The Wave Based Model Reduction Applied to a Binary Distillation Column

AACHENER VERFAHRENSTECHNIK

Maxim Stuckert¹, Bert Pluymers², Jobert Ludlage³, Wolfgang Marquardt¹ ¹Process Systems Engineering, RWTH Aachen University, Germany ²IPCOS NV, Leuven, Belgium ³IPCOS RV, Beytel, The Netherlands

³IPCOS BV, Boxtel, The Netherlands

oundaryconditions

Process and Its Integral Parts

Section equations:

Equations of a Section

 Obtained from mass 								
balance and additional								
transformations the								
equations for a section with								
neglected holdup in the								
vapour phase read as								
shown on the right.								

$\frac{dx}{\partial t} - (1+w)\frac{dx}{\partial\xi} =$	=	$\frac{B}{A} \cdot (f(x) - y),$	$x(t,1-z^*)=x_e(t)$
$\frac{1}{A}\frac{\partial y}{\partial \xi} = \frac{B}{A} \cdot (f(x) - y),$			$y(t,-z^*)=y_\varepsilon(t)$
Where			
t > 0	:	time domain	
$-z^* \leq \xi \leq 1-z^*$	* :	space domain	
$\dot{z}^* = w$:	wave velocity	
$x = x(t,\xi)$:	liquid composition (light	t comp.)
$y = y(t, \xi)$:	vapour composition (lig	ht comp.)
f	:	vapour liquid equillibriu	m function
В	÷	number of transfer units	in gas phase

B : number of transfer units in gas p $A = L_{in} / V_{in}$: liquid to vapour flow ratio

an **a** a

Wave Form Approach

- The form approach $H=H(\xi,\gamma,p_1,p_2)$ (parametrization of x) with four arguments which are actually the states of our reduced model can be chosen like follows:
- z* : position of point of inclination
- γ : determins the slope at z^*
- p₁ : lower limit composition
- p₂ : upper limit composition

References

- Nichtlineare Wellenausbreitung Ein Weg zu reduzierten dynamischen Modellen von Stofftrennprozessen, W. Marquardt, VDI Reihe 8 Nr. 161, Düsseldorf 1988
- [2] Mathematische Modelle von Destillationskolonnen zur Synthese von Regelungskonzepten, B. Retzbach, VDI Reihe 8 Nr. 126, Düsseldorf 1986
- [3] Nichtlineare Wellenphänomene und Stabilität stationärer Zustände in Destillationskolonnen, A. Kienle, VDI Reihe 3 Nr. 506, Düsseldorf 1997

Wave Based Model Reduction

WBMR means:

Simplify equations for both sections (described below).
 Being usually relatively simple modeled, condenser, reboiler and feed tray needn't to be simplified

Advantages of WBMR:

- physically justified
- incorporates process knowledge
 considers nonlinearities
- considers nonlinearities
 creates a low order model, which allows online simulation
- suitable for development of controllers superior to
- those using linear, in frequency domain designed models, which don't capture the process structure and have to be experimentally identified
- suitable for reconstruction of entire product concentration profile from a few temperature and concentration measurements

Model Reduction Steps

According to a postulate^[1], the dynamic behaviour of a real separation process can be described by an inherently stable wave propagation. So, parametrize x suitably, i.e. find a function H, also known as the form approach, such that $x(t,\xi) \approx H(\xi,\gamma,p_1,p_2)$.

			,		
	Substitute the form approach H for x in added section equations as well as in boundary equations and velocity equation.				
Add section equations and get rid of vapour composition y.		Rewrite the boundary condition for y in terms of liquid composition x.		Find a relation describing wave veloc e.g. dz*/dt=w.	

Reduction Results

- Wave model reduction results in a DAE system of index 1:
 - **M** : nonlinear matrix function r : nonlinear vector function
 - <u>p</u> : state vector $[z^*, \gamma, p_1, p_2]$
- There are a variety of solvers, you can easily submit this DAE to. They deliver the evolution of the state vector, which is used, together with the form approach H, to describe compositions at each point of the section.

Acknowledgement

The work related to the wave based reduction method has been done within the DISCO O&O project in cooperation with IPCOS NV and Bayer Antwerpen Comm. V. and supported by IWT Flanders.

Aachener Verfahrenstechnik – RWTH Aachen University – Germany