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Jaroslav Bušek∗, Tomáš Vyhlı́dal ∗†, Pavel Zı́tek∗

∗Department of Instrumentation and Control Engineering,

Faculty of Mechanical Engineering, Czech Technical University in Prague,

Technicka 4, Prague 6, Czech Republic, ({jaroslav.busek, pavel.zitek}@fs.cvut.cz)
†Czech Institute of Informatics, Robotics and Cybernetics,

Czech Technical University in Prague, Jugoslavskych partyzanu 3,

Prague 6, Czech Republic (tomas.vyhlidal@cvut.cz)

Abstract—The paper is focused on IAE based tuning the anti-
windup feedback in a controller of a first order plus dead time
model. The problem is addressed to two types of controllers, finite
order PI and infinite order Internal Model Controller (IMC)
with the delay compensation. For the PI a classical finite order
feedback known as back-calculation method is utilized, whereas
for the IMC, a novel functional feedback is proposed. For both the
cases, the feedback setting is optimized with respect to minimizing
the IAE criterion. The analysis is performed on a dimensionless
form of the model so that the results are valid to a broad class
of systems. For both PI and IMC, the ’optimal’ dynamics of the
anti-windup loop is of first order with the time constant being
close to the time constant of the plant model.

I. INTRODUCTION

The control loop design and tuning based on linear models

may exhibit a strikingly different behaviour from its imple-

mentation as soon as the always existing actuator saturation

affects the operation. Primarily, the actuating variable of the

controller implemented by digital components is to be artifi-

cially prevented from any possibility to exceed the saturation

boundaries and particularly from any undue getting stuck at

these boundaries. This faulty effect is referred to as windup

and the schemes getting the controller saturation rid of this

fault are considered as anti-windup schemes.

The windup problem results from the controversy between

the inevitable actuator saturation and the generally required

integrating nature of the controller action. This often leads to

inconsistency between controller output and the actual input of

a controlled process. As a result, behaviour of the control loop

differs from the designed one and even the stability can be lost.

The history of anti-windup techniques has gone through a vari-

ety of techniques and schemes of digital implementation. One

of the first and fundamental methods is the back calculation,

proposed by Fertik and Ross [1] for PID controllers. Then a

conditioning technique was presented in [2] as an extension

of back calculation scheme for a general class of controllers,

see also [3] for generalization of the method. As foreseen in

[4] the anti-windup conditioning schemes should be viewed

not only as the actuator constraint but rather as a means of

the control loop tuning to some extent. An easy to apply anti-

windup design for IMC scheme optimizing performance of the

entire closed loop was presented in [5], see also [2].

As a consequence of consistently increasing number of

anti-windup schemes, a unified framework for investigating

their performance was proposed in [6]. The conditioning

schemes were further investigated and developed by Edwards

and Postlethwaite [7], and Weston and Postlethwaite [8] with

the extension towards the multivariable systems. A low-order

observer scheme is presented in [9] and the robustness issue

of the anti-windup scheme design was investigated in [10].

Considerable number of the proposed anti-windup schemes

is based on an observer-like state feedback closed from the

saturation error i.e. from the difference between the original

and the saturated signal. These observer-like schemes have

been investigated e.g. by Åström and Rundquist [11] and

Kapoor et al. [12]. Recently, the observer-based anti-windup

scheme has been presented in [13] with two-stage controller

design by the loop shaping approach. Subsequently, in [14],

the control action reduction caused by saturation is considered

as an input/output controller disturbance. In this work, an LMI

approach for finding parameters of the anti-windup scheme has

also been proposed. To conclude, a recent survey on modern

anti-windup techniques including open problems discussion

such as the presence of time delays in a control loop has been

presented in [15].

The objective of this paper is to address tuning of the

anti-windup feedback for a controller designed for a system

with considerable dead time, which is represented by a first

order plus time delay model. The contribution lies in applying

optimization based strategy in tuning the anti-windup scheme

for PI and IMC controllers of this class of systems.

II. PROBLEM FORMULATION AND PRELIMINARIES

We consider the first order stable model with an input time

delay

G(s) =
y(s)

u(s)
=

Ke−sτ

Ts+ 1
(1)

where y, u denote the system input and output, respectively.

The system parameters are static gain K > 0, time constant

T > 0, and time delay τ > 0.
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A. PI controller

Concerning the control strategy, we first consider a PI

controller

RPI(s) =
u(s)

e(s)
=

rps+ ri
s

(2)

where e = w− y is the control error, with w representing the

set-point value. The parameters are the proportional rp and

integration ri = rp/Ti gains (both positive), where Ti > 0
is an integration time constant. The state space model of the

controller (2) is given by

ẋ(t) = rie(t) (3)

u(t) = x(t) + rpe(t) (4)

equations. Let us note that the PI controller is preferred from

the PID here due to transparency of the results when the

control saturation is in action. The action of the derivative

part highly depends on the selected filter which makes the

problem more difficult to handle.

In this paper, we focus on the closed loop responses to the

set-point w change, in which the control signal saturation plays

the key role. The closed loop transfer function (1)-(2) reads

Gc,PI(s) =
y(s)

w(s)
=

K(rps+ ri)e
−sτ

Ts2 + (1 +Krpe−sτ )s+Krie−sτ
.

(5)

Let us remark that the spectrum of the system poles, given as

the solution of the equation

Ts2 + (1 +Krpe
−sτ )s+Krie

−sτ = 0, (6)

is infinite. As the controller (2) is of finite order, the achievable

closed loop performance is rather limited concerning the

length of the delay τ .

For the cases when the delay τ length is substantial with

respect to the time constant T , rather an infinite order con-

troller compensating the delay should be applied. An efficient

scheme for such a case is the IMC scheme, which is addressed

next.

B. IMC controller

For the model (1), an Internal Model Controller (IMC) [16]

is given as follows

RIMC(s) =
Ts+ 1

K(Tfs+ 1− e−sτ )
. (7)

The single tuning parameter Tf determines the time constant

of the closed loop

Gc,IMC(s) =
y(s)

w(s)
=

e−sτ

Tfs+ 1
, (8)

which is of first order dynamics for the nominal case. Let

us note that the dynamical properties still need be considered

as infinite order due to always present mismatch between the

design and true parameters of the system, i.e. the compensation

is never entire. However, if the differences between nominal

and true parameters are small, the infinite spectrum chains

are located far to the left of the stability boundary and the

Fig. 1. PI controller with back calculation anti-windup

dynamics properties are predominantly given by the rightmost

pole with the nominal value s1 = − 1

Tf
. Such a case will be

considered further on in the paper.

The state space model of the IMC controller, is given by

ẋ(t) =
1

Tf

(x(t− τ)−x(t))+
T

Tf

(e(t− τ)− e(t))+ e(t) (9)

u(t) =
1

KTf

(Te(t) + x(t)). (10)

Unlike PI controller, which has a single pole s1 = 0, the

number of poles of the IMC controller, given as solutions of

the equation

Tfs+ 1− e−sτ = 0, (11)

is infinite. However, the controller is still astatic with a

dominant pole s1 = 0.

C. Anti-windup scheme for a PI controller

The most common solution of the anti-windup problem is

based on the back calculation technique [1] (also known as

tracking anti-windup) which is for PI controller designed as

shown in Fig. 1. In order to handle the anti-windup task, the

state equation of the PI controller (3) is extended by a feedback

to the observer like form

ẋ(t) = rie(t) +
1

Tt

(us(t)− u(t)) (12)

where Tt is a single tuning parameter commonly called

tracking time constant and us denotes the saturated control

action with saturation limits umin and umax

us(t) =







umax, u ≥ umax

u, umin < u < umax

umin, u ≤ umin

(13)

which then acts as the system (1) input.

The primary objective for introducing the feedback is to

remove the controller astatism when the control signal gets

to the saturation points. Once the controller output exceeds

the saturation limits, a feedback signal is generated from the

difference of the saturated and the unsaturated control action

in order to adjust controller state value. Thus, the feedback is

active if and only if u(t) > umax or u(t) < umin. Otherwise,

us(t) = u(t).
Expanding (12) to the full state space form

ẋ(t) = rie(t) +
1

Tt

(us(t)− x(t)− rpe(t)) (14)
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it can be easily seen that the parameter Tt determines the time

constant of the first order dynamics, i.e. the single pole, when

back calculation is employed. Thus, the stability condition

reduces to the condition Tt > 0. It can be seen, that smaller

parameter Tt resets integrator more rapidly, which may seem

to be an advantage at first sight, but it brings slow response of

the process [17]. On the other hand, bigger values of Tt cause

overshoot in process output.

Finding a suitable value of the parameter Tt has been

studied in many works since back calculation anti-windup

method was developed. For example, a basic rule of thumb

for the setting of the tracking time Tt for PID controller (with

integral time constant Ti and derivative time constant Td) has

been recommended Tt = Ti in [18] or Tt =
√
TiTd in [19].

In [17] two stage adjustment procedure of the tracking time

constant Tt was proposed. First, the parameter is chosen large

(Tt = 10Ti), which causes long stay at saturation limit. Then,

after the process output reaches to a certain percentage value

of system reference, the parameter is decreased (Tnew
t = αTi).

This leads to a fast response time (big Tt) with a satisfactory

(reduced) overshoot (small Tt).

A simple switching condition for two degrees of freedom

PID has been also proposed in [20]. The method is focused on

processes with different normalised dead times described by

the model (1). The proposed scheme should be able to provide

a good performance over a wide range of processes without

the need to tune an additional parameter of the controller, i.e.

tracking time constant Tt. Based on the presented experiments,

the results of the method were always satisfactory despite

the value of the tracking time constant Tt (Tt = 0.03Ti in

that case). Properties of the listed switching methods and

their comparison have been presented in [21]. Other practical

discussion about proper selection of Tt can be found in [22].

To conclude this short survey, let us remark that the default

value of Tt in the PID saturated PID controller in Matlab is

Tt = 1.

D. Optimization task formulation

Even though a relatively large number of references can be

found to handle the task of tuning the tracking time constant

Tt, a general agreement on its optimal value has not been

reached. Thus, the key objective of this paper is to contribute

to this tuning task by an optimization study performed for a

model (1), which is widely used for approximating processes

with non oscillatory dynamical properties and dead time.

In what follows, the performance of the control loop is

analyzed with the objective to determine the optimum value

of Tt in the sense of minimizing the IAE criterion

IIAE =

∫

∞

0

|e(t)|dt (15)

in the case when the control action induced by the set-point

is saturated.

Before the analysis is performed for PI controller, the

dimensionless first order plus dead time model is introduced

with the objective to generalize results for a whole class of

systems of given structure. Next to optimizing the anti-windup

scheme of the PI controller, the same task is performed for

IMC controller next.

E. Dimensionless first order plus dead time model

Following the approach proposed in [23] for the second

order model, scaling the dimension of the control input with

respect to K by introducing ū = Ku and subsequently scaling

the time with respect to time constant t̄ = 1

T
t, the first order

model (1) can be considered in the universal form

Ḡ(s̄) =
y(s̄)

ū(s̄)
=

e−s̄τ̄

s̄+ 1
(16)

where the single parameter is the scaled time delay τ̄ = τ
T

.

Note also that s̄ = sT is the dimensionless Laplace operator.

Thus, the results derived for this system (16) will be valid for

a whole class of systems which have the equivalent ratio τ
T

.

III. OPTIMIZING THE ANTI-WINDUP FEEDBACK FOR PI

CONTROLLER

The key objective of this section is to tune the anti-windup

feedback to obtain the optimal response to the step change of

the set-point value in the cases when the saturation point is

reached.

As the first step, similarly as for the system, with the

objective to generalize the achieved results, also the controller

is turned to the dimensionless form

R̄(s̄) =
ū(s̄)

e(s̄)
=

r̄ps̄+ r̄i
s̄

, (17)

where r̄p = Krp and r̄i = KTri. The state equation with the

anti-windup feedback then changes from (14) to

ẋ(t̄) = r̄ie(t̄) +
1

T̄t

(ūs − x(t̄)− r̄pe(t̄)). (18)

Before optimizing the parameter T̄t, the parameters of the

PI controller are optimized with respect to minimizing IAE

criterion (15) for the unsaturated case. As a preliminary step,

we demonstrate the dependence of the closed loop responses

on T̄t in Fig. 2. Next to the unsaturated IAE optimal response,

saturated closed loop responses with ūmax = 3 are shown

for the anti-windup feedback values ranging from 1

T̄t
= 0

to 1

T̄t
= 1000. As can be seen, the response with 1

T̄t
= 0,

i.e. without any anti-windup action, results in undesirable

overshoot. On the other hand, the very large value of the gain
1

T̄t
= 1000 results in rather sluggish response.

In order to find an optimal value of T̄t that minimizes

the IAE criterion, the brute-force method has been applied

based on sweeping the parameter 1

T̄t
over the interval [0, 10]

and evaluating the criterion (15) for every grid point. This

procedure has been applied for three classes of systems with

τ̄1 = 0.1, τ̄2 = 0.5 and τ̄3 = 1 and various values of

the ūmax for each of the system classes. The results of this

straightforward optimization procedure are shown in Figs. 3,

4 and 5. Next to the IIAE with respect to 1

T̄t
, the optimal

responses are shown for each of the considered values of

ūmax.
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Fig. 2. Closed loop ((16) with τ̄ = 0.1 and (17)) responses for i) IAE optimal
unsaturated controller (black), and ii) saturated controller with ūmax = 3 for
the anti-windup feedback gain 1

T̄t
∈ [0, 1, 3, 10, 1000], colored from blue

(0) to purple (1000).
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Fig. 3. Results of optimizing the IAE criterion for the system class (16)
with τ̄ = 0.1, PI controller (17) with the anti-windup feedback (18) (up-most
figure), and the optimal responses for the considered values of the control
signal saturation

For τ̄1 = 0.1 system (16) class with results shown in Fig.

3, the optimal IAE setting is close to 1

T̄t
= 1, which is

almost independent of the value of considered ūmax. Note that

for the dimensional anti-windup feedback in (14) this would

correspond to the equality Tt = T . For the system classes

with larger values of τ̄ , the optimum is reached for 1

T̄t
< 1,

i.e. for Tt > T . More specifically, for τ̄2 = 0.5 the optimum

is still fairly close to Tt = T , but is not the case for τ̄3 = 1
where Tt should be considerably larger. Note however that

for this last considered system class, the control saturation

effect on the response is relatively small. In order to achieve

’faster’ responses for the systems with τ̄ > 0.5, an infinite

order controller compensating the delay needs to be used, e.g.

the IMC controller (7) which will be addressed in the next

section.
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Fig. 4. Results of optimizing the IAE criterion for the system class (16)
with τ̄ = 0.5, PI controller (17) with the anti-windup feedback (18) (up-most
figure), and the optimal responses for the considered values of the control
signal saturation
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Fig. 5. Results of optimizing the IAE criterion for the system class (16)
with τ̄ = 1, PI controller (17) with the anti-windup feedback (18) (up-most
figure), and the optimal responses for the considered values of the control
signal saturation

IV. ANTI-WINDUP STRATEGY FOR IMC CONTROLLER

Analogously to the PI, the IMC controller (9)-(10) can be

extended by the anti-windup back calculation feedback

ẋ(t) =
1

Tf

(x(t− τ)− x(t)) +
T

Tf

(e(t− τ)− e(t)) + e(t)

+ h

(

us(t)−
1

KTf

(Te(t) + x(t))

)

(19)
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Fig. 6. IMC controller scheme with functional anti-windup feedback given
by term h(s) in (24)

where h is the tuning parameter. The characteristic equation

of (19) then reads

Tfs+ 1 +
h

K
− e−sτ = 0. (20)

Due to its quasi-polynomial nature, the anti-windup feedback

system has infinitely many roots. This fact makes the tuning of

the parameter h considerably more difficult compared to the

tuning of Tt in the PI case. Even though design and spectral

analysis tools are available to handle such a design task, the

fact that only one of the infinitely many poles can be assigned

by a single parameter is likely to bring considerable constraints

concerning the stability perspective. In order to avoid this

issue, we introduce a functional anti-windup feedback which

will simplify noticeably the design task.

The newly designed IMC state space equation with the

functional anti-windup feedback is given by

ẋ(t) =
1

Tf

(x(t− τ)− x(t)) +
T

Tf

(e(t− τ)− e(t)) + e(t)

+

∫ τ

0

(

us(t− ϑ)− 1

KTf

(Te(t− ϑ) + x(t− ϑ))

)

dh(ϑ).

(21)

where the functional feedback is considered in the form of

a Stieltjes integral where h(ϑ) is the delay term distribution.

The characteristic function of (21) is then given by

Tfs+ 1 +
h(s)

K
− e−sτ = 0. (22)

Analogously to the scheme of the PI controller (14), the

objective is to design such a feedback term h(s) to obtain

dynamics determined by a single pole s1 = − 1

Tt
, i.e. with the

characteristic equation

Tts+ 1 = 0. (23)

Dividing (22) by Tf and (23) by Tt, and comparing the

terms corresponding to the zeroth power of s, the functional

feedback term is determined as

h(s) = K

(

Tf

Tt

− 1 + e−sτ

)

. (24)

To simplify the time domain expression of (21) with (24), let
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Fig. 7. Results of optimizing the IAE criterion for the system class (16)
with τ̄ = 1, IMC controller with Tf = 13 and the anti-windup functional
feedback (25)-(26)-(27) (up-most figure), and the optimal responses for the
considered values of the control signal saturation
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Fig. 8. IAE optimal value of Tt with respect to the single tuning parameter
of the IMC controller Tf designed for the system (16) for several values of
saturation value considered with respect to the unit step of the set-point.

the saturation error be introduced as

v(t) = us(t)− u(t) = us(t)−
1

KTf

(Te(t) + x(t)). (25)

Then, the final form of the IMC controller with functional

anti-windup feedback is given by

ẋ(t) =
1

Tf

(x(t− τ)− x(t)) +
T

Tf

(e(t− τ)− e(t)) + e(t)

+K

((

Tf

Tt

− 1

)

v(t) + v(t− τ)

)

(26)

u(t) =
1

KTf

(Te(t) + x(t)). (27)

The full IMC controller scheme is also given in Fig. 6.

Analogously to the PI controller, the parameter Tt was

optimized with respect to the IAE criterion applied to the

dimensionless model (16). As the time delay τ̄ is compensated
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by the controller, the control action is independent of the

delay length. Therefore, the optimization task and saturated

responses have been simulated only for a single value of

τ̄ = 1, see Fig. 7 where the results are shown for T̄f = 1

3
. It

can be seen that similarly to the PI controller case, the optimal

value of Tt is close to the time constant of the system for this

particular setting of the IMC.

Results of more comprehensive simulation based analysis

to obtain the optimal value of Tt are given in Fig. 8 where

IAE optimal value of this feedback parameter is given with

respect to the IMC controller parameter Tf . The analysis has

been performed for four saturation values us given as multiples

of the set-point unit step. In fact, this figure covers a whole

reasonable values of Tf (considering T being the time unit

of the dimensionless model). For Tf < T
10

we obtain very

aggressive control actions whereas for Tf > T
2

it is vice-

versa. Note that for Tf = T a step-wise control action is

achieved as the response to the step change of the control

action. This figure also demonstrates that the choice Tt =
T is a reasonable choice as it guarantees close to optimum

responses when the saturation limit cuts considerably the non-

saturated control action peak value. As demonstrated in Fig.

7, if the cut part of the ideal control action response is not

substantial, the dependence of the objective function IIAE on

the parameter Tt is relatively low.

V. CONCLUSIONS

The key contribution of the paper is in a simulation based

tuning of the anti-windup feedback with respect to the IAE

criterion. First, the task has been solved for a conventional

PI controller for which various rules exist in literature. As a

rule, the anti-windup feedback time constant is related to the

integration time constant of the PI(D) controller. The analysis

performed in this paper for a first order plus dead time model

and PI controller also tuned with respect to IAE criterion

shows however that the optimal value of the parameter should

rather be related to the time constant of the system.

Secondly, a novel structural solution of the anti-windup

feedback scheme has been proposed for an IMC controller,

also considered and tuned for the first order plus dead time

model. Due to the time delay that is projected to the structure

of the IMC controller, the anti-windup feedback system is

of infinite order. This problem is handled by a functional

feedback that turns the dynamics to the equivalent finite

order form of the PI case. Consequently, similarly as for the

PI controller, a simulation based optimization task has been

performed for tuning the anti-windup feedback time constant.

Its optimal value is also close to the time constant of the

system. An important aspect of the analysis is that it has

been performed on the dimensionless nominal system with

both scaled gain and time constant. Thus the results derived

on a relatively low set of simulations can be generalized to a

broad class of systems.
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