
BR-Sensor : An On-line Data-driven Soft
Sensor of Downhole Pressure ?

Edson F. A. Rezende ∗, Alex F. Teixeira ∗∗

Eduardo M. A. M. Mendes ∗,

∗ Department of Electronic Engineering, Universidade Federal de
Minas Gerais (UFMG), Belo Horizonte, M.G., Brazil

e-mail: edsonfrederico@yahoo.com.br,
emmendes@cpdee.ufmg.br.

∗∗ Research and Development Center (CENPES), Petroleo Brasileiro
S.A. , Rio de Janeiro, R.J., Brazil,
alex.teixeira@petrobras.com.br

Abstract: In this work an object-oriented approach for implementing soft sensor components,
encapsulated as dynamic-link-library (DLL), is proposed. A variety of models used for the
estimation of a specific unmeasured process variable and implemented as DLL components is
integrated to the soft sensor main component by simply following the interface described in this
paper. In order to check the performance of the proposed approach a computational analysis is
carried out. Although the main objective is to deploy the soft sensors into the supervisory the
main ideas laid out here can be extended to other Windows-based solutions.

Keywords: Softsensors, object-oriented, software-design, Kalman-Filters, dynamic-link-library.

1. INTRODUCTION

In the process industry, on-line soft sensors usually run
Windows-based solutions on a PC microcomputer. Sup-
plier companies of advanced control systems such as Emer-
son, Honeywell, Aspen and Yokogawa deliver Windows-
based solutions. Alternatively, there is also hardware im-
plementations of soft sensors (Garcia et al., 2008). In
(Teixeira et al., 2014), a data-driven soft sensor for the
downhole pressure of a gas-lift well was developed and,
despite successful offline implementation, an on-line ver-
sion was not derived.

There are many reports of the good performance of on-
line soft-sensors in the literature. Salvatore et al. (2009)
show the result of a neural-network based soft sensor
implemented in the PI SystemTM (a Plant Information
Management System - PIMS - provided by OSISoft R©)
to infer the sulfur content in a diesel hydrotreating unit.
The soft sensor was shown to be very low computationally
demanding with execution times lower than one second. Li
et al. (2013) have developed and commissioned an expert
control system that works based on the on-line estimates
of important process variables calculated by a soft sensor
in an aluminium production factory.

An interesting scheme for implementing soft sensors was
proposed in (Zhou et al., 2013). The authors used a
VBA (Visual Basic Application) module supported by
the SCADA system, RSView32TM, to provide an integra-
tion between the supervisory system and MATLAB R© by
means of the DDE protocol for data exchange. The authors
mentioned that MATLAB R©was used to perform some
necessary calculations, mainly the most complex matrix

? Final support from Petrobas S.A. is acknowledged.

calculations of a typical soft sensor. The proposed soft
sensor was implemented in a grinding plant.

Although the performance of soft sensors has been re-
ported in the literature, very few works discuss the im-
plementation procedure in details let alone the technology
and systems they are used for. This work aims to pro-
vide a contribution in this context by showing details of
the development of a Windows-based on-line version of a
soft sensor, coined BR-Sensor, that estimates the down-
hole pressure on the gas-lift well presented by Teixeira
et al. (2014). BR-Sensor is currently under validation at
CENPES-Petrobras. The methodology proposed here can
be used to integrate a variety of mathematical models to
a production environment in oil platforms.

This paper is organized as follows. In Section 2, an brief
introduction to BR-Suite and BR-Optimus is given. In
Section 3, a basic soft sensor that can be integrated to
the BR-Optimus environment is developed and as a by-
product a useful methodology for implementing different
representations of estimated models is given. The final
solution, a system that not only uses models to predict
the downhole pressure in gas-lift oil wells in an entire
oil platform but it can also manage different models and
representations, the BR-Sensor, is presented in details in
Section 4. The conclusions are given in Section 5.

2. BACKGROUND: BR-SUITE AND BR-OPTIMUS

The soft sensor implemented in this work, BR-Sensor,
was developed on the top of a base system available at
Petrobras. This system consists of a SCADA (Supervi-
sory Control And Data Acquisition) system called BR-
Suite and a module called BR-Optimus. The BR-Optimus

2nd IFAC Workshop on Automatic Control in Offshore Oil and Gas Production,
May 27-29, 2015, Florianópolis, Brazil

Copyright © 2015, IFAC 317

TAGs

User's DLL

Graphical operator's
interfaces

TAGs

User's DLL

Graphical operator's
interfaces

TAGs

User's DLL

Graphical operator's
interfaces

BR-Optimus

:Thread :Thread :Thread

User Project #1

User Project #1

BR-Suite

A
u
to

m
a
tio

n
 d

a
ta

 n
e
tw

o
rk

OPC Bus
PIMS Bus

User Project #N

Fig. 1. BR-Suite environment: Relationship between BR-
Suite, BR-Optimus and user’s project (UP) modules.
The red-dashed box represents the BR-Suite envi-
ronment that contains the BR-Optimus layer, two
option of data bus for updating the user’s project’s
tags (OPC and/or PIMS) and a set of UP. The UP
elements are inside the green-dash-dot box.

module runs under the BR-Suite environment. The BR-
Optimus project is basically a multi-thread task responsi-
ble for the management of user projects (UP). Each UP
encompasses three elements: (1) a set of data tags; (2) a
set of graphical operator interface; and (3) a dynamic-link-
library (DLL) for performing any task such as calculation
or user functions. Items (1) and (2) are implemented inside
the BR-Suite environment and item (3) is not. In fact, BR-
Optimus acts as a layer between BR-Suite and the user’s
DLLs. BR-Suite also comes with two data exchanging
interfaces for gathering data from the process on an OPC
DA Client and a driver for communicating with a PIMS
(Plant Information Management System), a PI SystemTM.
With these two options of data exchanging, read and write
data from or to the process is available to the user.

The tag database is updated with an information traffic
going through three directions: (1) the OPC/PIMS data
channels, (2) the operator graphical interfaces and (3) the
user DLL. To exchange information with the user DLL,
BR-Optimus has a dedicated thread instance that works
as a bridge. Figure 1 shows the BR-Suite environment.

In order to have a dedicated thread running on BR-
Optimus and to keep a communication with the user DLL,
an interface, IDataAndControl, is needed. Figure 2 shows
the interface and its three methods.

The main objective of each method is listed bellow:

(1) StartupAlgorithm(): this method sends the infor-
mation on how the user tag database is organized
to the user’s DLL. The data types should be known
when creating the user DLL;

(2) ExecuteAlgorithm(): this method runs periodi-
cally, shares the current values of the user tag
database with the user DLL and expects that the
user DLL, as a response to some data processing,

<<interface>>
IDataAndControl

+StartupAlgorithm(BYTE* pMemPj):bool
+ExecuteAlgorithm(BYTE* pMemPj, BYTE* pMem):bool
+FinalizeAlgorithm():bool

Fig. 2. IDataAndControl interface specification. An user’s
DLL must have the interface (three methods) in order
to be integrated to BR-Optimus.

make changes in the current values of the user tag
database.

(3) FinalizeAlgorithm(): the last tasks are executed
before the DLL is unloaded in this method;

Figure 3 shows a diagram with the task sequence execution
to clarify how the methods are called and organized.

Fig. 3. Task sequence execution diagram of IDataAndCon-
trol ’s methods invoked by a dedicated thread in the
BR-Optimus layer.

3. DESIGN OF A BASIC SOFT SENSOR

In order to accomplish the task of developing a soft sensor
to estimate a specific variable of oil wells in a petroleum
oil platform the development of a basic soft sensor is
described to serve as the first step towards a complete
implementation of mathematical models into soft sensors.
This section provides some information on this procedure.
A typical soft sensor flowchart is presented in Section 3.1.
The computational solution for the implementation of the
soft sensor is described in Section 3.2. Section 3.4 shows
an example of a code. Section 3.5 shows how a model can
be modified or changed.

3.1 The estimation flowchart

A general soft sensor that runs a closed-loop estimation
scheme as proposed in Teixeira et al. (2014) and reformu-
lated here as shows Figure 4 will be the starting point.

The soft sensor consists of

IFAC Oilfield 2015
May 27-29, 2015

Copyright © 2015, IFAC 318

Real Process Hard Sensor
Automation
Data Server

Process Model Observation
 Model

K

-

+

Sequential
Estimator

Soft Sensor

Soft Sensor
Output

Fig. 4. Estimation flowchart of a basic soft sensor running
a closed-loop estimation scheme.

(1) a process model: that gives an estimate of the
desired variable from the measurements of other vari-
ables;

(2) an observation model: that explains other variable
from the desired variable prior estimation and is used
to correct the process model output;

(3) and a sequential estimator: responsible for feeding
the model’s inputs, reading the model output and
calculating the final estimate or prediction of the
desired variable at each iteration;

There are several sequential estimators schemes available
in the literature (Simon, 2006; Daum, 2005). In this
work, the Unscented Kalman Filter (Julier and Uhlmann,
2004) was chosen for being an effective estimator to deal
with nonlinear models. Within the filter, there are many
mathematical representations that can be used to write
the models but only two possible representations were
considered here: polynomial (a special case of Nonlinear
Autoregressive Moving Average models with eXogenous
inputs) and neural networks (NN) (e.g. MLP) (Rafiq
et al., 2001). These two representations have been proven
to be universal approximators (Chen and Billings, 1989;
Cybenko, 1989) .

The soft sensor, that resides in the virtual world, has an
interface with the real world through the automation data
server that can be, for example, an OPC Data Server, a
PIMS system or even a tag database of a SCADA system.
In the next section an alternative to implement the soft
sensor flowchart in the virtual world is presented.

3.2 From the estimation flowchart to the component
diagram

One of the software requisites for developing on-line soft
sensors is to provide a model maintenance capability since
a gradual deterioration of its performance can be observed
in most cases as stated in Kadlec et al. (2009). As far
as software modelling is concerned, a way to achieve this
capability is treating the process and observation models
of a soft sensor as object components. This strategy can
be seen in the work of Herbst and Pate (1999) where they
developed a soft sensor called ComMINSens to be used in
milling circuits.

Since the DLLs, which are object components, are the
core in the technology of integration adopted in the BR-
Optimus architecture, they are extensively used here to

implement the proposed soft sensor. The estimation flux
flowchart exhibited in Figure 4 can be now seen as the
component diagram in Figure 5.

Fig. 5. Component diagram: How the estimation flowchart
can be converted into software components.

3.3 A linear algebra library

The implementation of sequential Kalman-Filter-based es-
timator’s algorithms requires the computation of matrix
operations such as inversion and element-wise multiplica-
tions. One of prerequisites when choosing a linear algebra
library is the support to complex matrix calculations and
the possibility to declare matrix data types within the
user’s code so as to improve code quality.

In this work, the Eigen matrix library (Bates and Ed-
delbuettel (2013)), which is a free-cost and high-quality
C++ library for linear algebra computation, was used. The
Eigen library introduces the class MatrixXd that allows
the user to define matrix variables with double data-type.
This class was extensively used during the development of
the proposed soft sensor.

3.4 Describing the IModel interface

The process or observation model in the component dia-
gram shown in Figure 5 is implemented using the IModel
interface exhibited in Figure 6 and then compiled as a
Dynamic-Link-Library. In C++ programming, for a func-
tion to work as an interface method the function dec-
laration statement should be preceded by “extern ”C”

declspec(dllexport)”. Note that all the attributes must be
declared as global variables in this project. The methods
that starts with “Get” are important only to show extra
information to the user of the IModel interface.

The methods that are of crucial importance are:

• Initialize() is responsible for loading the model
parameters into the memory.

• Calculate() calculates the one-step-ahead model
prediction.

• Update() reads a text-file with model parameters
and loads them into the memory.

In order to show how Calculate() can be used, the following
nonlinear autoregressive model with exogenous inputs
(NARX) is considered

IFAC Oilfield 2015
May 27-29, 2015

Copyright © 2015, IFAC 319

<<interface>>
IModel

- modelName: char[]
- modelType: char[]
- modelUsage: char[]
- wellTAG: char[]
- num_u: int
- num_z : int
- str_u: string
- str_z: string
- lag_u: int
- lag_z: int
- num_coeff: int
- zeta: float

+ Calculate(MatrixXd &z_k, MatrixXd &u_k) : bool
+ Initialize() : bool
+ Update(const char* sufix): bool
+ Get_Name() : const char*
+ Get_Type() : const char*
+ Get_Usage() : const char*
+ Get_Well() : const char*
+ Get_num_u() : int
+ Get_num_z() : int
+ Get_str_u(int i) : const char*
+ Get_str_z(int i) : const char*
+ Get_lag_u() : int
+ Get_lag_z() : int
+ Get_zeta() : float

Fig. 6. Interface IModel: all model components must
implement this interface. The method Calculates()
returns the one-step-ahead prediction

z(k) = +0.15529×10+1 z(k − 1) − 0.43213 y(k − 2)
−0.68464×10−3 z(k − 2)2

−0.25743×10−2 u2(k − 1)z(k − 3)
+0.20553×10−2 u2(k − 2)z(k − 3)
+0.22339×10−3 u2(k − 7)u1(k − 1)
−0.22169×10−4 u1(k − 4)u1(k − 1),

(1)

where z is the model output and u1 and u2 are two
different inputs. For details on how to model in Equation
1 was obtained, please refer to the Methodology Section
in (Teixeira et al., 2014).

The model in Equation 1 is implemented as

extern "C" __declspec(dllexport) bool

Calculate(MatrixXd &z_k, MatrixXd &u_k)

{

//Build the regression-vector

v_reg<< z_k(0,1),

z_k(0,2),

z_k(0,2)*z_k(0,2),

u_k(1,1)*z_k(0,3),

u_k(1,2)*z_k(0,3),

u_k(1,7)*u_k(0,1),

u_k(0,4)*u_k(0,1);

//Calculate the model output

MatrixXd aux(1,1);

aux = v_reg *v_theta;

//Function returning

z_k(0,0) = aux(0,0);

return true;

};

extern "C" __declspec(dllexport) bool Initialize()

{

//Loads parameters

v_theta << 1.552927565454389e+00,

-4.321297647086121e-01,

-6.846362847500344e-04,

-2.574346641459825e-03,

2.055252691826919e-03,

2.233863904075120e-04,

-2.216917620149358e-05;

return true;

};

3.5 Model maintenance strategy

.cpp
Model’s C++ source code

Structure + Default
Parameters

.dll
 Model’s dll

Structure + Default Parameters

.batAutomatically
generates

model’s .dll

Compiler
g++ (MinGW)

Library
EIGEN

.txt
New parameters

for model’s updating

Creates a file
with new
model’s

parameters

User

Creates a
new model’s

file

Update();

Fig. 7. Options for model maintenance.

The model maintenance can be performed in two different
ways depending on what part needs to be modified: the
model parameters or the model structure. In order to
update the model parameters, a text-file with a proper
format containing the new parameter values must be cre-
ated. After invoking Update(), which receives as argument
the file path, the model will be updated in the DLL
currently running. In situations where a complete different
model was determined using some modelling technique,
the new model structure and parameters must be coded
using a new DLL. Similarly to the previous case, a text-
file must be created. However this new file should contain
the implementation of the interface IModel with the new
Calculate() and Initialize() functions in C++ code for-
matting. An auxiliary batch file that uses a compiler that
accepts command-line inputs such as MinGW can be used
to create the DLL for the new model. The compilation
process can be triggered by the user to generate the new
model dll that can be loaded into the environment using
Estimator.dll. Once the new model is loaded it is ready to
be used. Figure 7 illustrates these two situations.

4. DESIGN OF THE BR-SENSOR

As shown in the previous sections, a simple on-line soft
sensor can be easily implemented by just considering the
component diagram presented in Figure 5. In this section
a real and more complex case is considered: the problem
of the estimation of the downhole pressure for an entire
petroleum oil platform, the real motivation for the creation
of BR-Sensor.

Typically a platform is connected to many, say N , oil
wells and each of them was installed with a hard sensor
to measure the downhole pressure (PDG-P). Due to the

IFAC Oilfield 2015
May 27-29, 2015

Copyright © 2015, IFAC 320

necessity of maintaining and optimizing production, there
is a great interest in always having PDG-P information
even if the hard sensor fails. In order to achieve several
estimates of the PDG-P pressure, M different estimators
for each oil well were implemented. One possible solution
would be to combine those estimates using some function.
The idea is to provide the best possible estimate for the
downhole pressure. Note that each estimator has a process
model and a observation model as can be seen in Figure 9.

By taking advantage of the IModel interface described in
Section 3.4, the object component “Estimator.dll” that
appears in the component diagram in Figure 5 will be
extended to a new one, called “BR-Sensor.dll”. This
new DLL can deal with a multi-estimator and multi-well
scenario (See Figure 9). For this specific task, the object-
oriented programming is the perfect tool and Section 4.2
contains the description of the class used for modelling.

4.1 The BR-Sensor’s class diagram

To design a class diagram from the hierarchy depicted in
Figure 9 is a straightforward process. Basically, each level
becomes a class and the result can be seen in Figure 8 on
page 6.

Some important comments regarding the class diagram are
listed below:

• The classes “C Platform”, “C Well” and “C Estimator”
have, as attribute, a pointer to the variables of
the user-defined data structures called “Platform”,
“Well” and “Estimator” respectively. These vari-
ables are instantiated as global variables in the BR-
Sensor ’s DLL and are a mirror of the tag database of
the User’s Project (UP) BR-Sensor that exist in the
BR-Suite (See Section 2).

• The class “C Estimator” is an abstract class which
allows the designer to write several implementa-
tions of sequential estimators algorithms of his/her
choice (EKF, UKF, UKF-SR and etc.). For simpli-
fication, Figure 8 shows just one derived class, the
“C UKFEstimator” class, that implements the UKF
algorithm. Other derived classes are omitted.

Platform

Well#1 Well#2 Well#N

Estimator#1 Estimator#2 Estimator#M

Process
Model

Observation
Model

…

…

Fig. 9. BR-Sensor’s object structure.

4.2 The BR-Sensor’s user interface

To configure the execution of BR-Sensor it is necessary to
define a scenario:

• which are oil wells whose pressure downhole are
estimated;

• number and type of estimators for each one of the oil
wells;

• which are the actual models (process and observation)
used for each estimator.

A user interface module was developed in the BR-Suite
environment and the screen used by the operator to
register, configure and see the on-line results is shown in
Figure 10.

Fig. 10. An example of the BR-Sensor ’s user graphical
interfaces. Here the operator can register, configure
and keep updated with the estimator results.

4.3 The BR-Sensor’s computational performance

The computational performance of BR-Sensor was mea-
sured in terms of time consumption. The idea is to measure
the mean time taken by BR-Sensor when executing the
following tasks for each well: execution of all of the im-
plemented estimators, consolidation of their outputs and
file access time when saving the results. In addition the
mean time needed by two different class of estimators
was measured. One estimator, Type-1, is very simple and
gives the one-step-ahead prediction of process models, the
other one, estimator Type-2, runs the UKF algorithm. For
Type-1 estimators it has been also noticed a difference in
time consumption between NARX and NN models. For the
simple performance analysis conducted here, BR-Sensor
was configured with 15 wells and each of them with 4
Type-2 estimators using NARX models. BR-Sensor ran
1000 estimation iterations and the results are shown in
Table 1.

Table 1. Computational performance mea-
sured in mean time consumption per execution

unit over 1000 iterations.

Platform Well
Estim. Type-1 Estim. Type-2

NARX model NN model NARX Model

117.8ms 7.8ms 0.02ms 0.25ms 0.70ms

Since the typical period required by the operator to receive
a new pressure estimate is one minute, the results in Ta-
ble 1 shows that BR-Sensor meets the requirements. Note
that the time period should be sufficient for BR-Suite, BR-
Optimus and BR-Sensor to perform their cyclic tasks and
the results in Table 1 shows that BR-Sensor had a low-
level time consumption. The higher complexity of estima-
tor Type-2 will certainly reflect in the time consumption.

IFAC Oilfield 2015
May 27-29, 2015

Copyright © 2015, IFAC 321

C_Platform
//Reference to BR-Optimus’s tags
Platform *pPlatform;

//Well container
std::vector<C_Poco> Pocos;
C_Platform(){};
C_Platform(Platform* p){pPlatform=p;};

C_Well
//Reference to BR-Optimus’s tags
Well *pWell;
//Estimator container
std::vector<C_Estimator*> Estimators;
C_Well(){}; //default
C_Well(Well* p){pWell=p;};
void SensorMatch(string &tag, float* &p, Well* &thiswell);
void EstimativaMatch(string &tag, float* &p, Estimator* &thisestimator);

C_Estimator
//Reference to BR-Optimus’s tags
Estimator *pEstimator;

//Process model’s dll’s name
char f_x_Dll[1024];
//Observation model’s dll’s name
char h_x_Dll[1024];

//Process Model Interface Object
C_IModel* f_x;
//Observation Model Interface Object
C_IModel* h_x;

//Pointers for dynamic connection to BR-Optimus TAG database
float **ptr_read_f_u; //Pointer to process model inputs measurements
float **ptr_read_f_z; //Pointer to process model output measurements (feedback)
float **ptr_write_f_z; //Pointer to write process model prediction

float **ptr_read_h_u; //Pointer to observation model inputs measurements
float **ptr_read_h_z; //Pointer to observation model output measurements (feedback)
float **ptr_write_h_z; //Pointer to write observation model prediction

//Attributes used by process model execution: f (input f_u, output f_z)
MatrixXd f_u_k; //Input signal matrix
MatrixXd f_z_k; //Output matrix

//Attributes used by observation model execution: f (input h_u, output h_z)
MatrixXd h_u_k; //Input signal matrix
MatrixXd h_z_k; //Output matrix

int executions; //Iteration count
C_Estimator(){}; //default
C_Estimator(Estimator* p, bool existe_F, bool existe_H);

virtual void NewIteration(){};
virtual void Initialize(){};

C_UKFEstimator

C_EstimadorUFK(Estimator* p, MatrixXd* d);
void NewIteration();
void Initialize();

C_IModel
int num_u; //number of inputs
int num_z; //number of outputs
int lag_u; //Maximum input lag
int lag_z; //Maximum output lag
string *str_u; //Input labels
string *str_z; //Output labels

// Handle model’s DLL
HINSTANCE hdl_Funcao;

//Pointer to IModel interface methods
BOOL (*hdl_pCalculate) (MatrixXd &, MatrixXd &);
BOOL (*hdl_pInitialize) ();
BOOL (*hdl_pUpdate) ();
CONST CHAR* (*hdl_pGet_name)();
CONST CHAR* (*hdl_pGet_type)();
CONST CHAR* (*hdl_pGet_usage)();
CONST CHAR* (*hdl_pGet_well)();
INT (*hdl_pGet_num_u)();
INT (*hdl_pGet_num_z)();
CONST CHAR* (*hdl_pGet_str_u)(INT);
CONST CHAR* (*hdl_pGet_str_z)(INT);
INT (*hdl_pGet_lag_u)();
INT (*hdl_pGet_lag_z)();
//Constructor: load attributes and
// create dll’s function’s call point

C_IModel(){}; //default
C_IModel(char pathDLL[1024]);

//Destroyer: frees loaded dll
~C_IModel(){ FreeLibrary(hdl_Funcao); };

0..N

0..N
2

Fig. 8. BR-Sensor ’s class diagram.

For instance Neural Networks based models, specifically
Multilayer Perceptrons type, requires about 10 times the
time required by a NARMAX model. Although this is not
a fixed relation since it depends on the number of neurons
and layers, it shows that complex representations will be
more time consuming.

5. CONCLUSION

In this work an object-oriented approach for designing
soft sensor components, encapsulated as dynamic-link-
library (DLL), was proposed. To accomplish this, the
DLL-based system integration technology combined with
object-oriented programming approach was used to imple-
ment a soft sensor for the estimation of downhole pressure
for an entire oil platform. A systematic methodology for
implementing mathematical models as DLLs was pre-
sented and shown to be easily modified depending upon
the user demands.

A simple but interesting performance analysis of the
implemented soft sensor was made. It was shown that the
time consumption of BR-Optimus meets the requirements
and as consequence the solution proposed here can be
deployed in a real production environment.

Another advantage of this methodology was to show that a
platform operator can easily mastered the IDataAndCon-
trol interface to integrate a user DLL to the environment
BR-Optimus.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support from Petro-
bras.

REFERENCES

Bates, D. and Eddelbuettel, D. (2013). Fast and elegant
numerical linear algebra using the RcppEngine package.
Journal of Statistical Software, 52(5).

Chen, S. and Billings, S.A. (1989). Representations of
nonlinear systems: the NARMAX model. International
Journal of Control, 49(3), 1013–1032.

Cybenko, G. (1989). Aproximation by superpositions of
a sigmoidal function. Mathematics of controls, signals
and systems, 2(4), 303–314.

Daum, F. (2005). Nonlinear filters: Beyond the Kalman
Filter. IEEE A&E Systems Magazine, 20(8), 57–69.

Garcia, C., , Berni, C.C., and Oliveira, C.E.N. (2008).
Hardware/firmware implementation of a soft sensor us-
ing an improved version of a fuzzy identification algo-
rithm. ISA Transactions, 47, 157–170.

Herbst, J.A. and Pate, W.T. (1999). Object components
for comminution system softsensor design. Powder
Technology, 105, 424–429.

Julier, S.J. and Uhlmann, J.K. (2004). Unscented filtering
and nonlinear estimation. Proceedings of the IEEE,
92(3), 401–422.

Kadlec, P., Gabrys, B., and Strandt, S. (2009). Data-
driven soft sensor in the process industry. Computers
and Chemical Engineering, 33, 795–814.

Li, Y.G., Gui, W.H., Yang, C.H., and Xie, Y.F. (2013).
Soft sensor and expert control for blending and digestion
process in alumina metallurgical industry. Journal of
Process Control, 23, 1012–1021.

Rafiq, M.Y., Bugmann, G., and Easterbrook, D.J. (2001).
Neural networks for engineering applications. Comput-
ers and Structures, 79, 1541–1552.

Salvatore, L., Souza, M., and Campos, M. (2009). Design
and implementation of a neural network based soft-
sensor to infer sulfur content in a brazilian diesel hy-
drotreating unit. Chemical Engineering Transactions,
17, 1389–1394. doi:10.3303/CET0917232.

Simon, D. (2006). Optimal state estimation. John Wiley
& Sons.

Teixeira, B.O.S., Castro, W.S., Teixeira, A.F., and
Aguirre, L.A. (2014). Data-driven soft sensor of down-
hole pressure for a gas-lift oil well. Control Engineering
Practice, 22, 34–43.

Zhou, P., Chai, T., and Sun, J. (2013). Intelligence-based
supervisory control for optimal operation of a DCS-
controlled grinding system. IEEE Trans. on Control
Systems Technology, 21(1), 162–175.

IFAC Oilfield 2015
May 27-29, 2015

Copyright © 2015, IFAC 322

