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Abstract: Existing optimization-based virtual flow metering solutions use advanced, black-
box process models directly in the optimization problem. This approach has many potential
disadvantages, for example: non-smooth models and lack of derivative information may hamper
the optimization solver. In this paper a new approach to optimization-based virtual flow
metering using B-spline surrogate models is presented. In this approach the black-box process
models are replaced with smooth B-spline approximations, with gradients readily available to
the solver. We show that the approximation can be done without any significant loss of accuracy.
By using surrogate models the optimization solver can be decoupled from the process simulator,
saving I/O-operations and evaluations of the process model, resulting in reduced solution times.
Another beneficial feature of the problem formulation is that poorly calibrated models may
be identified and weighed less in the optimization problem. Some insight on how to select
measurement noise and model error weights is shared with the reader.

Keywords: State estimation, data reconciliation, splines, nonlinear programming, modelling
errors.

1. INTRODUCTION

Model-based technologies are increasingly used to improve
the operability and safety of subsea oil and gas production
systems; several testimonials to this can be found in the
literature, cf. (Stenhouse, 2008; Foss, 2012). By coupling
sensor data with process models, operators may estimate
the unknown flow rates in the system. This may aid
them in: operating within safety and flow assurance limits,
preventing unnecessary wear and tear on the equipment,
identifying equipment failure, and in guiding the system
to desired operating points.

In modern field developments, accurate pressure and tem-
perature sensors are installed throughout the production
system, from the bottom-hole of the wells to the separator.
Flow meters are installed more sparingly due to high costs.
For additional accuracy and redundancy, the systems are
monitored with software that infer the flow rates by in-
serting available measurements into an advanced process
model/simulator. This technology is known as flow estima-
tion, data reconciliation or virtual flow metering (VFM).
A survey and discussion on the use of flow estimation
in subsea oil and gas production systems can be found
in the recent work of Robertson (2014). The same work
provides a list of existing commercial and in-house VFM
solutions. One example from this list is FMC Technologies’
FlowManagerTM(Holm̊as et al., 2011).

A VFM system is an online system, running at real-time
speed in intervals of seconds or minutes. For this reason,
steady-state models have been prevalent in VFM systems
to obtain the required solution times. Once within each
interval a steady-state flow estimation problem, or data

reconciliation problem, is solved to obtain the estimated
rates. For a linear process model, this problem is a special
case of the Kalman filter (Narasimhan and Jordache,
1999). This relation becomes less clear when a nonlinear
model is used and operational constraints are included.
The resulting optimization problem is then non-convex
and difficult to solve. The situation is not improved by
the fact that the process model is considered to be a
black-box model without available gradient information.
To resolve some of these issues we will in this work replace
the process models with B-spline surrogate models. These
surrogate models are accurate, smooth, fast to evaluate,
and they offer gradients – all being favourable properties
for optimization.

Using the B-spline surrogate models, we form a data
reconciliation problem that we solve for a semi-realistic
case with two subsea wells. A nice feature of the proposed
method is that model errors, as well as measurement noise,
are considered in the problem formulation. This allows for
gross error detection to identify poorly calibrated models,
which is a common issue in VFM systems; this is due to
the lack of flow rate measurements for model calibration
(Bieker et al., 2007).

2. FLOW ESTIMATION

Let y be an ny-vector of variables to be reconciled with the
corresponding measurements ȳ. 1 We denote the difference
between the reconciled and measured values with v, i.e.
v = y − ȳ. Furthermore, we denote with an nx-vector x

1 Vectors are denoted with bold face y and vector elements with yi.
All measurements are denoted with a bar accent, e.g. ȳ.
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the unmeasured variables that we want to estimate. To
estimate x we solve the following nonlinear programming
problem

minimize
x,y,v,w

||v||2M + ||w||2N
subject to g(x,y) = w

y − ȳ = v

x ∈ X

(P)

where g : Rnx × Rny → Rm are m maps between the
reconciled (measured) variables y and the unmeasured
variables x. In general, g is a vector of nonlinear functions
and, hence, g(·) = w describes a nonconvex constraint
set. The variables w ∈ Rm represent model errors; in
the case of a perfect model w = 0. The set X is a
convex polytope which may include linear constraints on
the estimated variables x. Note that the measurements ȳ
are not considered variables in P.

The objective of P is a weighted least-squares quadratic
function defined by the norms ||v||2M = vTMv and
||w||2N = wTNw, representing penalties on measurement
and modelling errors, respectively. The matrices M and
N can be thought of as the inverse covariance matrices for
the measurement noise and model errors. In this work we
set M = diag(µ) and N = diag(ν), where µ and ν are
two vectors of non-negative weights, to obtain diagonal,
positive definite matrices and a convex objective function.

Problem P is a steady-state data reconciliation problem.
Next we describe how P may be configured to estimate
the flow rates in a simple subsea production system with
two wells. The sequential solution of this problem, incor-
porating new measurements as they become available, is
often termed virtual flow metering.

2.1 Formulating a simple flow estimation problem

Here we present a configuration of P which can be applied
to any two-well subsea template tied back through a single
pipeline (see Fig. 1). Extensions to include more wells
and/or more complex topologies are straightforward.

For a subsea production system the vector of measured
variables is typically y = [pT, tT,uT]T, with measurements
ȳ = [p̄T, t̄T, ūT]T, where p denotes pressures, t denotes
temperatures, and u denotes choke openings. The unmea-
sured variables to be estimated are typically the flow rates,
i.e. x = q, where q denotes the flow rates. The vector
g may include pressure and temperature drop functions,
as well as other relations between the variables. Below,
we consider some commonly used pressure drop functions.
For simplicity we assume perfect temperature and choke
opening measurements and fix t = t̄ and u = ū in the
formulation.

The well performance is usually described by the inflow
performance relationship (IPR) which describes the inflow
from the reservoir to the wellbore. The IPR depends on
factors such as rock properties (e.g. permeability), fluid
properties, the well completion, et cetera, and relates the

liquid rate qliq
i to the flowing bottom hole pressure pbh

i :

wipr
i = gipr

i (pbh
i , q

liq
i ) = pbh

i − f ipr
i (qliq

i ), ∀ i ∈ {A,B}. (1)

The vertical lift performance (VLP) curve describes the
relationship between the well flow and the pressure loss

Fig. 1. Topology of production system.

from the bottom hole to the wellhead, and depends on e.g.
the well geometry and fluid properties. While a well can
be modelled from the reservoir to the wellhead using the
IPR and VLP curve, the two models can be combined to
create a single well performance curve (WPC)

wwpc
i = pwh

i − fwpc
i (qliq

i ), ∀ i ∈ {A,B}. (2)

The VLP curve may be ambiguous with respect to flow
rate due to gas lifting at low flow rates, therefore we prefer
to use the WPC, which is usually more well-behaved.

Wellhead choke valves control the flow rates from each
well. The flow rates through the choke valves depend on
e.g. choke geometry and the upstream flow regime.

wchk
i = pman − f chk

i (qliq
i , p

wh
i ; t̄wh

i , ūi), ∀ i ∈ {A,B}. (3)

The wellhead choke model used in this paper is a multiplier
model, which is based on the simple valve equation to-
gether with a Morris multiphase multiplier and Chisholm
slip correlation (see e.g. Schüller et al. (2003)).

The flowline is modelled using the OLGAS 3P multiphase
flow correlation. The input variables to the correlation are
upstream (manifold) pressure, liquid flow rate, gas-oil ratio
(GOR) and water cut (WCT). The measured upstream
temperature is considered a fixed parameter. The output
is the downstream (separator) pressure:

wfl = psep − ffl(pman, qliq
C , r

gor
C , rwct

C ; t̄man). (4)

For convenience, we collect all the model errors in a vector

w =
[
wipr

A , w
ipr
B , w

wpc
A , wwpc

B , wchk
A , wchk

B , wfl
]>

,

with corresponding weights ν. Similarly, we collect the
measurement/reconciliation errors in a vector

v =
[
vbh
A , v

bh
B , v

wh
A , vwh

B , vman, vsep
]>
,

with corresponding weights µ.

In addition to the pressure drop constraint functions in g,
we model interrelations between the unmeasured variables
x with the constraint set X. For example, we include mass
balance constraints on the rate variables q in X, e.g.

qpC = qpA + qpB , for p ∈ {oil, gas,wat}.
Other linear relations that we include in X are:

qliq
i = qoil

i + qwat
i , qgas

i = rgor
i qoil

i , qwat
i = rwct

i qliq
i ,

for i = {A,B}, where rgor
i and rwct

i are a constant GOR
and WCT, respectively.
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3. B-SPLINE SURROGATE MODELS

In practice, the nonlinear maps in g, such as the pressure
loss functions in the previous section, are given by some
process simulator. Most commercially available process
simulators are proprietary code and may be considered
as “black-box calculators”. A process simulator models
the production network with complex, nonlinear functions
that may be non-smooth in certain regions. Generally,
no derivative information is made available and finite
difference methods must be used when optimizing with
gradient-based solvers, often resulting in a large number of
evaluations. Furthermore, when coupling an optimization
solver to a (black-box) process simulator, evaluation may
be time consuming for several reasons: 1. the simulator
may require convergence of the whole network model at
each evaluation (even when perturbing a single component
of the network), and 2. the IO-operations to transfer data
between the solver and simulator may be time consuming.
To solve the above problems we will replace the nonlinear
maps g with B-spline approximations φ. The B-splines in
φ are referred to as B-spline surrogate models.

Note that the pressure drop functions in the previous
section are on the form gi(·) = yi − fi(·) = wi. Thus,
in the following we will approximate fi (instead of gi) by
φi, i.e. φi ≈ fi, and gi ≈ yi − φi.

3.1 B-splines

A B-spline is a piecewise polynomial function in the
variable x, defined by a degree p, a vector of knots t ∈
Rn+p+1, and a vector of n coefficients c ∈ Rn as follows:

φ(x; p, t) = cTb(x; p, t). (5)

b(x; p, t) ∈ Rn is a vector of n B-spline basis functions.
The basis functions are overlapping, degree p, polynomial
functions, as depicted in Fig. 2 for n = 8 and p = 3. The
basis functions and their derivatives may be evaluated by
the numerically stable and fast, recursive algorithms of
De Boor (1972) and Cox (1972).
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Fig. 2. B-spline basis functions for p = 3 and n = 8.

The B-spline in (5) generalizes to the multivariate case,
where it is called the tensor product B-spline. Most prop-
erties of the univariate B-spline, such as a high degree of
smoothness and local support, carry over to the multivari-
ate case without any complications. For brevity we will
discuss only univariate B-splines in the rest of this section.
We note however that the discussion is valid also for tensor
product B-splines. The interested reader is referred to the
textbooks of Schumaker (1981) and Piegl and Tiller (1997)
for an introduction to multivariate splines.

3.2 Cubic spline interpolation

Let any function f : R → R, for example fwpc
A in

(2), be sampled on a regular (rectangular) grid to yield
N data points {xi, f(xi)}Ni=1. Several methods exist for
constructing a B-spline that interpolates these N points.
These methods vary in how the B-spline degree p and
knots t are selected. The commonly preferred cubic spline
(p = 3) can be obtain by using a free end conditions knot
vector

tF = { x1, . . . , x1︸ ︷︷ ︸
p+1 repetitions

, x3, . . . , xm−2, xm, . . . , xm︸ ︷︷ ︸
p+1 repetitions

}.

To obtain the spline the following linear system is solved
for the coefficients c:

[b(x1) b(x2) . . . b(xN )]
T︸ ︷︷ ︸

B

c = f , (6)

where f = [f(xi)]
N
i=1 and B ∈ RN×n is called the B-spline

collocation matrix. Note that b(x) = b(x; 3, tF ) in (6).

One advantage with (cubic) spline interpolation is that it
avoids the problem of Runge’s phenomenon, in which os-
cillation occurs between the interpolation points (as is ev-
ident in interpolation with high degree polynomials). The
functions in g are often polynomial or near-polynomial and
approximated by B-splines with little error. The authors’
experience with approximating various pressure loss func-
tions suggests that the approximation error typically lies in
the order of 0.1 − 0.001% (in fact, the error can be made
arbitrarily small by increasing the sampling resolution).
Arguably, the error between g and reality is orders of
magnitude larger than this. To illustrate this with an
example, let φwpc

N (qliq) be the B-spline approximation of
the WPC fwpc(qliq) sampled in N points. Further, let
eN (qliq) = 1−φwpc

N (qliq)/fwpc(qliq) be the resulting relative
approximation error. Approximation errors for N = 50,
N = 10 and N = 5 are shown in Figure 3, while error
measures are summarized in Table 1.
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Fig. 3. B-spline approximation errors for a WPC.

Table 1. Maximum errors and 2-norms.

N ‖eN‖∞ ‖eN‖2
5 1.1 · 10−2 7.8 · 10−2

10 6.1 · 10−4 5.7 · 10−3

50 6.5 · 10−5 2.4 · 10−4

The construction of a B-spline surrogate model is a two-
step procedure: 1. sampling the simulator and 2. solving
the linear system in (6) for the B-spline coefficients. This
procedure can be run offline and the resulting B-splines
stored in advance of optimizing P.
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4. RESULTS AND DISCUSSION

4.1 Reference OLGA simulation

To test the performance of the estimator, a production net-
work model representative to Figure 1 was implemented in
OLGA, which is considered the de facto industry standard
for dynamic simulation of multiphase petroleum produc-
tion systems (Bendiksen et al., 1991; Schlumberger, 2014).
A benchmarking simulation was run to obtain a set of
noise-free measurements {ȳk}Tk=0 (pressures, temperatures
and choke positions) and flow rates {q̄k}Tk=0, which were
assumed to be unknown. Here, k are time indices (the
simulation was run for 26 hours with a 10 second sampling
interval). In the simulation, the choke valves were sequen-
tially stepped up from 5 % to 60 % opening, as depicted
in Figure 4. Default OLGA settings were used.
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Fig. 4. Choke positions.

4.2 Obtaining the pressure drop models

To equip the estimator with the necessary pressure drop
models, a model of the production network was im-
plemented in Petroleum Experts’ IPM software package
(Petroleum Experts Ltd, 2014). IPRs, WPCs and the
flowline model were sampled from the IPM module GAP,
and approximated with cubic B-splines. For the chokes, we
used a multiplier model based on the valve equation, which
was also sampled and approximated with B-splines. Prior
to sampling, the models were matched against multi-rate
flow tests run in OLGA. The IPRs, WPCs and flowline
model were matched using available tools in GAP, while
the choke models were matched using a simple multipli-
cation factor. For a large number of samples, it may take
a few seconds to generate a B-spline, however, this single
calculation is done offline and does not contribute to the
time taken to solve P.

4.3 Case 1 – Single model evaluation

We first present the estimation results obtained by eval-
uation each pressure drop model individually. This is
equivalent to a nonredundant VFM method which uses
a single pressure drop model for estimation. The resulting
estimates are presented in Figures 5 (Well A), 6 (Well B)
and 7 (Flowline). We note that the IPRs and WPCs tend
to underestimate the flow rate slightly, while the choke
models tend to overestimate the flow rate. Note how the
choke model estimates degrade as the choke opens more,
which is due to the increasing sensitivity of the flow rate
with respect to pressure as the pressure drop across the

choke decreases. The flowline rate estimate displays a large
error compared to the well flow rate estimates, indicating
that the flowline model is relatively poor.
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Fig. 5. Estimation by single model evaluation, well A.
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Fig. 6. Estimation by single model evaluation, well B.
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Fig. 7. Estimation by single model evaluation, flowline.

4.4 Case 2 – Uniform weights

Having made a qualitative assessment of the quality of
each pressure drop model in Case 1, we now present
the estimation results obtained by solving problem P
with uniform weights, i.e. N = I. Since we have much
higher confidence in the pressure measurements than the
pressure drop models, M was configured with relatively
large weights; M = 103 · I. For each measurement ȳk,
problem P was configured as described in Sec. 2.1 and
solved to local optimality to obtain the estimate qk of the
unmeasured flow rates q̄k.
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Fig. 8. Absolute estimation errors for Case 2 and 3.

Qualitative gross error detection The resulting values
of the elements in w are shown in Figure 9. When
qualitatively interpreting this figure, we note that: 1. Small
values (i.e. close to zero) indicate that the pressure drop
model agrees with the relevant reconciled pressures in
the network, and 2. values which are close to each other
indicate that the appropriate pressure drop models are
in agreement with each other with respect to flow rates.
In our case, the model error for the flowline VLP is
relatively far from the remaining pressure drop models.
This indicates that the rates predicted by the flowline VLP
are not consistent with the other pressure drop models (nor
with the reconciled pressures), and may be introducing
unnecessary estimation errors. This is apparent from Fig.
7, however, in a real-life case, such a figure would not be
available. We now proceed to adjusting the model error
weights in an attempt to improve the flow rate estimates.

4.5 Case 3 – Heterogeneous weights

Finally, we present the estimation results obtained when
we attempt to consider the observations made in Figure
9 and measured model uncertainty through the flow tests.
Here, we select the weights ν based on a normalized sum
norm of errors between the measured pressures in the flow
tests, and the corresponding pressures predicted by the
matched models. The adjusted weights are shown in Table
2. Note the flowline weight νfl is selected relatively small.
Again, we configure and solve P for each measurement
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Fig. 9. Model errors with uniform weighting.

ȳk. The resulting estimation errors in Cases 2 and 3
are shown in Figure 8. A clear reduction in estimation
error is seen when our confidence in each model is taken
into account through the weighting. In general, as seen
in Table 3, the estimates in Case 3 are also better (or
near as good) as the estimates produced by any single
model. Equally important, we note that using a multi-
model formulation increases robustness compared to a
single-model approach; the resulting estimates become an
”agreed consensus” between several models and are less
prone to degradation in certain operating conditions (cf.
a choke model subjected to a low differential pressure).
Note that the spikes in estimation error are caused by
unmodelled dynamic behaviour following the choke moves.

4.6 Solution times

The non-convex problems on the form in P were solved
to (local) optimality by the nonlinear programming solver
IPOPT (Wächter and Biegler, 2006) on a laptop computer
with an Intel Core i7-3740QM CPU running at 2.7 GHz.
The solution times are reported in Table 4. We notice that
the solution times are below the 10 second real-time limit
set by the sampling rate. In fact, as shown by the max-
values, all problems were solved well within 10 seconds.

Table 2. Model error weighting ν in Cases 2/3.

Case ν ipr
A ν ipr

B νwpc
A νwpc

B νchk
A νchk

B νfl

2 1 1 1 1 1 1 1
3 1 0.79 0.25 0.19 0.41 0.37 0.05

Table 3. Mean/max absolute errors (Sm3/h).

IPR WPC Chk. FL Case 2 Case 3

Mean
Well A 0.42 0.53 10.8 - 0.64 0.17
Well B 0.94 0.88 4.39 - 0.69 0.50
Flowline - - - 3.27 1.20 0.71

Max
Well A 3.31 2.29 17.0 - 2.67 2.57
Well B 3.87 3.82 16.3 - 2.60 2.99
Flowline - - - 8.81 6.35 7.08

Table 4. Solution times (s).

IPR WPC Chk. FL Case 2 Case 3

Mean 0.009 0.010 0.151 0.326 0.496 0.478
Max 0.096 0.093 1.396 2.104 2.472 3.032
% RT* 0.1 0.1 1.5 3.3 5.0 4.8

*Real Time
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5. CONCLUDING REMARKS

The proposed method for virtual flow metering was tested
on a semi-realistic subsea production system with two
wells. The successful test results are encouraging along
several axes:

• the process models can be replaced with B-spline sur-
rogate models without any significant loss of accuracy,
• a commercial NLP solver (IPOPT) can efficiently

solve a series of data reconciliation problems P with-
out any convergence problems (helped by the proper-
ties of the B-spline models),
• poorly calibrated models can be identified by analyz-

ing the error variables in the problem formulation.

The authors hope to later improve the proposed method by
automating the detection and de-weighting of poorly cali-
brated models, possibly by including gross error detection
in P. Several simultaneous procedures for data reconcilia-
tion and gross error detection have been presented in the
literature (Özyurt and Pike, 2004). These procedures are
derived from robust statistics and solve the two problems
as one nonlinear program (NLP).
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