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Abstract: In this paper, a novel framework for reduced order modeling in reservoir engineering
is introduced, where tensor decompositions and representations of flow profiles are used to
characterize empirical features of flow simulations. The concept of classical Galerkin projection
is extended to perform projections of flow equations onto empirical tensor subspaces, generating
in this way, reduced order approximations of the original mass and momentum conservation
equations. The methodology is applied to compute gradient-based optimal production strategies
for water flooding using tensor-based reduced order adjoints.
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1. INTRODUCTION

Simulation of multiphase flow through porous media plays
a prominent role in the modern practice of reservoir engi-
neering. Applications of reservoir simulation can be found
in field development and planning, reservoir management,
well location design and performance evaluation of reser-
voirs. Currently, the increasing computational capabilities
and the advent of smart field technologies allow the design
of model-based operational strategies to maximize the
financial performance during the life cycle of the reservoir.
For this, numerical reservoir models with large number
of states (in the order of 104 − 106) are used as equality
constraints in the optimization problem, see Sarma et al.
(2008), Jansen et al. (2008) and Van den Hof et al. (2012)
for future perspectives of the field. Due to the computa-
tional cost of reservoir simulations, parameter estimation
and model-based procedures for production optimization
are limited to the computational capabilities and time
constraints. Hence, there is a clear need for models with
reduced dimensional complexity that can be used for effi-
cient simulation of fluid flow through porous media.

Proper Orthogonal Decomposition (POD) has been proved
to be an efficient tool for model order reduction of large
scale dynamical systems. In reservoir engineering, POD
techniques have been exploited by several authors Heijn
et al. (2004), Markovinovic and Jansen (2006), Cardoso
et al. (2009), Krogstad (2011). In production optimization,
Van Doren et al. (2006) have used a projection onto POD
spaces of the adjoint equations to reduce the dimension
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of the linear adjoint system. Gildin et al. (2006) have
designed optimal control strategies based on POD models.
In parameter estimation, Kaleta et al. (2011) have used
the adjoint of a reduced order linearization of a full
order model to perform history matching procedures.
Despite the benefits of reduced order models in simulation,
production optimization and history matching, various
authors have reported a recurrent limitation of the POD
method: handling highly nonlinear systems with gravity
terms in the flow equations generates, in most of the cases,
either unstable or inaccurate reduced reservoir models. See
Cardoso and Durlofsky (2007) and Heijn et al. (2004).

To overcome the limitations of POD, we exploit the
spatial-temporal nature of flow patterns, taking advantage
of the spatial correlations that are usually lost during the
computation of the classical POD projection spaces. In
this paper we propose the use of multidimensional arrays
(tensors) as a natural representation of flow solutions
and empirical projections. For a complete overview of the
available techniques for signal and systems approximations
using tensor decompositions, see Van Belzen and Weiland
(2012). Tensor algebra and analysis are largely unexplored
topics in reservoir engineering. Afra et al. (2014) have
introduced a reduced rank approximation of permeability
fields using tensor decompositions, and Insuasty et al.
(2015) have presented tensor characterizations of flow
profiles and evaluation of dissimilarity measures between
models, with applications in the generation of control-
relevant ensembles. In this work, we introduce tensor-
based model order reduction techniques in reservoir en-
gineering, with applications in production optimization of
water flooding.
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2. CLASSICAL POD MODEL ORDER REDUCTION

In this section we provide an introduction to POD, as a
classical method for feature extraction and its application
in the reduction of dynamical complexity of reservoir mod-
els, defined as the dimension of the state vector of pressures
and phase saturations. For a detailed description of the
philosophy and methods of classical Galerkin projections
see Kirby (2000).

2.1 Classical spectral expansions

Let X ⊂ RN−1 be the spatial domain, and let ϕi be the
spatial mapping ϕi : X → R that describes a spatially
distributed function. Let X be a separable Hilbert space
of functions X→ R, with inner product 〈·, ·〉 : X× X→ R
and norm ‖ϕi‖ = [〈ϕi, ϕi〉]1/2. This makes (X , ‖ · ‖) a
normed space. For every ϕj , ϕk ∈ X we consider the inner
product:

〈ϕj(ξ), ϕk(ξ)〉 =

∫
X
ϕj(ξ)ϕk(ξ)dξ. (1)

so that the induced norm ‖ · ‖ becomes the standard L2

norm of functions. That is ‖ϕi‖2 =
[ ∫

X |ϕi(ξ)|2dξ
] 1

2

and

X = L2(X,R). In this context, the concept of orthonor-
mality of different elements defining a subspace is defined.
Let I ⊆ Z be a (finite or infinite) index set of integers.
A set of elements {ϕi|i ∈ I} with ϕ ∈ X is said to be
orthonormal if:

〈ϕi, ϕj〉 = δij =

{
1 if i = j

0 if i 6= j
(2)

hold ∀i, j ∈ I. In addition, the set of elements {ϕi|i ∈ I} is
said to be an orthonormal bases of X if it constitutes
a set of bases and if it is an orthonormal set. The linear
span of all elements in such an orthonormal set is denoted
span{ϕi|i ∈ I} and has a dimension equal to card(I) the
cardinality of the index set I. Then every member f ∈ X
admits an unique representation

f =

∞∑
i=1

aiϕi (3)

where ai = 〈f, ϕi〉 and the equality (3) needs to be
interpreted in the strong sense:

lim
I→∞

∥∥∥f − I∑
i=1

〈f, ϕi〉ϕi

∥∥∥ = 0. (4)

2.2 POD basis functions

For spatial-temporal systems, we consider signals that
evolve over space X ⊂ RN−1, as well as time T ⊂ R. Let
s : X × T → R denote such signal, and let us assume the
system is described by a set of partial differential equations

R(s) = 0, (5)

where R is a polynomial differential operator with dif-
ferentiation in temporal and spatial variables. In reservoir
engineering, the operator R(·) would represent oil satura-
tion equation, and s would represent oil saturation. Let
s(·, t) ∈ X for all t ∈ T. If {ϕi|i ∈ I} is an orthonormal
basis of X then any solution of (5) can be expanded as
s(ξ, t) =

∑∞
i=1 ai(t)ϕi(ξ), where ai(t) = 〈s(·, t), ϕi〉 is a

time varying coefficient. Let

sr(ξ, t) =

r∑
i=1

ai(t)ϕi(ξ) (6)

be the r−th order approximation of s. Typically, R(sr) 6=

0, but the Fourier coefficients ai(t) in (6) can be selected
to satisfy a system of ordinary differential equations in
(a1, · · · , ar), in such a way that the projection of R(sr)
onto the space spanned by {ϕi|i ∈ I} is equal to zero.
In this context, POD functions are of particular interest,
mainly because they rely on experimental or simulation
data from numerical models and have been successfully
applied as part of model reduction techniques in fluid
dynamics, structural vibrations, etc.

Let s : X × T → R be given with s(·, t) ∈ X ,∀t ∈ T. The
set of functions {ϕi(ξ)} for i = 1, 2, · · · , r is called a POD
basis for an r -dimensional subspace of L2(X,R) associated
with s, if it minimizes the following cost function:

J =

∫ t

0

∥∥∥s(·, τ)−
r∑

i=1

〈
s(·, τ), ϕi

〉
ϕi

∥∥∥2
2
dτ

s.t. 〈ϕi, ϕj〉 =

{
1 if i = j

0 if i 6= j
. (7)

As it is shown in Van Belzen and Weiland (2009), (7) can
be solved in terms of the correlation operator Φ : X → X :

〈ϕi,Φϕj〉 =

∫ t

0

〈ϕi, s(·, τ)〉〈s(·, τ), ϕj〉dτ. (8)

For ϕi, ϕj ∈ L2(X,R), the correlation operator Φ is a
well defined linear, bounded and non-negative operator
on L2(X,R). If dim(X ) < ∞, the correlation operator
Φ becomes a symmetric, non-negative matrix and its
elements represent the correlation between the collection
of signal samples in a discretized spatial-temporal domain.
The problem of finding POD basis functions is equivalent
to solving the singular value (or eigenvalue) problem for
the correlation operator Φ. The POD basis correspond to
the left singular vectors of the correlation operator Φ.

3. TENSOR BASED REDUCED ORDER MODELING

The previous section described classical methods for model
reduction of nonlinear systems. In this section, we intro-
duce a novel tensor formulation for the classical Galerkin
projection of dynamical systems onto empirical spaces. We
extend the concept of orthogonal projection of dynamical
systems to the case where the empirical projection spaces
span every coordinate of the spatial domain. The tech-
niques described in this section are used for the reduction
of the dynamical complexity of reservoir models.

3.1 Tensor representations and decompositions

Let us consider the spatial domain with cartesian structure
X = X1 × · · · × XN−1, such that dim(Xi) = Ri i.e.,

Xi = {ξ(1)i , · · · , ξ(Ri)i } for i = 1, ·, N − 1, and the temporal

domain T = {t(1), · · · , t(RN )}. Moreover, X = X1 × · · · ×
XN is the result of a cartesian product of Hilbert spaces
(Xi, 〈·, ·〉i) for i = 1, · · · , N . Let us assume the sampled
solution of (5), i.e. the oil saturation, is a mapping s :
X × T → R. Therefore, s has an associated multilinear
mapping S : X1×· · ·×XN → R, which can be represented
with respect to canonical bases as:

S =

R1∑
l1=1

· · ·
RN∑
lN=1

sl1···lN e
(l1)
1 ⊗ · · · ⊗ e(lN )

N (9)

where the coefficient sl1···lN = s(ξ
(l1)
1 , · · · , ξ(lN−1)

N−1 , t(lN ))
takes the value of s at the spatial grid point ξ =
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(ξ
(l1)
1 , · · · , ξ(lN−1)

N−1 ) and time t = t(lN ). The ⊗ denotes
the tensor or outer product over a vector space. For
i = 1, · · · , N , every (Xi, 〈·, ·〉i) can be spanned using a

different set of orthonormal basis functions {ϕ(lj)
i }

Ri
j=1,

i.e., 〈ϕ(lj)
i , ϕ

(lk)
i 〉i = δjk, where δjk is the Kronecker delta

function. Hence, the tensor S admits a representation of
the form:

S =

R1∑
l1=1

· · ·
RN∑
lN=1

σl1···lNϕ
(l1)
1 ⊗ · · · ⊗ ϕ(lN )

N

=

R1∑
l1=1

· · ·
RN∑
lN=1

σl1···lNΦ(l1l2···lN ) (10)

where Φ(l1l2···lN ) = ϕ
(l1)
1 ⊗ · · · ⊗ ϕ(lN )

N is a rank−1 tensor,
and σl1···lN is the (l1 · · · lN ) element of a core tensor.

3.2 Empirical tensor basis and algorithms

The description of S in (10) does not assume ordered
sets of basis functions with respect to the information
content. For instance, a local transformation of coordinates
is required to represent tensors in this type of bases.
The problem of finding ordered sets of orthonormal bases
functions in (7), can be extended for the multi-linear case
as follows:

min
{ϕ1}···{ϕN}

∥∥∥S − R1∑
l1=1

· · ·
RN∑
lN=1

σl1···lNϕ
(l1)
1 ⊗ · · · ⊗ ϕ(lN )

N

∥∥∥
F

s.t. 〈ϕj
i , ϕ

k
i 〉 =

{
1 if k = j

0 if k 6= j
, i = 1, · · · , N

(11)

where ‖·‖F is the Frobenius norm of a tensor. In literature,
several algorithms have been reported to compute Tucker-
type tensor decompositions and sets of tensor orthonor-
mal basis functions. A Tucker modal-rank decomposition

defines orthonormality for the set of vectors {ϕ(ln)
n } for

ln ∈ N[1,Rn], therefore this set constitutes an orthonormal

basis for RRn .

The High Order SVD (HOSVD) proposed by De Lath-
auwer et al. (2000a) was the first extension of a classical
SVD to the multilinear case and the methodology is based
on the unfolding procedure of tensors, losing the ten-
sor structure and performing computations in the matrix
plane. The High Order Orthogonal Iteration (HOOI) by
De Lathauwer et al. (2000b), the Tensor SVD proposed
by Weiland and Van Belzen (2010) and the Single Di-
rectional Modal-rank decomposition (SDM) by Shekhawat
and Weiland (2014) compute singular values and vectors
of tensors in a sequential way, keeping the tensor struc-
ture intact. In this work, the SDM method is applied
for the decomposition of saturation and pressure tensors
from reservoir models, in order to generate sets of tensor
empirical projection spaces.

3.3 Nested Galerkin projections

Reservoir simulators describe the evolution of saturation
and pressure over time and space X, which is typically

represented with three dimensions (N = 3) in the Carte-
sian plane. For this reason, tensors are a natural way to
represent and analyze data from spatial-temporal models.
In this subsection, we can extend the concept of Galerkin
projection onto the whole spatial domain, to a projection
onto sets of orthonormal basis that span empirical spaces
for the different dimensions of the spatial domain.

In the framework of Tensor MOR, we deal with every
physical dimension as a separate entity, therefore, the
cartesian coordinates of space can be seen as separable
Hilbert spaces, which are the span of their own set of basis
functions. Following the same reasoning, it is possible to
represent the solution of (5) in terms of s(·) using tensor
expansions as follows:

s(ξ
(p1)
1 , · · · , ξ(pN−1)

N−1 , t(pN )) = (12)

R1∑
l1=1

· · ·
RN−1∑
lN−1=1

σl1···lN−1
ϕ
(l1)
1 (ξ

(p1)
1 )⊗ · · · ⊗ ϕ(lN−1)

N−1 (ξ
(pN−1)
N−1 ),

where the coefficients σl1···lN−1
in (12) are functions of

time. Let us truncate the sums in (12)

sr(ξ
(p1)
1 , · · · , ξ(pN−1)

N−1 , t(pN )) = (13)
r1∑

l1=1

· · ·
rN−1∑

lN−1=1

σl1···lN−1
ϕ
(l1)
1 (ξ

(p1)
1 )⊗ · · · ⊗ ϕ(lN−1)

N−1 (ξ
(pN−1)
N−1 ),

with ri < Ri for i = 1, · · · , N − 1, and we call sr
the approximation of s. Given sets of orthonormal basis

functions for every spatial dimension {ϕ(li)
i }i=1···Ri , we

enforce the residual equation R(sr) to be orthogonal to the
basis functions that span every dimension, then, a nested
Galerkin projection of (5) over the Tensor projection
spaces can be defined as〈

ϕl1
1 ,
〈
ϕl2
2 , · · · ,

〈
ϕ
(lN−1)
N−1 , R(sr)

〉
N−1
· · ·
〉
2

〉
1

= 0 (14)

where 〈·〉i is the inner product defined for the i-th dimen-
sion of the spatial coordinate, see Van Belzen and Weiland
(2012) and sr defined in (13). The expression in (14) de-
fines an ordinary differential equation that represents the

projection of R(sr) onto the basis ϕ
(l1)
1 , ϕ

(l2)
2 , · · · , ϕ(lN−1)

N−1 .
The reduced order approximation of the dynamical sys-
tem in (5), can be found by generating ODEs from (14)
by letting the basis indexes varying as l1 = 1, · · · , r1,
l2 = 1, · · · , r2 until lN−1 = 1, · · · , rN−1.

In summary, the assumption of cartesian spatial X domain
and temporal T domain associates a multidimensional
array S to the solution of a dynamical system s. Then, a
new representation of S in terms of rank-1 tensors allows
the construction of empirical bases for every dimension of
X , which leads to the definition of a tensor expansion of
s. Typically, R(sr) 6= 0, then we use sequential projections
onto the empirical bases that span every Xi in order to
generate a reduced order model.

4. APPLICATION CASE

In this section we present an application case for the
techniques illustrated in Sections 2 and 3. Classical POD
and Tensor MOR techniques are applied for the reduction
of the computational complexity of a reservoir model.
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4.1 The model

We use a numerical model for oil-water fluid flow through
heterogeneous porous media. The implicit solvers of
MRST, see Lie et al. (2012), have been used to solve the
pressure and saturation equations:

v = −λtK∇p, ∇ · v = q

φ
∂

∂t
Sw +∇ · (fw(Sw)(v + g∇d)) =

qw
ρw

(15)

where v is the Darcy velocity, K the permeability tensor,
p the pressure, q volumetric rates, φ the porosity, Sw

the water saturation, qw water volumetric rates, ρw the
water density, g the gravity, d depth below the surface
and fw(Sw) the water fractional flow defined in terms of
the relative permeabilities krw and kro as:

fw(Sw) =
krw(Sw)/µw

krw(Sw)/µw + kro(Sw)/µo
(16)

and µw and µo the water and oil viscosities. We assume
zero flow at the boundaries. We consider a reservoir with
square geometry of side length L = 600m, one layer of 4m
thick, 5 wells (1 injector, 4 producers). A top view of well
locations, permeability and porosity fields are provided in
Fig. 1. The numerical model has 900 grid blocks of size
20m×20 × 4m and the physical parameters are presented
in Table 1.

Fig. 1. Permeability, porosity for the test case.

The controls for this reservoir are the injection rate and
the bottom hole pressures at producers.

4.2 Snapshots generation

A production strategy (Initial Schedule, Fig. 4) is used to
generate 48 snapshots of pressure and saturation profiles
and the variables are stored in separate multi-linear ar-
rays. Next, the POD and Tensor projection subspaces are
computed by using decomposition algorithms described
in Subsections 2.2 (SVD) and 3.2 (SDM). Some relevant
POD and Tensor basis for saturation are presented in Fig.
2. These basis can be understood as the most informative
directions on the snapshots data.

4.3 Model reduction

The number of dimensions for this application case is
N = 3, 2 corresponding to the spatial domain X, and 1 for
time. POD models are obtained by projecting the (15) onto
the first ns = 47 and np = 20 POD bases for saturation
and pressure respectively. For the Tensor-based case, we
compute the inner product of the spatial basis ϕl1

1 ⊗ϕ
l2
2 for

l1 = 1, · · · , r1, l2 = 1, · · · , r2, r1 = r2 = 7, select the first

Fig. 2. POD and Tensor basis for saturation.

ns = 47 and np = 20 bases for saturation and pressure
respectively for the projection of (15). Production was
simulated for a period of 3100 days, and some temporal
snapshots of oil saturation profiles for the full order and
reduced models are presented in Fig 3. On one side, it
is clear that the POD approximation is not capable of
generating trajectories with physical significance, and the
diffusive-convective nature of the full equations is lost after
the projection onto POD subspaces.

Fig. 3. Oil saturation time snapshots for full model and
reduced order model.

In this application case, only 5 − 10% of computational
gain was obtained by employing both POD and Tensor
methods for MOR. This is a known fact for projection-
based methods, and it is due to the operations associated
with the inner products in (14) at every iteration of the
nonlinear solver. See Cardoso et al. (2010) for methods to
speed-up the procedure.

5. TENSOR-BASED REDUCED ORDER ADJOINT
MODELS FOR PRODUCTION OPTIMIZATION

Gradient-based production optimization of water flooding
is a computationally expensive process that requires sev-
eral forward reservoir and backward adjoint simulations.
For instance, there is a potential use of reduced-order
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Table 1. Physical parameters

Property Value Unit

k 13.74 − 876.61 mD
φ 0.17 − 0.37 -
ρw 1014 Kg/m3

ρo 859 Kg/m3

µw 1 cP
µo 5 cP

Swc, Sor 0.2 -
k0rw 0.6 -
k0ro 0.9 -

nw, no 3 -

modeling techniques to perform optimization routines in
low dimensional spaces. In this section, we compare finan-
cial performance of the gradient-based optimal production
strategies in water flooding using POD, introduced by
Van Doren et al. (2006), with tensor-based optimal pro-
duction strategies proposed in this paper.

Fig. 4. Optimal production strategies for full order and
reduced order approximations.

5.1 Production optimization

The purpose of model-based production optimization is to
maximize a financial measure based on numerical models
for the multi-phase flow through porous media. Tradi-
tionally, the financial tool used to describe performance
along the life cycle of the reservoir is the Net Present
Value (NPV), which is a measure of the net earnings of oil
production minus the costs associated with water injection
and production. The water flooding optimization problem
is formulated as follows:

max
u

J =

K∑
k=1

Jk(x(k), u(k)) (17)

s.t R(uk, xk, xk+1) = 0 for k = 0, · · · ,K − 1

where:

Jk(k) =
∆tk

(1 + b)
tk
τ

[
Ninj∑
i=1

rwi · (uwi,i)k+

Nprod∑
j=1

[
rwp(ywp,i)k + ro(yo,j)k

]]
, (18)

where x is the state vector of saturations and pressure,
u the set of control inputs, K the optimization horizon,
∆tk the time step, b the discount factor, Ninj and Nprod

the number of injectors and producers, rwi and rwp the
costs of water injection and production, ro the price of
oil produced, ywp,i and yo,j the water and oil production
rates.

In this work, we compute the optimal production strategy
that solves (17) using gradient-based methods that used
the adjoint equations, see Sarma et al. (2008) and Jansen
(2011) for a detailed description.

5.2 Reduced order adjoint equations

The adjoint-based approach for production optimization
is one of the most efficient methods, as it only requires
one simulation for the forward and adjoint model. As it
is presented in Van Doren et al. (2006), a reduced order
version of the adjoint model is obtained by projecting
the adjoint model equations onto empirical low order
subspaces. However, the computation of the corresponding
Lagrange multipliers still depends on the computation of
the sensitivities of the full order model with respects to its
states. In this work, with the aid of reliable reduced order
models we can reformulate the optimization problem and
the adjoint equations in terms of the reduced order model

λ̂(k)>
∂R̂(k − 1)

∂a(k)
Ψ = −λ̂(k + 1)>

∂R̂(k)

∂a(k)
Ψ− ∂Jk(k)

∂a(k)
Ψ.

(19)

For instance, the sensitivity of the augmented objective
function L with respect to the inputs becomes:

∂L(k)

∂u(k)
=
∂Jk(k)

∂u(k)
+ λ̂(k + 1)>

∂R̂(k)

∂u(k)
, (20)

and the update for the new controls is performed using
steepest ascend method with

unew(k) = uold(k) + α
∂L(k)

∂u(k)
, (21)

where R̂ = R(sr), a is the vector of Fourier coefficients,
Ψ the stacked matrix of empirical projection bases and α
is the step in the gradient direction.

Fig. 5. NPV performance of the virtual asset with the
different strategies.

5.3 Results

We compute optimal production strategies for the POD
and Tensor reduced order models with the methods de-
scribed in Subsections 5.1 and 5.2, where reduced-order
models and adjoints are used for forward and backward
simulation. The results are illustrated in Fig. 4. In order
to perform the projections in (19), Ψ and R̂ were com-
puted for both POD and the tensor approach and coupled
with the adjoint formulation provided by the fully implicit
solvers of MRST.

We used 5 control steps, and the corresponding NPV
build-ups for the full model operated with those strategies
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are presented in Fig. 5. On one hand, it is illustrated
that despite POD reduced-order models can be used for
the purpose of optimization, their limitations in terms
of approximation accuracy constrain the financial perfor-
mance of the resulting optimal production strategy. On the
other hand, the accuracy level achieved with tensor-based
reduced order models affects positively their use in pro-
duction optimization. For this application case, the tensor
strategy shows a better financial performance compared to
the POD strategy and it is close to the optimal strategy
for the full order model.

6. CONCLUSION

In this work, tensor representations of flow profiles are
used to generate empirical spaces where the equations of
two-phase flow through porous media are projected inde-
pendently in every physical dimension using the concept
of nested Galerkin projections. For the application case
presented in this paper, tensor models are able to approx-
imate accurately most of the dynamical characteristics of
the full order model, while the POD case experiences the
limitations reported in literature. However, the accuracy
of tensor models is subject to the scope of the experiment
design for the generation of empirical projection spaces.
The computational gains are low compared to the full
order model, which is a well reported limitation of the
projection methods for model order reduction, and there
exist methods in literature to accelerate nonlinear reduced
order models. The advantages of using tensor representa-
tions for reduced order models lies in the higher levels of
approximation accuracy that can be achieved compared
with the classical POD models, and in their potential use
in optimization routines.
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