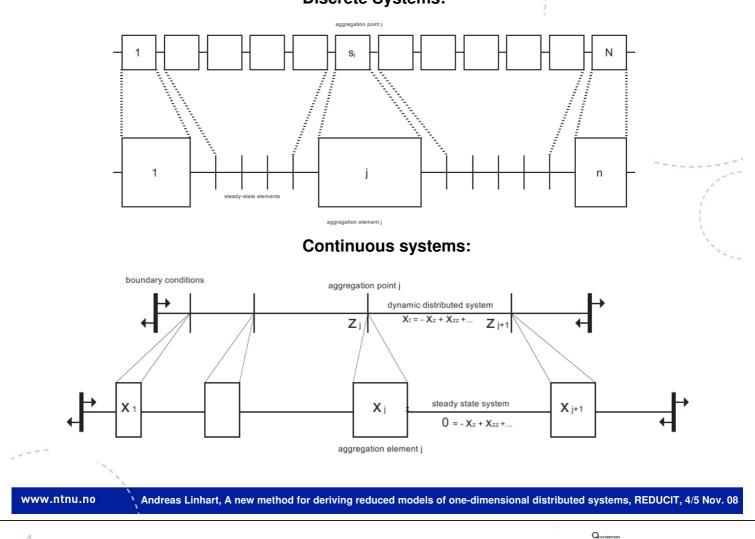


- Tubular reactors (continuous)
- Heat exchangers (continuous)

Basic idea of model reduction method:

- Partition system into steady-state subsystems
- Connect steady-state subsystems by dynamic elements with large time-constants
- Solve steady-state subsystems off-line and substitute solutions

Discrete Systems:



Example: Distillation column

- 94 stages
- binary mixture
- SRK thermodynamics
- nonlinear hydraulic equations
- 286 differential equations
- 188 algebraic equations

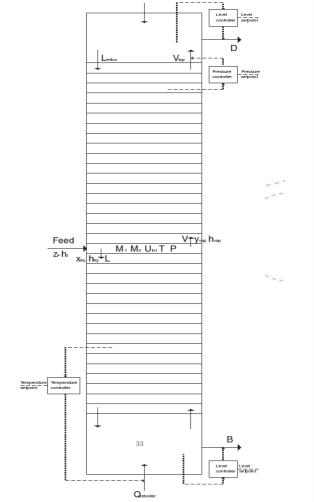
Reduction procedure:

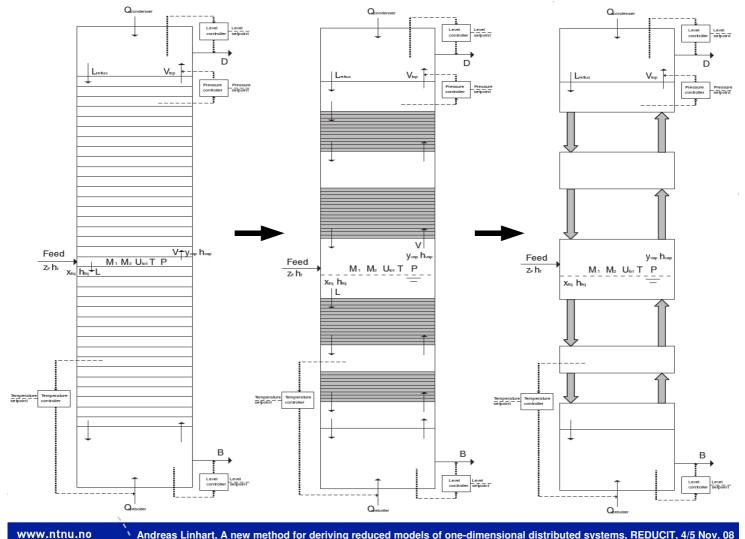
Step 1:

- select several dynamic stages and make their time-constant large
- model remaining stages as steadystate by setting their left-hand sides to 0.

Step 2:

• Eliminate resulting algebraic equations from model by off-line solution





Andreas Linhart, A new method for deriving reduced models of one-dimensional distributed systems, REDUCIT, 4/5 Nov. 08

Feed

z⊧ h

Leve

controller

Pressure controller

V

Level

controller

Leveletpoin

xumh

M1 M2 Utot T

Leveletpoir

Steady-state

travs

Related work:

- Compartment models (Benallou, Seborg, & Mellichamp, 1986):
- · Definition of "compartments"
- · Yields structurally different models
- Incorrect inverse responses
- Aggregated models (Levine & Rouchon, 1991)
- Definition of compartments
- · Yields structurally identical models
- · Notion of "compartments" is imprecise
- Application of aggregated models (Bian, Khowinij, Henson, Belanger, & Megan, 2005)
- Application of aggregation method to distillation column with simplified thermodynamics and hydraulics

Discussion:

Linhart, A., & Skogestad, S. Computational performance of the aggregated distillation models. Computers and Chemical Engineering (2008),

doi:10.1016/j.compchemeng.2008.09.014

Dynamic

Model stage equations

Full model:

7

$$\begin{split} \dot{M}_{i,k} &= L_{i-1}^{out} x_{i-1,k} + V_i^{in} y_{i+1,k} - L_i^{out} x_{i,k} - V_{i-1}^{in} y_{i,k}, \ k = \{1,2\}, \\ \dot{U}_i^{tot} &= L_{i-1}^{out} h_{i-1}^{liq} + V_i^{in} h_{i+1}^{vap} - L_i^{out} h_i^{liq} - V_{i-1}^{in} h_i^{vap}, \end{split}$$

Reduced model: aggregation stages

$$\begin{split} H_{j}\dot{M}_{s_{j},k} &= L_{s_{j}-1}^{out}x_{s_{j}-1,k} + V_{s_{j}}^{in}y_{s_{j}+1,k} - L_{s_{j}}^{out}x_{s_{j},k} - V_{s_{j}-1}^{in}y_{s_{j},k}, \\ &\quad k = \{1,2\}, \\ H_{j}\dot{U}_{s_{j}}^{tot} &= L_{s_{j}-1}^{out}h_{s_{j}-1}^{liq} + V_{s_{j}}^{in}h_{s_{j}+1}^{vap} - L_{s_{j}}^{out}h_{s_{j}}^{liq} - V_{s_{j}-1}^{in}h_{s_{j}}^{vap}, \end{split}$$

Reduced model: steady-state stages

$$0 = L_{i-1}^{out} x_{i-1,k} + V_i^{in} y_{i+1,k} - L_i^{out} x_{i,k} - V_{i-1}^{in} y_{i,k}, \ k = \{1,2\}, 0 = L_{i-1}^{out} h_{i-1}^{liq} + V_i^{in} h_{i+1}^{vap} - L_i^{out} h_i^{liq} - V_{i-1}^{in} h_i^{vap}, i = 1...N, i \neq s_j \ (j = 1...n).$$

NTNU Norwegian University of Science and Technology

www.ntnu.no

Andreas Linhart, A new method for deriving reduced models of one-dimensional distributed systems, REDUCIT, 4/5 Nov. 08

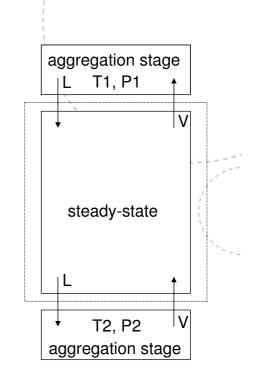
8

Reduced model in DAE-form:

- Most of dynamic equations of full model are converted into algebraic
- · Gives reduced dynamics
- No gain in computation speed
- Can be used for analysis of reduced dynamics, parameter estimation etc.

Elimination of steady-state tray equations:

- Equations for consecutive steady-state trays between two aggregation trays can be solved off-line in dependence of states of neighbouring aggregation trays
- Solutions depend on T, P and L of the upper aggregation stage, and T and P of the lower aggregation stage

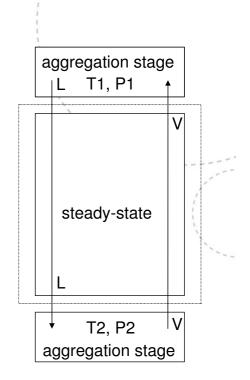


Reduced model in DAE-form:

- Most of dynamic equations of full model are converted into algebraic
- Gives reduced dynamics
- No gain in computation speed
- Can be used for analysis of reduced dynamics, parameter estimation etc.

Elimination of steady-state tray equations:

- Equations for consecutive steady-state trays between two aggregation trays can be solved off-line in dependence of states of neighbouring aggregation trays
- Solutions depend on T, P and L of the upper aggregation stage, and T and P of the lower aggregation stage
- As dependent variables, only T and P of the top-most steady-state stage is needed



NTNU Norwegian University of Science and Technology

www.ntnu.no 💦 Andreas Linhart, A new method for deriving reduced models of one-dimensional distributed systems, REDUCIT, 4/5 Nov. 08

10

Representation of function values:

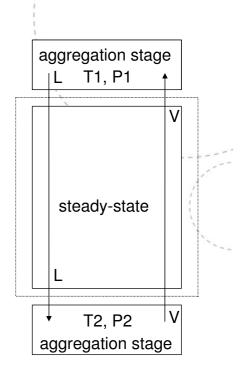
- 1) Tabulation and retrieval with suitable interpolation scheme
- · Can handle the nonlinearities of the function
- · Gives rise to very large tables
- Number of independent variables restricted

2) Polynomial approximation using linear regression

- Limited accuracy
- · Number of independent variables restricted
- · Gives rise to large terms

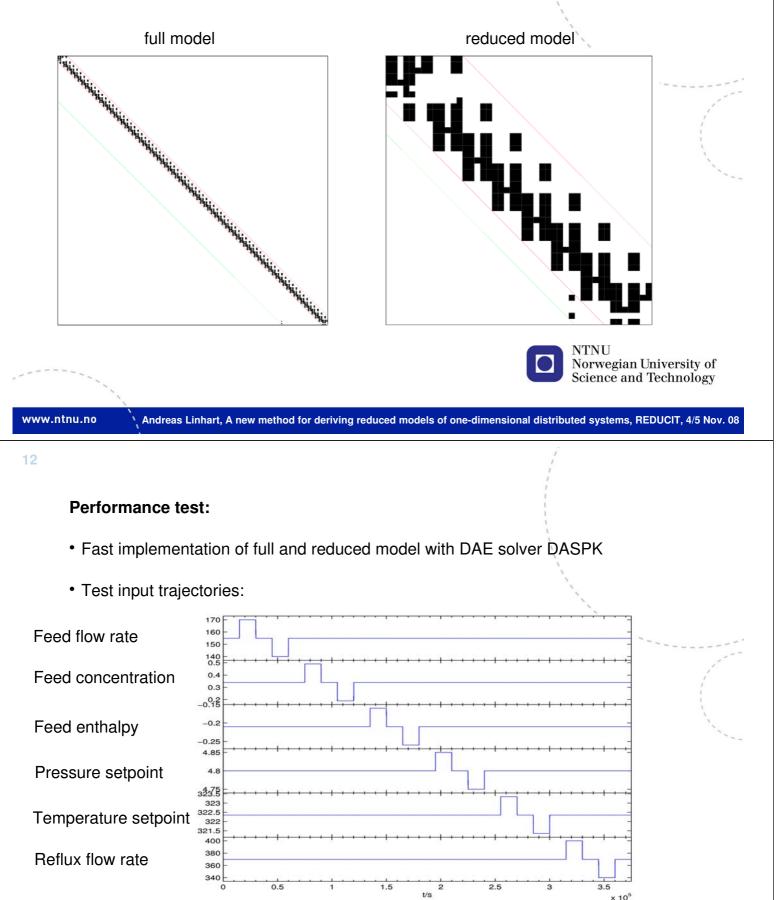
Substituting functions into reduced model:

$$\begin{split} H_{j}\dot{M}_{j,1} &= \underline{L}_{j}\underline{x}_{j} + \overline{V}_{j+1}\overline{y}_{j+1} - L_{j}^{out}x_{j,1} - \underline{V}_{j-1}y_{j,1}, \\ H_{j}\dot{M}_{j,2} &= \underline{L}_{j}(1-\overline{x}_{j}) + \overline{V}_{j+1}(1-\overline{y}_{j+1}) - L_{j}^{out}x_{j,2} \\ &- \underline{V}_{j-1}y_{j,2}, \\ H_{j}\dot{U}_{s_{j}}^{tot} &= \underline{L}_{j}\underline{h}_{j}^{liq} + \overline{V}_{j+1}\overline{h}_{j+1}^{vap} - L_{j}^{out}h_{j}^{liq} - \\ &\underline{V}_{j-1}h_{s_{j}}^{vap}. \end{split}$$



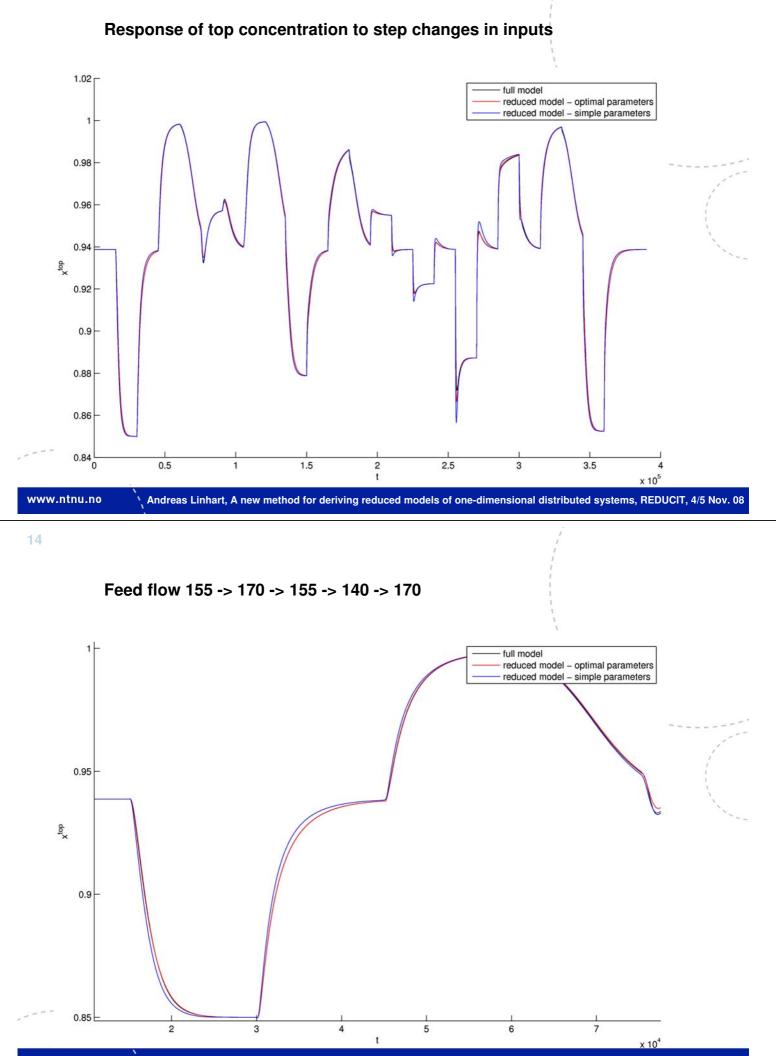
Jacobian structures

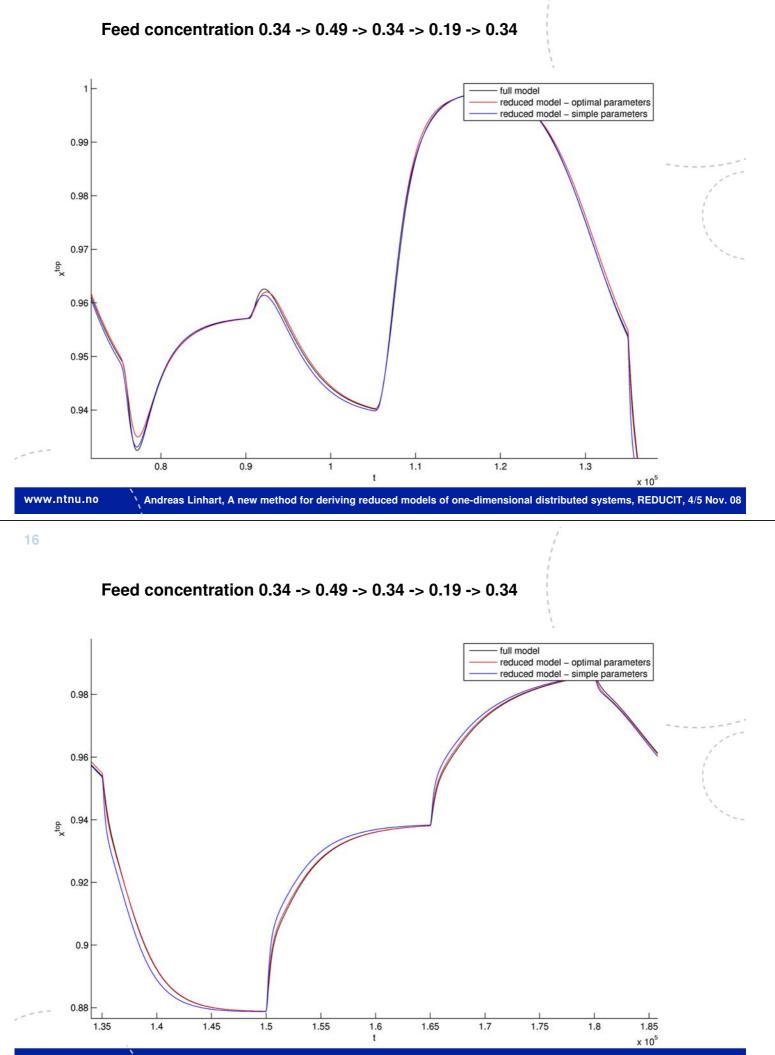
The reduced model has the same Jacobian structures as the full model.



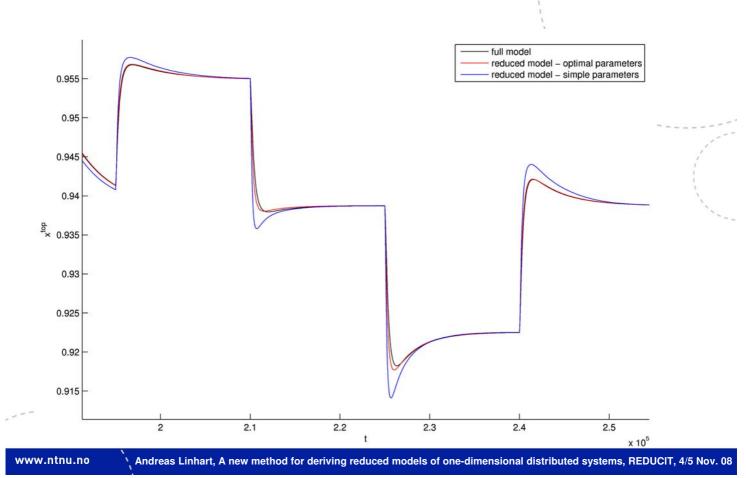
www.ntnu.no

NTNU

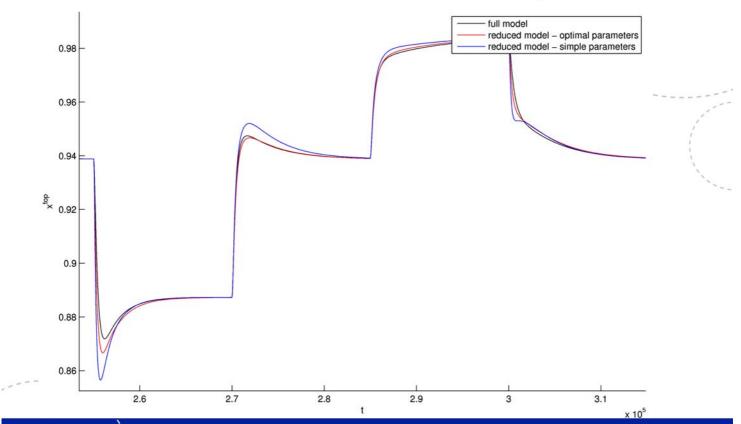




Andreas Linhart, A new method for deriving reduced models of one-dimensional distributed systems, REDUCIT, 4/5 Nov. 08



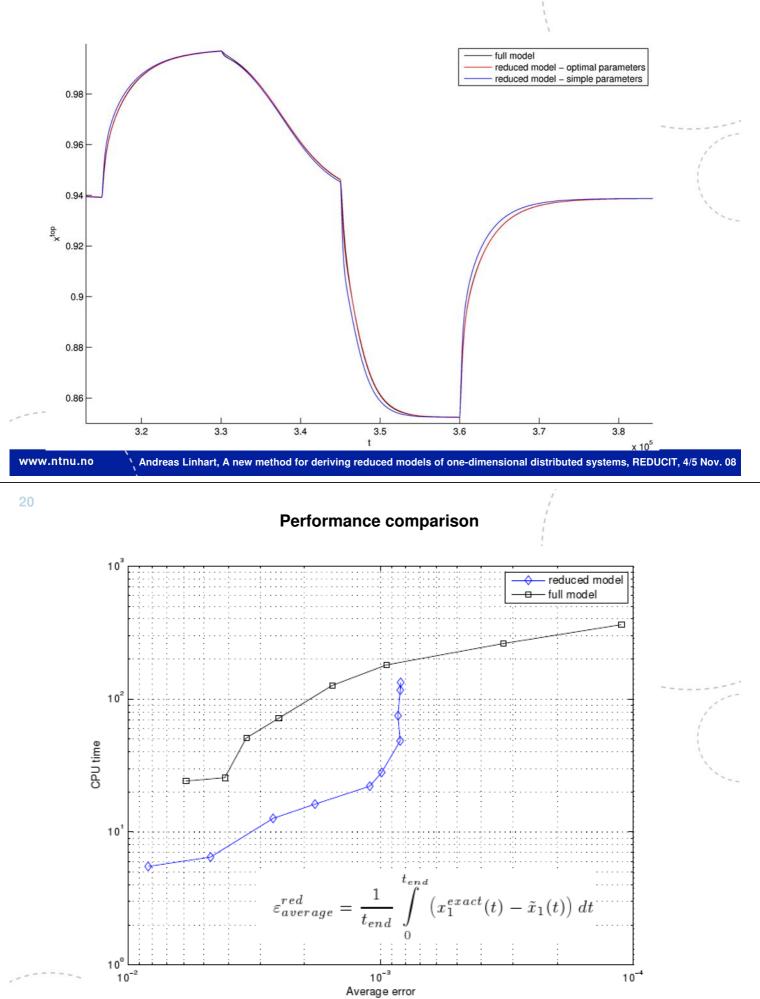
Temperature controller setpoint 322.35 -> 323.35 -> 322.35 -> 321.35 -> 322.35



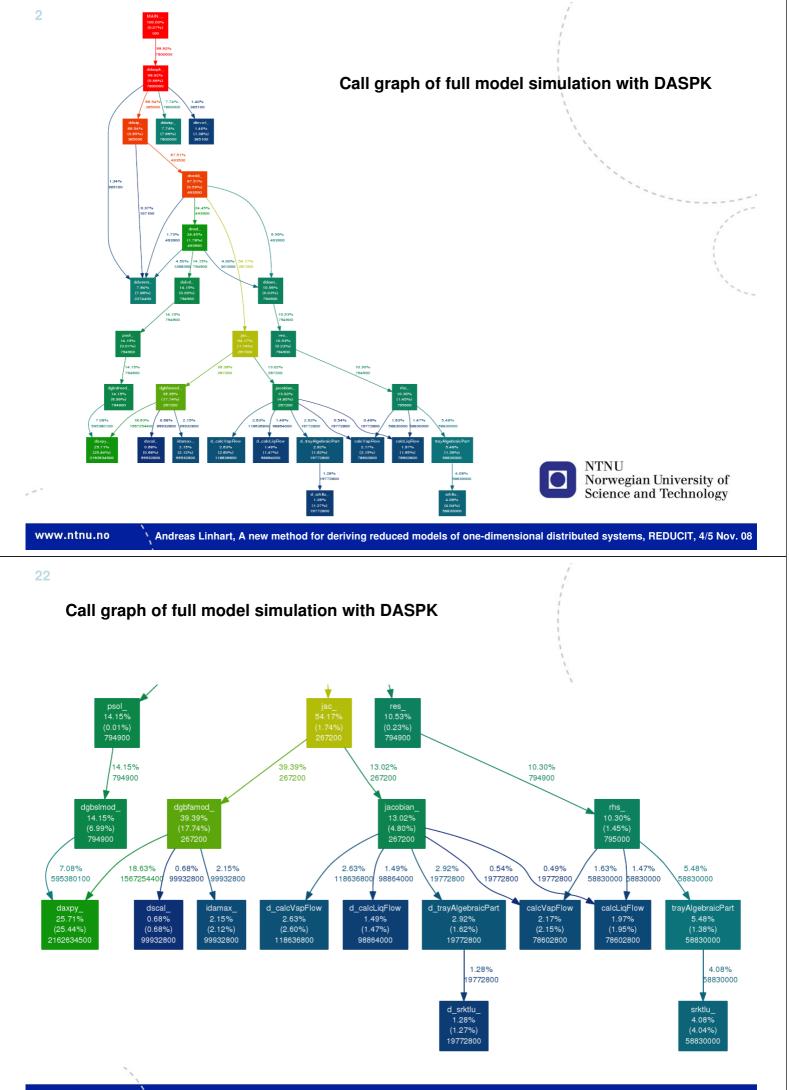
17

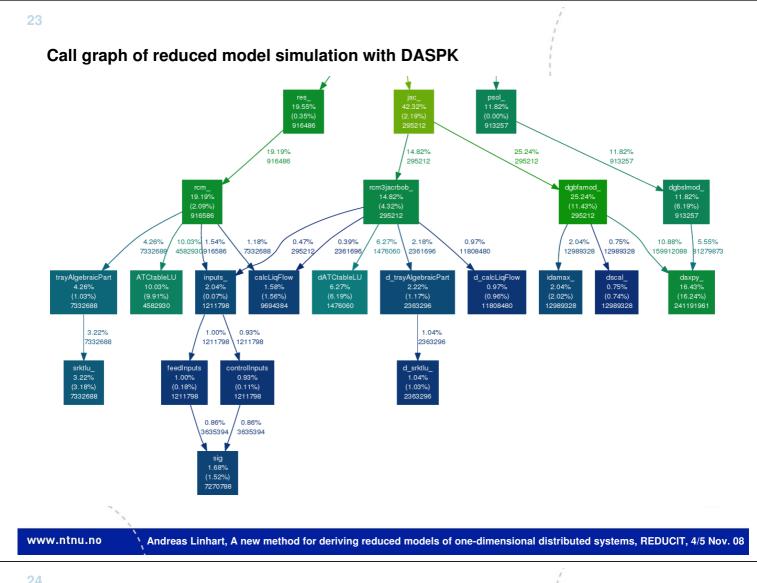
www.ntnu.no

Reflux flow rate 370 -> 400 -> 370 -> 340 -> 370



www.ntnu.no



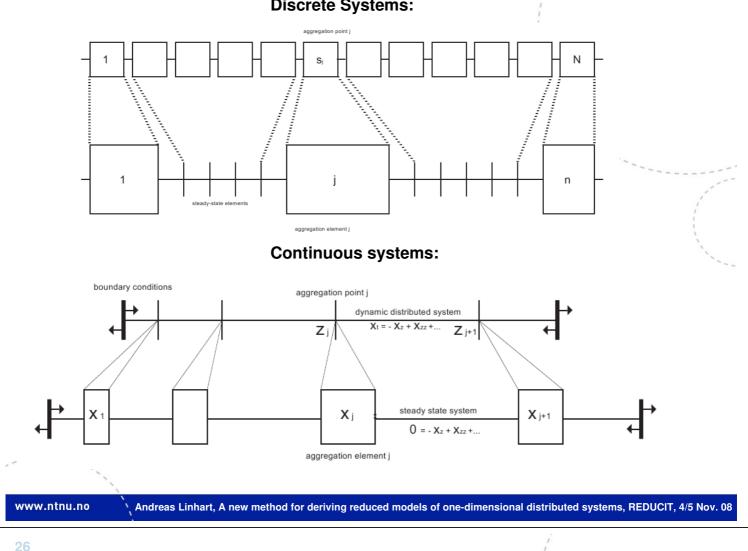


24

Discussion Distillation model:

- Simulation time proportional to number of stages
- · Very good accuracy achievable
- · Perfect steady-state agreement
- Bottleneck of procedure: functional approximation of steady-state stage solutions -if look-up tables are used, interpolation time limits model performance (here ~15%)
- · Large number of degrees of freedom for selection of reduced model parameters

Discrete Systems:



Derivation of dynamic equations for continuously distributed systems:

$$\frac{\partial \mathbf{x}(z,t)}{\partial t} = \mathbf{D}_z \mathbf{x}(z,t) + \mathbf{R}(\mathbf{x}(z,t),z,t), \qquad 0 \le z \le 1 \text{ +boundary conditions}$$

Idea: apply model reduction method to discretised system, and let discretisation go to 0.

Example: Advection – Diffusion – Reaction equation:

$$\frac{\partial x}{\partial t} = -\alpha \frac{\partial x}{\partial z} + \beta \frac{\partial^2 x}{\partial z^2} + \gamma R(x)$$

Finite difference approximation:

$$\frac{dx_i}{dt} = -\alpha \frac{x_i - x_{i-1}}{\Delta z} + \beta \frac{x_{i-1} - 2x_i + x_{i+1}}{\Delta z^2} + \gamma R(x_i)$$

Multiply left-hand side of aggregation elements with large constant:

$$H_{j}\frac{dx_{s_{j}}}{dt} = -\alpha \frac{x_{s_{j}} - x_{s_{j}-1}}{\Delta z} + \beta \frac{x_{s_{j}-1} - 2x_{s_{j}} + x_{s_{j}+1}}{\Delta z^{2}} + \gamma R(x_{s_{j}}),$$

$$j = 1, ..., n.$$

Set left-hand sides of steady-state systems to 0:

$$0 = -\alpha \frac{x_i - x_{i-1}}{\Delta z} + \beta \frac{x_{i-1} - 2x_i + x_{i+1}}{\Delta z^2} + \gamma R(x_i),$$

$$i = 1, ..., N, i \neq s_j, j = 1, ..., n.$$

Use constants $H_j = N/n$

NTNU Norwegian University of Science and Technology

www.ntnu.no

Andreas Linhart, A new method for deriving reduced models of one-dimensional distributed systems, REDUCIT, 4/5 Nov. 08

28

Rewrite equations with $\ \Delta z = 1/(N-1)$:

$$\frac{\frac{1}{\Delta z} + 1}{n} \frac{dx_{s_j}}{dt} = -\alpha \frac{x_{s_j} - x_{s_j-1}}{\Delta z} + \beta \frac{\frac{x_{s_j+1} - x_{s_j}}{\Delta z} - \frac{x_{s_j} - x_{s_j-1}}{\Delta z}}{\Delta z} + \gamma R(x_{s_j}),$$

$$\frac{1+\Delta z}{n}\frac{dx_{s_j}}{dt} = -\alpha(x_{s_j} - x_{s_j-1}) +\beta\left(\frac{x_{s_j+1} - x_{s_j}}{\Delta z} - \frac{x_{s_j} - x_{s_j-1}}{\Delta z}\right) +\gamma R(x_{s_j})\Delta z.$$

Consider limit to continuous case $\Delta z \rightarrow 0$:

$$\frac{1}{n}\frac{d\bar{x}_j}{dt} = \beta \left(\frac{\partial x}{\partial z}\Big|_{z_j}^+ - \frac{\partial x}{\partial z}\Big|_{z_j}^-\right)$$

Obtain left and right derivatives from solution of steady-state systems:

$$0 = -\alpha \frac{\partial x}{\partial z} + \beta \frac{\partial^2 x}{\partial z^2} + \gamma R(x) \qquad \begin{array}{c} x(z_{j-1}) &=& \bar{x}_{j-1}, \\ x(z_j) &=& \bar{x}_j, \end{array}$$

Write solutions as functions of the dynamic variables:

$$\frac{\partial x}{\partial z}\Big|_{z_j}^+ = \phi_j(\bar{x}_j, \bar{x}_{j+1}),$$
$$\frac{\partial x}{\partial z}\Big|_{z_{j+1}}^- = \psi_{j+1}(\bar{x}_j, \bar{x}_{j+1}),$$
$$j = 2, ..., n - 1.$$

Insert in aggregation element equations to obtain reduced model:

$$\frac{1}{n}\frac{d\bar{x}_j}{dt} = \beta \left(\phi_j(\bar{x}_j, \bar{x}_{j+1}) - \psi_{j+1}(\bar{x}_{j-1}, \bar{x}_j) \right)$$
$$i = 1, \dots, n.$$

NTNU Norwegian University of Science and Technology

www.ntnu.no

Example: Adiabatic fixed-bed reactor with heat recycle
(Liu and Jacobsen, 2004)

$$\int dt = -\frac{\partial \alpha}{\partial x} + \frac{1}{Pe_m} \frac{\partial^2 \alpha}{\partial x^2} + DaR(\alpha, \theta),$$

$$\frac{\partial \theta}{\partial t} = -\frac{\partial \theta}{\partial x} + \frac{1}{Pe_h} \frac{\partial^2 \theta}{\partial x^2} + DaR(\alpha, \theta),$$

$$R(\alpha, \theta) = (1 - \alpha)^r exp\left(\gamma \frac{\beta \theta}{1 + \beta \theta}\right)$$
Boundary conditions

$$\alpha(0, t) = \frac{1}{Pe_m} \frac{\partial \alpha}{\partial x}\Big|_{x=0},$$

$$\theta(0, t) = f\theta(1, t) + \frac{1}{Pe_h} \frac{\partial \theta}{\partial x}\Big|_{x=0},$$

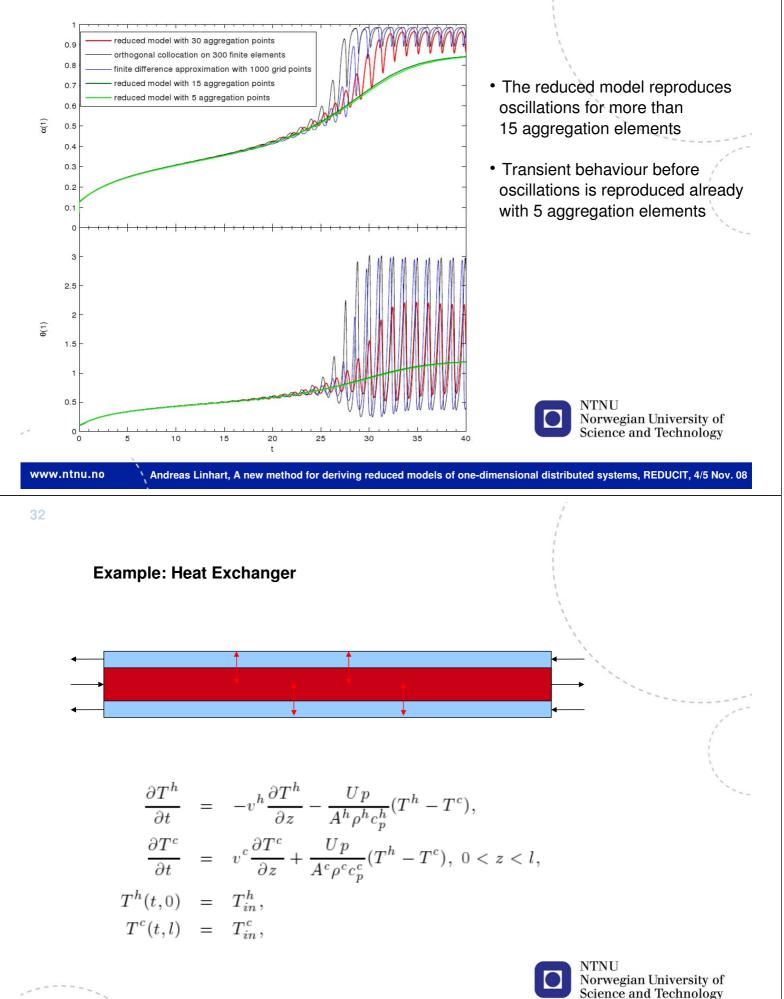
$$\frac{\partial \alpha}{\partial x}\Big|_{x=1} = 0,$$

$$\frac{\partial \alpha}{\partial x}\Big|_{x=1} = 0.$$
NTNU
Science and Technology

2

Andreas Linhart, A new method for deriving reduced models of one-dimensional distributed systems, REDUCIT, 4/5 Nov. 08

Limit cycle oscillations at change Da from 0.05 to Da=0.1:



Reduced model:

Equations for dynamic element j:

$$C_{j}\frac{d\bar{T}_{j}^{h}}{dt} = -\frac{v^{h}}{l}(\bar{T}_{j}^{h} - \psi_{j}(\bar{T}_{j-1}^{h}, \bar{T}_{j}^{c})),$$

$$C_{j}\frac{d\bar{T}_{j}^{c}}{dt} = -\frac{v^{c}}{l}(\bar{T}_{j}^{c} - \phi_{j}(\bar{T}_{j}^{h}, \bar{T}_{j+1}^{c})),$$

Analytic solutions of steady-state subsystems:

 $\begin{bmatrix} \psi_j \\ \phi_{j-1} \end{bmatrix} = \frac{1}{1-R^c a} \begin{bmatrix} 1-R^c & R^c(1-a) \\ 1-a & a(1-R^c) \end{bmatrix} \begin{bmatrix} \bar{T}_{j-1}^h \\ T_j^c \end{bmatrix}$ $a = exp(-N_{TU}^c(1-R^c)), \ R^c = \frac{m^c c_p^c}{m^h c_p^h}$

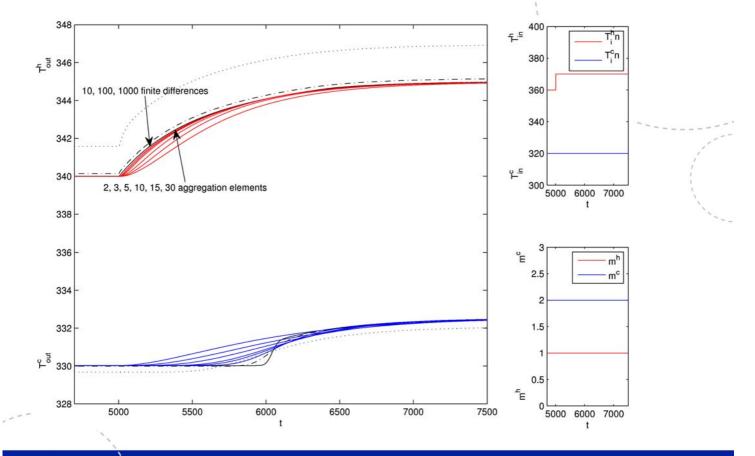
NTNU Norwegian University of Science and Technology

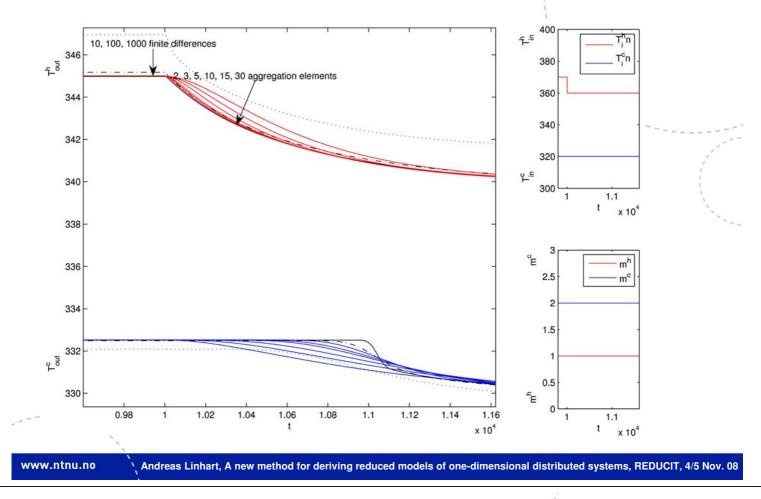
www.ntnu.no

Andreas Linhart, A new method for deriving reduced models of one-dimensional distributed systems, REDUCIT, 4/5 Nov. 08

34

Response of hot and cold outputs to step change in hot inflow temperature

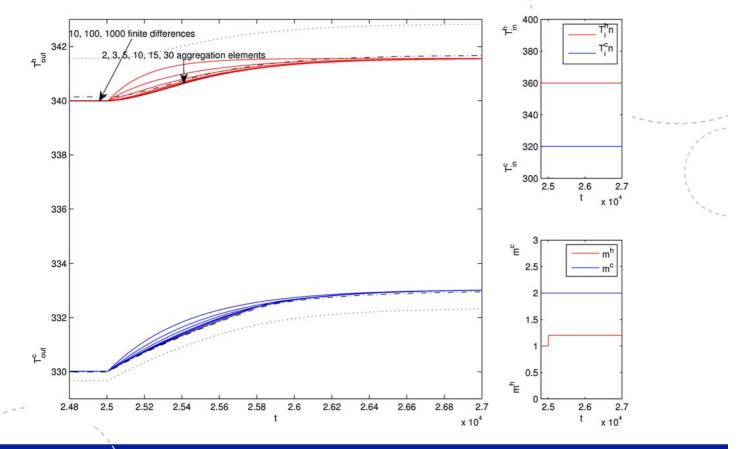




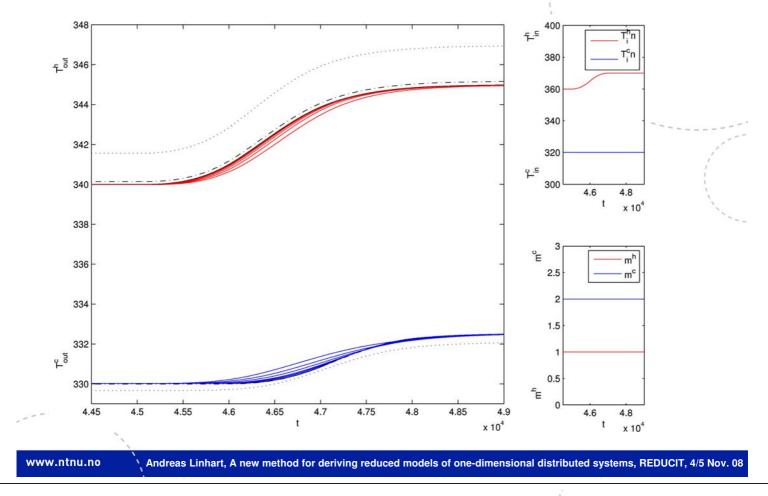
Response of hot and cold outputs to step change in hot inflow temperature

36

Response of hot and cold outputs to step change in hot inflow rate



www.ntnu.no



Response of hot and cold outputs to slow change in hot inflow temperature

38

37

Conclusions:

- Very simple model reduction method for discrete and continuous one-dimensional distributed systems
- Good dynamic accuracy and perfect steady-state agreement of reduced models
- In discrete case, reduction to DAE gives no computational advantage
- Suitable treatment of resulting algebraic equations can speed up simulations significantly
- Method is limited to system with a low number of distributed variables
- Method for continuous case is alternative to other discretisations (finite differences, finite volumes, orthogonal collocation)

