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Abstract This paper addresses the design of a perturbation-based extremum seeking control (ESC) method to
maintain the oil production around the optimum point of the well-performance curve in gas lifted wells. The
method uses periodic perturbation which is injected into the plant with intention to extract the information about
the gradient of the well-performance curve. A simple nonlinear dynamic model is proposed and the essential
dynamics of the Eikrem’s model are captured, i.e., the transient behavior and the optimal steady state well-
performance curve. Based on this simple model, a pre-compensation is developed which allows the application of
the ESC scheme without reducing excessively the perturbation frequency. The control performance is evaluated
via numerical simulations using an appropriate environment for modelling, simulation and optimization (EMSO)
of process dynamic systems.

Keywords: extremum seeking control, oil production, process control, gas lifted wells.

1. INTRODUCTION

In oil production, when the pressure of the reservoir is
not enough to maintain the oil flow reaching the wellhead
or the well is at the end of its productive life, the use of
artificial lift method is required (Thomas, 2001). Hence,
artificial lift is a common technique to increase production
from mature fields. One of the most used technique is
the gas injection (Eikrem et al., 2005) (Skogestad and
Storkaas, 2002), which consists of applying compressed gas
into the annulus space of the well so that it enters in the
bottom of the tubing reducing the average fluid density.
As a result, the fluid becomes lighter by decreasing density
and allows higher oil flow at the wellhead (Elgsaeter et al.,
2010) (Ribeiro, 2012).

The curve representing the relationship between the gas
injection flow and the oil flow at the wellhead is named
well-performance curve (WPC) of gas lifted wells. By
increasing excessively the gas flow, the friction increases
while the oil production decreases. This results in a WPC
with an extremum. The difficulty of estimating the WPC
has motivated the search for a robust real-time method
that leads to the oil production flow values near the opti-
mum of the WPC (Garcia et al., 2010) (Garcia Irausquin
et al., 2008) (Redden et al., 1974) (Aamo et al., 2005).

Optimal lift-gas allocation with constraints was formu-
lated as a mixed-integer nonlinear programming problem
in (Camponogara and de Conto, 2002). Optimal allocation
of limited resources, such as the lift-gas flow, fluid handling
capacities and water-treatment processing capacity was
considered in (Camponogara et al., 2009) and (Teixeira,
2013) and a control strategy for the pressure of the gas lift
was also proposed. Model predictive control was explored

in (Plucenio, 2010) and (Ribeiro, 2012) to assure optimum
oil production with quality constrains. Extremum-seeking
control (ESC) is an alternative approach for online op-
timization that deals with uncertain situations when the
plant model and/or the cost to optimize are not available
to the designer. Using the available signals (plant input
and output), the goal is to design a controller that dy-
namically searches for the optimizing inputs.

In (Ariyur and Krstic, 2003), the method was general-
ized for a class of dynamic plants stabilizable via state
feedback. The general idea was to generate a closed-loop
system with sufficiently fast dynamics in order to behave
approximately as a static plant. A more general class of
nonlinear plants were treated in (Krstić and Wang, 2000)
by assuming again that the system (in closed loop via
state feedback) can behave approximately as a static one
or by assuming that the period of the periodic pertur-
bation is large when compared to the time constant of
the system (low excitation frequency). For the class of
Hammerstein-Wienner (HW) systems, compensators can
be added to the ESC scheme so that the period of the
periodic perturbation can be reduced, leading to faster
transients to reach the vicinity of the maximizer (Ariyur
and Krstic, 2003), (Krstíc, 2000). It must be highlighted
that, in all cases (Krstić and Wang, 2000), (Ariyur and
Krstic, 2003) and (Krstíc, 2000), the mentioned phase
difference is evident. In fact, this ESC method is deeply
dependent on a good phase difference detection between
input and output for average values of the input below and
above the maximizer.

This paper considers the modified version of Eikrem’s
model by Ribeiro (2012) for gas lifted oil wells. Via
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numerical simulations it is apparent that phase difference
is not observed between the input and output of the WPC
mapping corresponding to average values of the input
below and above the maximizer. A clear phase difference
appears only for very low frequencies of the periodic
perturbation, which impairs the directly applicability of
the ESC method. Seeking to circumvent this problem,
in this paper, the modified Eikrem’s model is analyzed
and a suitable model is proposed. We consider a simple
stable first order linear system followed by a nonlinearity
containing a product of the plant input and state. This
model allows us to capture the main features of the
Eikrem’ model and clarify the main reason for the difficult
to detect the phase difference. Moreover, a simple pre-
compensation is proposed in order to approximate the
nonlinear system to a HW system, allowing to reduce the
period of the periodic perturbation. To the best of our
knowledge, perturbation-based extremum seeking control
via output feedback has remained unsolved for the class
of uncertain nonlinear systems considered here, without
reducing the frequency of operation. Hence, as a sub
product, this paper also contributes with a preliminar
solution to this problem.
Remark 1. (Notation and Terminology) The symbol “s”
represents either the Laplace variable or the differential
operator “d/dt”, according to the context. As in (Ioannou
and Sun, 1996), H(s)u denotes the output of a LTI system
with transfer functionH(s) and input u. Pure convolutions
h(t)∗u(t), with h(t) being the impulse response fromH(s),
will be eventually written as H(s) ∗u. Classes of K,K∞,L
functions are defined according to (Khalil, 2002, p. 144), in
particular, a function β : IR+ → IR+ belongs to class L if
it is continuous, strictly decreasing and limt→∞ β(t) = 0.
A function α : IR+ → IR+ belongs to class K if it is
continuous, strictly increasing and α(0) = 0.

2. MODIFIED EIKREM’S MODEL FOR WELL
PRODUCTION

According to (Eikrem et al., 2002), the model to describe
the well production (3 phases – water, oil and gas) is given
in four parts: (i) mass balance model of the phases, (ii) the
densities models, (iii) the pressures models and (iv) the
flows models. It is assumed that the oil and water form
one single phase (inside the well column) and only slow
changes occurs in the quantity of gas in the mixture. The
mass balance of the production process of a single well
operating via gas lift can be described by:

ẋ1 = u− wiv , (1)
ẋ2 = wiv − wpg , (2)
ẋ3 = wro − wpo , (3)
y = wpo , (4)

where, x1 is the mass of gas in the annulus, x2 is the mass
of gas in the tubing, x3 is the mass of oil production in the
column above the injection point, u = wgc is the flow gas
injection in the annulus (control input), wiv is the flow
gas from the annulus to the tubing, wpg is the gas flow
though the production valve (choke), wro is the oil flow
from the reservoir into the tubing, and y = wpo is the oil
flow though the production choke (plant output).

The oil density in the reservoir is given by ρ0 = 1
v0
, where

v0 is the specific volume of the oil in the reservoir (the oil is

considered incompressible). The densities ρai (gas density
in the annulus at the injection point), ρm (density of the
oil and gas mixture at the wellhead) are described by:

ρai =
M

RTa

(
RTa
VaM

+
gLa
Va

)
x1, (5)

ρm =
x2 + x3 − ρoLrAr

LwAw
, (6)

respectively, where R is the universal constant of the ideal
gases, Ta is the temperature in the annulus, Va the volume
of the annulus space, M is the molar mass of the gas,
La the length of the annulus, g is the acceleration of
gravity, Aw is the cross section area (assumed circular)
of the column above the injection point, Lw is the length
of the column above the injection point, Ar is the cross
section area (assumed circular) of the column below the
injection point and Lr is the length of the column below
the injection point.

According to the modifications in the Eikrem’s model
proposed by Ribeiro (2012), the pressure pai (the annulus
pressure at the injection point of the column), pwh (well-
head pressure), pwi (column pressure at the injection point
of the column) and pwb (downhole pressure) are given by:

pai =

(
RTa
VaM

+
gLa
Va

)
x1 , (7)

pwh =
RTw
M

x2
LwAw + LrAr − vox3

, (8)

pwi = pwh +
g

Aw
(x2 + x3 − ρoLrAr) + ρ0ghf (Lw) , (9)

pwb = pwi + ρog(Lr + hf (Lr)) , (10)

respectively, where Tw is the temperature in the column,
hf (·) is the head loss described in Ribeiro (2012). The flows
wiv, wpg, wpo and wro are described by:

wiv = Civ
√
ρaimax{0, pai − pwi}, (11)

wpg =
x2

x2 + x3
wpc, wpo =

x3
x2 + x3

wpc , (12)

wro = Cr
√
ρ0(pr − pwb), (13)

where,

wpc = Cpc
√
ρmmax{0, pwh − ps}, (14)

Civ, Cpc and Cr are positive constants, ps is pressure in
manifold downstream of the well where it is assumed that
there is a control to maintain this pressure at a constant
value, and pr is the reservoir pressure far from the well,
which is also considered constant.

Note that, from (12), one has that wpg = (x2/x3)wpo.
Therefore, the system (1)–(4) can be rewritten as follows:

ẋ1 = u− ϕ1(x1, x2, x3),

ẋ2 = ϕ1(x1, x2, x3)− x2
x3
ϕ3(x2, x3),

ẋ3 = ϕ2(x2, x3)− ϕ3(x2, x3),

y = ϕ3(x2, x3),

(15)

where ϕ1 = wiv is obtained from (11), (5), (7), (9) and
(8), ϕ2 = wro is obtained from (13), (10), (9) and (8) and
ϕ3 = wpo is obtained from (12), (14), (6) and (8).
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3. MODIFIED EIKREM’S MODEL NUMERICAL
EVALUATION

Aiming to obtain a simpler model that satisfactorily repre-
sent the system (15) being more suitable for the controller
design, the system response to constant and sinusoidal in-
puts was evaluated via numerical simulations. The simula-
tor EMSO (Environment for Modeling Simulation and Op-
timization), developed by the laboratory LADES/UFRJ
(Soares and Secchi, 2003), was used in a friendly interface
with SIMULINK/MATLAB.

The modified Eikrem’s model parameters are: M =
0.0289kg/mol, R = 8.314J/kmol, g = 9.81m/s2, Ta =
293K, La = 230.87m, Va = 29.012m3, ρo = 923.9kg/m3,
ps = 3.704669 × 106Pa, pr = 2.5497295 × 107Pa, Tw =
293K, Lw = 1217m, Lr = 132m, Aw = 0.203m2, Ar =
0.203m2, Civ = 15 × 10−5m2, Cpc = 1.655 × 10−3m2 and
Cr = 2.623× 10−4m2.

3.1 Static Input-Output Mapping

In order to assure the existence of a static input-output
mapping corresponding to (15), we assume that:

(A0) For fixed values of u(t) = θu ∈ IR, the system
(15) has an unique and constant steady state solution
(ẋ1 = ẋ2 = ẋ3 = 0), i.e., when t → +∞, denoted by
x1(t) = θ1, x2(t) = θ2 and x3(t) = θ3 (equilibrium
point).

It can be verified that this assumption (A0) is not restric-
tive, by solving the following algebraic system (numeri-
cally) 1

θu − ϕ1(θ1, θ2, θ3) = 0 , (16)

ϕ1(θ1, θ2, θ3)− θ2
θ3
ϕ3(θ2, θ3) = 0 , (17)

ϕ2(θ2, θ3)− ϕ3(θ2, θ3) = 0 , (18)
for some values of θu in the region of interest θu ∈ (0, 10].
For each θu, the system (16), (17) and (18) exhibited a
single solution (θ1, θ2, θ3) and, consequently, y(t) converges
to a single value in steady state, named y(t) = θy =
ϕ3(θ2, θ3) when t→ +∞. Knowing the steady state values
θ2 and θ3, it is possible to plot the curve θu×θy, the WPC
curve in Figure 1, which represents the oil production in
steady state for each value of the constant flow of gas
injection 2 . As it is well known, from Figure 1, it is clear
that there exists an optimum gas lift flow (2.68 kg/s)
which maximizes the oil production.

3.2 Static Input-Output Model

By examining the solutions (16), (17) and (18) for each
value of θu, one can verify that, as the gas injection
increases (θu), the mass of gas in the column (θ2) and
in the annulus (θ1) increase, while the mass of the oil in
1 The existence and uniqueness of solution of (16)–(18) have not
been rigorously demonstrated. However, it can be verified that θ2
and θ3 can be obtained from θu− θ2

θ3
ϕ3(θ2, θ3) = 0 and ϕ2(θ2, θ3)−

ϕ3(θ2, θ3) = 0 while θ1 can be obtained from θu−ϕ1(θ1, θ2, θ3) = 0.
2 The static input-output relationship was assessed via numerical
solution of the algebraic nonlinear equations (16)–(18) and via
numerical simulation using the EMSO package.
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Figure 1. Steady state mapping for each value of the
gas injection flow wgc = θu in the region of interest
θu ∈ (0, 7]: (a) the WPC curve. i.e., the oil production
y = wpo = θy; (b) the mass of gas in the column (θ2),
(c) the mass of gas in the annulus (θ1) and (d) the
mass of the oil in the column (θ3).

the column (θ3) decreases. Indeed, via least squares fitting
one can approximate the relationships θ1(θu) and θ2(θu)
(increasing functions) and the relationship θ3(θu) (decreas-
ing function). Inspired by this numerical evaluation, the
following assumption is now made:

(A1) There are functions αi ∈ K∞ (i = 1, 2) and β3 ∈ L
and constants ki (i = 1, 2, 3) such that θ1 = α1(θu) +
k1, θ2 = α2(θu) + k2 and θ3 = β3(θu) + k3, where
x1(t) = θ1, x2(t) = θ2 and x3(t) = θ3 is the unique
constant steady state solution of (15) corresponding
to each fixed value of u(t) = θu, according to (A0).

From (17), the steady state value of the plant output
y = ϕ3(x2, x3) is given by

θy = ϕ3(θ2, θ3) =
θ3
θ2
ϕ1(θ1, θ2, θ3) , (19)

where ϕ1(θ1, θ2, θ3) is the steady state value of the flow gas
wiv = ϕ1(x1, x2, x3). Moreover, from (16), one has that
ϕ1(θ1, θ2, θ3) = θu, thus one can write θy = θ3

θ2
θu. Finally,

from (A1), the following input-output relationship at
steady state can be obtained:

θy =
θ3
θ2
θu =

β3(θu) + k3
α2(θu) + k2

θu = β(θu)θu , (20)

where β(θu) := β3(θu)+k3
α2(θu)+k2

∈ L. By using the least squares
method, we obtain α1(θu) = 8θ4u − 20.7θ3u + 209.2θ2u −
366.1θu, k1 = 3583.3, α2(θu) = −1.3θ4u+34.3θ3u−373.8θ2u+
3009.6θu, k2 = 3033.3, β3(θu) = 0.3θ4u − 7.8θ3u + 83.2θ2u −
475.2θu, k3 = 1851.5.

4. PROPOSED MODEL FOR CONTROL DESIGN

From (1)–(3) or (15), one can observe that the system has
three main time scales:

• Fastest – the x1-dynamics (see also (1)): the time in-
terval required for the equalization of the gas injection
flow in the tubing (wiv = ϕ1) and the gas injection
flow u = wgc = θu, for a constant θu.
• Medium – the x2-dynamics (see also (2)): the time

interval required for the equalization of the gas pro-
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duction flow (wpg = x2ϕ3/x3) and the gas injection
flow in the tubing (wiv = ϕ1), corresponding to a
constant u = wgc = θu.
• Slow – the x3-dynamics (see also (3)): the time in-

terval required for the equalization of the oil pro-
duction flow (wpo = ϕ3) and the oil flow from the
reservoir (wro = ϕ2), corresponding to a constant
u = wgc = θu.

Inspired in the static input-output relationship (20), it
is proposed a reduced order (first order) model that
takes into account the difference between the fast and
the slow/medium system time constants. Since the time
intervals for x2 and x3 reach their steady state values
θ2 and θ3, respectively, are significantly greater than the
time interval for x1 to reach its steady state value θ1, the
following dynamic model is proposed:

y = β(uf )u , uf =
1

τfs+ 1
u . (21)

This simplification is acceptable since the dynamics of
the mass of gas in the annulus is, of course, the faster
dynamics of the system and ϕ1 = wiv is weakly dependent
from x2, x3. Notice that this model does not belong to
a HW class of systems. Furthermore, from (15), it is
apparent that the system has relative degree two with
respect to the input u. Although the order and the relative
degree are reduced in comparison to (15), the behaviour
of the modified Eikrem’s model (15) is quite similar to
the proposed model (21), as will be seen via numerical
simulations.

4.1 Model Validation

The oil production response (in kg s−1 ) corresponding to
a sequence of steps in the gas injection flow, ranging from
4 kg s−1 to 6 kg s−1 , is illustrated in Figure 2(a). The
initial conditions x1(0) = 4350.1, x2(0) = 10951 and
x3(0) = 86038 are such that the gas injection flow is 4
kg s−1 . The sequence of steps occurs as follows: a step
from 4 kg s−1 to 4.5 kg s−1 at t = 0.5, a step from 4.5
kg s−1 to 6 kg s−1 at t = 1.5, a step from 6 kg s−1 to 4.5
kg s−1 at t = 2.5 and a step from 4.5 kg s−1 to 4 kg s−1 at
t = 3.5. In Figure 2(b), a slow transient response (7.2 h )
is observed and after vanishing the transient, the output
y = wpo follows the WPC curve shown in Figure 1. The
proposed model response captures the transient behavior
and steady state values of the modified Eikrem’s model
(15).

In order to further explore the similarity between these two
models, the frequency response was analyzed. A similar
behaviour is observed for periods of the input ranging from
1 hour to 40 days. Figure 2(c) illustrates the response to
a sinusoidal input with period equal to 1 hour and the
average level of 4 kg/s. We note that only a small phase
delay is observed.

The steady state oil production corresponding to a si-
nusoidal gas injection flow u(t) = 0.1 sin(ωt) + b, with
frequency ω = 2π/T , period T and mean value b, was
evaluated for 3 different values of the period: T = 40 days
(very low frequency), T = 1 hour and T = 1 minute (high
frequency). Moreover, for each period, two different mean

values were considered: b = 4 and b = 6, below and above
the WPC maximizer 5.3, respectively.

The results for T = 10 days are illustrated in Figure 2(d).
The output was scaled and the average levels were removed
to facilitate the illustration of the phase difference between
input and output. It can be seen that the input and
output are in phase for mean value (b = 4) below the
WPC maximizer (black line) and are in counter-phase
for mean value (b = 6) above the WPC maximizer (blue
line). By increasing the frequency the phase difference is
unobservable. Indeed, input and output in steady state
are in counter-phase, independently of the mean value b.
So, there exists a clear phase difference between input and
output in steady state only for a very low frequency.
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Figure 2. Comparison between the proposed model (21),
solid line, and the modified Eikrem’s model (15),
dash-dot line, with the oil production flow in kg s−1

and t in days: (a) step response; (b) zoom in the step
response; (c) steady state response to a sinusoidal
input and (d) steady state response to a sinusoidal
input in phase (black line) and in counter-phase (blue
line).

The proposed model captures the following main features
of the modified Eikrem’s model: (i) the static input-output
relationship described by the WPC, (ii) a large transient
settling time and a large transient peak corresponding
to a step input signal and (iii) steady state response to
sinusoidal inputs in phase (counter-phase ) with the
input when the average input level is below (above) the
maximizer (this phase difference decreases as the input
frequency increases).

5. PROBLEM STATEMENT

Inspired by the proposed model in (21), consider the
following class of nonlinear uncertain SISO plants

τ ẋ = −x+ u , (22)
y = h(x, u) = β(x)u , (23)

where u ∈ IR is the control signal, x ∈ IR is the
plant state (not available), y ∈ IR is measured output,
β : IR → IR is a class L (β ∈ L) function and the
time constant τ > 0 is considered uncertain. In order
to assure existence and forward uniqueness of solutions,
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it is assumed that the nonlinear function β is locally
Lipschitz continuous in x and sufficiently smooth (all
required derivatives are continuous). For each solution of
(22) there exists a maximal time interval of definition given
by [0, tM ), where tM may be finite or infinite.

It is clear that the control law u = θu assures that x = θu
is an equilibrium point globally exponential stable, where
θu ∈ IR is a parameter. The corresponding plant output is
given θy = Φ(θu), where Φ : IR → IR is the static input-
output mapping:

Φ(z) := β(z)z . (24)
Of course, for τ = 0, we have a static input-output
mapping given by y = Φ(u). Note that, due to the
presence of the control signal u in (23), the system does
not belong to the class of HW type systems 3 , which is
the most important class of nonlinear systems covered
by ESC schemes founded in the literature, in particular,
the perturbation-based ESC schemes (Ariyur and Krstic,
2003).

Here, we address the global real-time optimization control
problem – problem of extremum seeking – considering only
the maximum seeking problem, without lost of generality.
We deal with the maximization of the static mapping
(24) subjected to (23) and (22).Here we assume that the
function Φ : IR → IR, in (24), has a unique maximizer
θ∗ ∈ IR such that Φ(θ∗) is the maximum, i.e., ∀θ ∈ IR has
Φ(θ) ≤ Φ(θ∗). Moreover, we consider that θ∗, Φ(·) and its
gradient are unknown to the control designer and that all
the uncertain parameters belong to some compact set.

6. EXTREMUM SEEKING CONTROL

Consider the perturbation-based extremum seeking con-
trol method described in (Krstić and Wang, 2000). For
plants with τ = 0 in (22), or with τ sufficiently small when
compared with the period of the disturbance, the following
input-output static relationship results: y = Φ(u).

In the ESC method the control signal is composed by
an estimated θ̂ for maximizer θ∗ added to a sinusoidal
perturbation v = asin(ωt), i.e., u = θ̂+ v. The estimate θ̂
is given by:

˙̂
θ =

k

a
ξ , θ̂(0) = θ̂0 , (25)

where ξ is an estimate for the gradient of the function Φ

in (24) evaluated at θ̂, i.e., Φ
′
(θ̂). Note that, the dynamics

˙̂
θ = k

aΦ
′
(θ̂) has an asymptotically stable equilibrium

point of given by the maximizer θ̂ = θ∗. Now, using the
first two terms of the Taylor series to approximate the
input-output relationship Φ(u) with u = θ̂ + asin(ωt), it
follows that y ≈ Φ(θ̂) + Φ

′
(θ̂)asin(ωt). In general, the

output y can be consider to present the form yss(t) =
θ1(t) sin(ωt) + θ2(t) in steady state 4 . Therefore, θ1 and
θ2 can be estimated as follows. The amplitude θ1 can be
estimated by θ̂1 = 2

τ1s+1 [sin(ωt)z(t)], where τ1 is a positive
design constant and z is the output of a high-pass filter,
3 Note that, however, by adding a stable filter at the system input
results in a augmented HW system.
4 Note that, even for the case τ > 0, the dynamic system is stable
and it still reasonable to consider that the output y presents this
form in steady state.

i.e., z = s
s+wh

y = y − wh

s+wh
y. Indeed, the filter wh

s+wh
,

designed properly, attenuate the term θ1(t) sin(ωt) in y =
θ1(t) sin(ωt) + θ2(t). Then, z ≈ θ1(t) sin(ωt). The signal
is then demodulated, multiplying by sin(ωt), resulting in
θ1(t) sin2(ωt). Reminding that 2 sin2(ωt) = 1 − cos(2ωt),
only the DC component is not filtered by 2

τs+1 . Hence,
θ̂1 ≈ θ1. The average value (DC component) is estimated
directly by θ̂2 = 1

τs+1y, i.e., θ̂2 ≈ θ2. Thus, θ̂1 ≈ Φ
′
(θ̂)a,

θ̂2 ≈ Φ(θ̂) and an approximation for the gradient of the
function Φ evaluated at θ̂ is given by ξ = θ̂1/a. For the
correct operation of the algorithm the cutoff frequencies
wh and 1/τ must be less than ω. The amplitude a of the
sinusoidal perturbation defines the size of the oscillations
around the optimal point, while the integrator gain k
defines how fast the output will reach this neighbourhood.
These two constants should be small enough to assure the
stability of the algorithm (Krstić and Wang, 2000).

6.1 Proposed Pre-Compensation

The main idea is to reduce the system to a HW system
which has the same input-output static mapping and for
which the ESC frequency can be increased.

Consider the system described in (22) and (23), with
static mapping defined in (24) and control signal given
by u(t) = θ̂(t) + a sin(ωt), where θ̂ the estimate (25), i.e.,
the estimate ˙̂

θ = k
aξ, with ξ being an estimate for Φ

′
(θ̂),

with Φ in (24). Differently from (25), where ξ is obtained
from the plant output y, here we use the following available
auxiliary output signal

Y :=
y

u
x̂ , u 6= 0 ,

to generate ξ by considering the resulting plant
τ ẋ = −x+ u , (26)
Y = β(x)x̂ . (27)

Note that, by choosing x̂ such that x̂ ≈ x, the system (26)–
(27) has the same input-output static mapping Φ(z) =
β(z)z as the original system (22)–(23) and now belongs
to a class of HW systems. This class of plants has been
extensively addressed in the ESC literature. Now, it is
possible to detect phase difference between Y and u for
higher ESC operating frequencies.

For the case where τ is a known parameter in (26), let

x̂ := θ̂ + a
1√

ω2τ2 + 1
sin(ωt+ φ) ,

where φ = ∠P (jω) = − arctan τω and P (jω) := 1
jτω+1 .

From (26) one can verify that this choice for x̂ approxi-
mates the steady state value of the plant state x, if θ̂(t) is
in the passband of (26).

For the case where τ is a unknown parameter in (26) we
can estimate ∠P (jω) by using a phase lock loop estimator
(PLL) applied to the available signal y/u = β(x), when
u 6= 0, resulting in the estimate φ̂. Indeed, since β ∈ L
the signal β(x) has, approximately, the same phase shift
(∠P (jω)) as x w.r.t. to the input u (in steady state). This
can be verified by using the Taylor series for representing
β(x). Hence, an estimate for τ can be obtained from
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τ̂ = − tan(φ̂)/ω and then the auxiliary signal x̂ can be
redefined as

x̂ := θ̂ + a
1√

ω2τ̂2 + 1
sin(ωt+ φ̂) .

The results, considering the proposed model (with τ =
2100), are given in Figure 3. Before t = 3.5, a rough
estimate of the phase shift φ were considered, see Fig-
ure 3 (c) (solid line). In this case, we note from Figure 3 (a)
that the estimate θ̂ (solid line) of the WPC maximizer
θ∗ = 5.3 (dash-dot line) approaches a wrong value (≈ 6).
After t = 3.5 the correct phase shift were detected by the
PLL estimator and after t ≈ 5.4, the gain 1√

ω2τ̂2+1
was

corrected, resulting the convergence of the estimate θ̂ to
the maximizer θ∗ = 5.3. In Figure 3 (b), it is illustrated
the estimate τ̂ (solid line) changing from the wrong initial
value 2000 to the correct value τ = 2100 (dash-dot line).
The PLL phase estimate (black dashed-dot line) converges
to the ideal value−arctan(ωτ) (red dashed-dot line). After
t = 3.5 the correct phase shift (solid line) changes from
the wrong initial value (≈ −1279) to the correct value
≈ −1280 (dash-dot line). The ESC oscillation period is
now reduced from 10 days to 10 hours.

0 1 2 3 4 5 6 7
4

5

6

t

(a
)

0 1 2 3 4 5 6 7

2000

2050
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t

(b
)

0 1 2 3 4 5 6 7

−1280

−1279

−1278

t

(c
)

Figure 3. Simulation results with oscillation period equal
to 10 hours: (a) maximizer θ∗ (dashed-dot line) and
its estimate θ̂ (solid line); (b) the time constant τ
(dashed-dot line) and its estimate τ̂ and (c) the pause
shift φ (dashed-dot line), its estimate φ̂ (solid line)
and the PLL estimation (black dashed-dot line).

7. CONCLUSION

The modified Eikrem’s model for gas lifted wells was pre-
sented and analyzed. In order to maintain the oil produc-
tion around the optimum point of the well-performance
curve, a perturbation-based extremum seeking control
(ESC) scheme was evaluated. It was verified that only
operating at a very low frequency of the perturbation,
the ESC was capable to assure that the oil production
reaches a small vicinity of the optimum point. This fact
motivated us to develop a simple nonlinear dynamic model
capturing the essential dynamics of the modified Eikrem’s
model (transient and steady state behaviour). Based on
this model a pre-compensation was developed allowing the
application of the ESC scheme without reducing exces-
sively the frequency of operation. The key idea was to

approximately reduce the original nonlinear system into a
HW type system. The control performance was evaluated
via numerical simulations. A tuning methodology for the
ESC parameters and the complete closed loop stability
analysis (including the pre-compensation) were left for
future work.
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