Efficient Simulation of LargeScale Dynamical Systems using Tensor Decompositions

Femke van Belzen
Siep Weiland
P.O. Box 513

5600 MB Eindhoven
The Netherlands
\{f.v.belzen,s.weiland\}@tue.n|

Background

- Most model reduction techniques are projection based methods.
- Proper Orthogonal Decompositions reduce the complexity of systems with both space and time as independent variables: described by PDEs.
- The projection spaces are computed via singular value decompositions of matrices that have dimension \# of finite elements times \# of physical variables.
- We propose a more efficient way of computing bases from multidimensional arrays.
- We demonstrate the procedure by applying it to a heat diffusion process. However, the underlying mathematics are generic.

Step 1: Snapshot generation

$$
\begin{equation*}
0=-\rho c_{p} \frac{\partial w}{\partial t}+\kappa_{x} \frac{\partial^{2} w}{\partial x^{2}}+\kappa_{y} \frac{\partial^{2} w}{\partial y^{2}} \tag{1}
\end{equation*}
$$

Here, $w(x, y, t)$ denotes temperature on position (x, y) and time t. Using spatial and temporal discretization a Finite Element (FE) solution of this process is computed. The solution data is stored in a threedimensional array $[[w]] \in \mathbb{R}^{L_{1} \times L_{2} \times L_{3}}$, where L_{1}, L_{2}, L_{3} are the number of spatial and temporal grid points.

Figure 1: Snapshots of original data t_{1} (left) and $t_{L_{3}}$

Step 2: Computation of Projection Spaces

Projection spaces can be computed by computing a SVD of the threedimensional array $[[w]]^{12}$. The SVD gives a three-dimensional array of coefficients $[[\hat{w}]]$ and three matrices U_{1}, U_{2}, U_{3}. The columns of these matrices contain orthonormal bases for the projection spaces.

[^0]The columns of U_{1} and U_{2} contain the basis functions that will be used in the model reduction step.

Step 3: Model Reduction

Model reduction is carried out by Galerkin projections ${ }^{3}$. The spectral expansion of the signal is truncated to $w_{r}(x, y, t)=$ $\sum_{i j}^{r_{1}, r_{2}} a_{i j}(t) u_{1}^{(i)}(x) u_{2}^{(j)}(y)$, and a Galerkin projection defines the time trajectory of the coefficients $a_{i j}(t)=[A(t)]_{i j}$ as a solution of the Ordinary Differential Equation (ODE)

$$
\begin{equation*}
0=-\rho c_{p} \dot{A}+\kappa_{x} F A+\kappa_{y} A P \tag{2}
\end{equation*}
$$

Simulations of the reduced order model can be compared with the original model:

Figure 4: Time slice of original data at time t_{40} (left), time slice of reduced model of order $(7,7)$ at time t_{40} (middle) and time slice of absolute error at time t_{40} (right)

Conclusions

- Considered model reduction for multidimensional systems
- Proposed a method for the computation of empirical projection spaces using tensor decompositions.
- Generic method, applied to heat diffusion process
- Future work: test the method on more complex examples and compare different tensorial decompositions to assess accuracy, computational effort and reliability.

References

[^1]
[^0]: Figure 2: Visualization of the SVD of a 3-way array

[^1]: ${ }^{1}$ L. de Lathauwer et al., A Multilinear Singular Value Decomposition,SIAM J. Matrix Anal. Appl., Vol. 21 (4), 2000.
 ${ }^{2}$ F. van Belzen, S. Weiland and J. de Graaf, Singular value decompositions and low rank approximations of multi-linear functionals, Proc. 46th IEEE Conf. on Decision and Control, 2007.
 ${ }^{3}$ S. Volkwein and S. Weiland, An Algorithm for Galerkin Projections in both Time and Spatial coordinates, Proc. 17th MTNS, 2006.

