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Abstract: In this work we design data-driven soft sensors of downhole pressure for gas-lift
oil wells. We employ a two-step procedure. First, discrete-time (N)ARX models are identified
offline from historical data. Second, recursive predictions of these multiple models are combined
with current measured data (of variables other than the downhole pressure) by means of an
interacting bank of (unscented) Kalman filters. We investigate the usage (i) of linear versus
nonlinear models and (ii) of models with or without seabed variables in addition to platform
variables. Results are validated by means of experimental data from three oil wells.
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1. INTRODUCTION

Soft sensors are predictive mathematical models that infer
the values of a given process variable from measurements
of other variables (Fortuna et al., 2007). They have been
applied in oil industry as an alternative to purely hardware
instruments (Domlan et al., 2011; Fujiwara et al., 2012).
Two classes of soft sensors can be distinguished, namely,
model-driven and data-driven (Kadlec et al., 2009). The
former is based on first-principle models, while the lat-
ter uses data-driven black-box models. In addition, given
that industrial processes are described by nonlinear phe-
nomena, nonlinear models should be the natural choice
for developing soft sensors. Alternatively, multiple linear
models can be employed.

The downhole pressure is a measurement extremely impor-
tant for the reservoir and production engineers responsible
for an oil field because it is measured close to the perfora-
tions and frequently used in the production monitoring,
control and optimisation strategies. Nonetheless, main-
taining and replacing permanent downhole gauge (PDG)
sensors to monitor downhole pressure is a challenging task,
especially in offshore oil wells (Eck et al., 1999). Thus, soft-
sensing techniques are promising alternatives to monitor
the downhole variables.

This paper is a follow-up of (Teixeira et al., 2014). We
present the design of two-step data-driven soft sensors to
online estimate the downhole pressure of three offshore
gas-lift oil wells. First, as in (Pagano et al., 2006), discrete-
time linear and nonlinear autoregressive with exogenous
inputs ((N)ARX) polynomial models are identified offline
using experimental data as in (Aguirre et al., 2005). Two
kinds of models are obtained: infinite impulse response
(IIR) process models and FIR/IIR observation models.
Different configurations of inputs and outputs are tested.
? This work was partially supported by Petrobras and CNPq.

Second, interacting multiple model (IMM) filter banks
(Bar-Shalom et al., 2001) are implemented, with each
linear or unscented Kalman filter ((U)KF) of the banks
combining a different pair of process and observation
models. That is, local (non)linear “closed-loop” models are
combined to yield improved downhole pressure estimates
compared to the free-run simulation of a single (open-
loop) model. Note that, in our approach, the downhole
pressure is assumed to be known only during the system
identification step. For practical applications, this is the
case after downhole sensor installation, when such sensors
are more reliable (Eck et al., 1999).

Two relevant issues are investigated in this paper. First, we
evaluate what is the advantage of using nonlinear models
compared to linear models as often done in the literature
(Yang al., 2012). By doing so, we conjecture that it would
be simpler to extend the structure of the linear models
obtained for a specific well to other wells, as well as to deal
with the retuning of the models to address time-varying
dynamics. Second, we evaluate the impact of using seabed
auxiliary variables as inputs compared to the case of using
only platform variables since measurements of the former
are not always available in offshore oil wells.

2. PROCESS DESCRIPTION

Gas lift is one of the artificial lift methods used in deep-
water oil wells. A simplified diagram of a gas-lift oil well
is shown in Figure 1. Table 1 lists some of the pro-
cess variables often measured. The process is summarized
as follows. High-pressure gas flows through the gas-lift
pipeline (riser plus flow line) from the gas-lift header at the
platform (tag 4) to the subsea christmas tree where it is
injected in annulus between tubing and casing string until
it reaches an orifice valve installed downhole in the tubing.
The fluid density is then reduced such that the reservoir
pressure is high enough to transport the multiphase mix-
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Fig. 1. P&ID diagram of a gas-lifted oil well, where TT and PT
are the temperature and pressure transmitters. An overall view
is shown in (a), while the platform is detailed in (b). The
numbers 1 (downhole) and 2 (wet christmas tree) account for
seabed variables, while 3 (production) and 4 (gas lift) account
for platform variables. Flow direction is 4-1-2-3. The downhole
variables are measured close to the reservoir outlet.

Table 1. Process variables of offshore oil wells.

Tag Description Units

PT1 PDG Downhole pressure kgf/s2

TT1 PDG Downhole temperature ◦C

PT2 Wet christmas tree pressure kgf/s2

TT2 Wet christmas tree temperature ◦C

PT3a Pressure before shutdown valve kgf/cm2

PT3 Pressure before production choke valve kgf/cm2

PT3b Pressure after production choke valve kgf/cm2

TT3 Temperature before production choke valve ◦C
FV3 Production choke valve position %

PT4b Pressure after gas-lift shutdown valve kgf/cm2

PT4a Pressure before gas-lift shutdown valve kgf/cm2

TT4 Temperature before gas-lift shutdown valve ◦C
FT4 Instantaneous gas-lift flow rate m3/h
FV4 Gas-lift valve position %
PT4 Pressure after gas-lift choke valve kgf/cm2

ture of oil, gas, water to the platform. In the seabed, a
set of valves and adapters known as wet christmas tree
(PT2 and TT2) control the production flow from seabed to
the platform. In the platform, a shutdown valve (PT3a) is
available to interrupt the production during an emergency
situation and a choke production (PT3 and TT3) valve
regulates the production flow rate at the platform. Differ-
ent flow dynamics are achieved depending on the values of
gas-lift (PT4 and PT4a) and downhole (PT1) pressure.

3. METHODOLOGY

We consider the nonlinear dynamic system given by

Fig. 2. Diagram of the two-step methodology used to develop
downhole pressure soft sensors.

xk = f(xk−1, u
f
k−1) + wk−1, (1)

yk = h(xk, u
h
k) + vk, (2)

where f : Rn × Rpf −→ Rn is the process model and
h : Rn × Rph −→ Rm is the observation model, xk ∈
Rn is the state vector, yk ∈ Rm are measured outputs,

uk
4
=

[
ufk−1
uhk

]
∈ Rp, p = pf + ph, are known inputs,

wk−1 ∈ Rn and vk ∈ Rm are the zero-mean process noises
with covariance Q and R, respectively. Our goal is to
obtain state estimates x̂k|k and corresponding covariance
P xx
k|k that approximate E [xk] and E [(xk − E [xk])(xk −
E [xk])

T

], respectively, where E is the expected value.
To accomplish that, the two-step procedure illustrated
in Figure 2 is employed. In this work, we apply the
methodology used in (Teixeira et al., 2014) to develop soft
sensors for three oil wells: W1, W2, and W3.

In the system identification step, we assume that a set
of dynamical data {uk, xk, yk}, k = 1, . . . , N, is known.
Here, historical data is recovered from a plant information
management system (PIMS). Using these offline data, a

set of (N)ARX polynomial black-box models f̂ i, i =

1, . . . ,Mf , and ĥj , j = 1, . . . ,Mh, are built independently
from each other and rewritten in state space (Aguirre
et al., 2005). It is not assumed that such models are
globally valid. Here, Qi and Rj account for the covariance

of the one-step-ahead simulation error of f̂ i and ĥj ,
respectively.

In the filter bank step, we assume that {usk, ysk}, s =
1, . . . ,M, are known for all k > 0 together with a set

of M ≤ MfMh state-space model pairs {f̂s, ĥs}. For

each pair {f̂s, ĥs}, state estimates x̂sk|k with covariance

P xx,s
k|k are recursively obtained using M (U)KFs running

in parallel. Then, these estimates are combined by an
IMM filter bank, yielding x̂k|k and P xx

k|k for all k > 0

(Bar-Shalom et al., 2001). Note that x is assumed to be
known only during the system identification step for a time
interval of duration N . For details of the methodology, the
reader is referred to (Teixeira et al., 2014).

4. EXPERIMENTAL RESULTS: SYSTEM
IDENTIFICATION

In this paper, data from three gas-lift oil wells were used.
For each well, different configurations of models were
obtained. Table 2 summarizes the main features of all
process and observation models that were built.

All (N)ARX polynomial models were built from historical
data. All variables listed in Table 1 were sampled at T =
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1min, as the fastest sampling rate provided by the PIMS.
Linear and nonlinear autocorrelation analysis (Aguirre,
2005) indicated that such value was appropriate. During
modeling, data windows were chosen to include the time
intervals for which changes in the operating points are
observed, excluding outliers.

Different configurations of inputs and outputs (and cor-
responding maximum delays) are set for each model. For
each model, the one-step-ahead error variance during val-
idation, σ2

w or σ2
v , is calculated. These values are used to

set noise covariances Q and R.

Next, for brevity, we present a few (N)ARX polynomial
models obtained for the wells W1 and W3 to illustrate
the methodology. All models are listed in Table 2.

4.1 Process models

Consider the following two process models, W1 f̂1 and

W1 f̂4, built for the well W1

y1(k) = +0.23019×10
+1

y1(k − 1) − 0.18467×10
+1

y1(k − 2)

+0.52998×10
+0

y1(k − 3) + 0.22924×10
+1

+0.24532×10
−3

u2(k − 4)u1(k − 6)

+0.65057×10
−2

u2(k − 2)u1(k − 1)

+0.88285×10
−3

u2(k − 3)u1(k − 3)

−0.87912×10
−2

u1(k − 1)u1(k − 1)

+0.87217×10
−2

u1(k − 2)u1(k − 1)

−0.7541×10
−2

u2(k − 2)u1(k − 2)

+0.30774×10
−3

u2(k − 1)u2(k − 1)

−0.34288×10
−3

u2(k − 4)u2(k − 4)

−0.24579×10
−4

u1(k − 6)u1(k − 3),

(3)

y1(k) = +0.16596×10
+1

y1(k − 1) − 0.75107×10
+0

y1(k − 2)

+0.13564×10
+2

+ 0.23804×10
−1

u1(k − 4)

−0.20313×10
−1

u1(k − 2) + 0.10038×10
−1

u1(k − 3).

(4)

Both models have input TT3k (u2 in W1 f̂1 and u1 in

W1 f̂4) as the pressure before shutdown valve and output

y1 = PT1k as the downhole pressure. W1 f̂1 also has
input u1 = TT3k as the temperature before production

choke valve. Note that W1 f̂1 is a nonlinear model, while

W1 f̂4 is an affine model.

Two process models were built for the well W3. W3 f̂1 is
given by

y1(k) = +0.18394×10
+1

y1(k − 1) − 0.88832×10
+0

y1(k − 2)

+0.70988×10
+1 − 0.18995×10

−1
u1(k − 6)

+0.15273×10
−1

u1(k − 4) + 0.24393×10
+0

u2(k − 6)

−0.26632×10
+0

u2(k − 1) − 0.11329×10
+0

u2(k − 5)

+0.23747×10
+0

u2(k − 2) − 0.10249×10
+0

u2(k − 4),

(5)

with inputs as the pressure after gas-lift shutdown valve
u1 = PT4bk and the temperature before production choke
valve u2 = TT3k, and with output y1 = PT1k as the

downhole pressure. Then, W3 f̂2 is given by
y1(k) = +0.18196×10

+1
y1(k − 1) − 0.86008×10

+0
y1(k − 2)

+0.10461×10
−1

u1(k − 9) + 0.57338×10
−1

u2(k − 1)

+0.27618×10
+1 − 0.12367×10

−1
u1(k − 3)

+0.13539×10
−1

u1(k − 8) − 0.1631×10
−1

u2(k − 5),

(6)

whose inputs are the wet christmas tree pressure u1 =
PT2k and the wet christmas tree temperature u2 = TT2k,
and output y1 = PT1k is the downhole pressure. Note that

model W3 f̂1 uses only platform variables, while W3 f̂2

is based on process variables from the seabed.

Model validation for the aforementioned process models is
shown in Figure 3a-b. The mean-absolute-percentual error
(MAPE) of (3),(4),(5) and (6) are 0,21%, 0,18%, 0,51%
and 0,36%, respectively.
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Fig. 3. Validation of (N)ARX polynomial process and observation
models by free-run simulation: (a) W1 f̂1 (3) and W1 f̂4 (4),
(b) W3 f̂1 (5) and W3 f̂2 (6), (c) W1 ĥ1 (7) and W1 ĥ4 (8),
and (d) W3 ĥ2 (9).

4.2 Observation models

Next, we show two out of the four observation models built

for the well W1. W1 ĥ1 and W1 ĥ4 are given by
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Table 2. Configuration of polynomial (N)ARX models identified for the oil wells W1, W2 and

W3, where f̂ accounts for process model and ĥ for observation model. Polynomial models are
characterized by degree `. σ2

w and σ2
v accounts for one-step-ahead error variance of each model

during validation. nql and nz corresponds to the maximum delays of each input or output.

Process models Observation models
Tag ` inputs µl nql output z nz σ2

w Tag ` inputs µl nql output z nz σ2
v

W1 f̂1 2 TT3,PT3a 6,4 PT1 3 0, 0491 W1 ĥ1 2 PT1,PT3a 3,2 TT3 2 0, 2631

W1 f̂2 2 TT3,PT3a 5,9 PT1 2 0, 5349 W1 ĥ2 2 PT1,TT3 2,4 PT3a 3 4, 6204

W1 f̂3 2 TT3,PT3b 4,7 PT1 3 0, 5048 W1 ĥ3 2 PT1,PT3a 3,7 TT3 1 0, 1028

W1 f̂4 1 PT3a 4 PT1 2 0, 3456 W1 ĥ4 1 PT1,PT3a 1,2 TT3 3 0, 2166

W1 f̂5 1 TT3,PT3a 5,3 PT1 3 0, 4315 W1 ĥ5 1 PT1,TT3 3,7 PT3a 2 4, 8168

W1 f̂6 1 TT3,PT3b 7,7 PT1 3 0, 3940 W1 ĥ6 1 PT1,PT3a 1,2 TT3 2 0, 4016

W1 f̂7 1 TT3,TT2 5,5 PT1 2 0, 1233 W1 ĥ7 1 PT1,PT3a 1,2 TT2 2 0, 2267

W2 f̂1 1 FV4 4 PT1 3 0, 2681 W2 ĥ1 1 PT1 2 PT2 2 0, 1386

W2 f̂2 1 FT4 3 PT1 3 0, 2664 W2 ĥ2 1 PT1,TT2 2,4 PT2 3 0, 1336

W2 f̂3 1 TT4 4 PT1 3 0, 2022

W2 f̂4 1 FT4,TT4 3,1 PT1 3 0, 2660

W3 f̂1 1 PT4b,TT3 6,6 PT1 2 0, 2391 W3 ĥ1 1 PT1,PT3a 3,2 TT3 2 0, 0214

W3 f̂2 1 PT2,TT2 9,5 PT1 2 0, 2784 W3 ĥ2 1 PT1,PT2 4,3 TT2 3 0, 4158

y1(k) = +0.17061×10
−2

u1(k − 1)y1(k − 1)

−0.47705×10
−2

u1(k − 3)y1(k − 2)

−0.19305×10
−1

u2(k − 2)y1(k − 1)

−0.11265×10
+1

u2(k − 1) + 0.14478×10
+1

y1(k − 1)

−0.13532×10
−2

u2(k − 1)u2(k − 1)

+0.16581×10
−1

u2(k − 2)y1(k − 2)

+0.83789×10
−2

u2(k − 1)u1(k − 1),

(7)

y1(k) = +0.88732×10
+0

y1(k − 1) + 0.41269×10
+0

y1(k − 2)

−0.43524×10
+0

y1(k − 3) + 0.30234×10
−1

u1(k − 1)

−0.36241×10
−1

u2(k − 2).

(8)

Both are multi-input models, with inputs u1 = PT1k as
the downhole pressure and u2 = PT3ak as the pressure be-
fore shutdown valve, and output given by the temperature
before production choke valve y1 = TT3k.

One of the observation models built for the well W3 is
W3 ĥ2, given by

y1(k) = +0.12471×10
+1

y1(k − 1) + 0.62995×10
+0

u1(k − 1)

−0.92621×10
+0

u1(k − 2) − 0.189×10
−1

u2(k − 2)

−0.265×10
+0

y1(k − 3) + 0.98455×10
−3

u2(k − 3)

+0.31299×10
+0

u1(k − 4),

(9)

whose inputs are the downhole pressure u1 = PT1k and
the wet christmas tree pressure u2 = PT2k, and output
y1 = TT2k is the wet christmas tree temperature.

Model validation for the observation models presented is
shown in Figure 3c-d. The mean-absolute-percentual error
(MAPE) of (7),(8), and (9) are 0,92%, 1,60%, and 1,77%,
respectively.

5. EXPERIMENTAL RESULTS: STATE ESTIMATION

5.1 Linear versus Nonlinear Models

In order to recursively estimate the downhole pressure
(PT1), we now use the identified models presented in
Section 4. For the well W1, we combine the following pairs

of models: i) {W1 f̂1,W1 ĥ3}, ii) {W1 f̂2,W1 ĥ2} and

iii) {W1 f̂3,W1 ĥ1} using UKF, iv) {W1 f̂4,W1 ĥ4}, v)

{W1 f̂5,W1 ĥ5}, vi) {W1 f̂6,W1 ĥ6}, vii) {W1 f̂4,W1 ĥ6}
and viii) {W1 f̂7,W1 ĥ7} using KF. Henceforth, these
eight schemes will be respectively referred as UKF1,
UKF2, UKF3, KF1, KF2, KF3, KF4 and KF5. Combining
the pairs of nonlinear models UKF1, UKF2 and UK3
using an IMM filter bank yields IMM NL1. The same

was done to the pairs of affine models KF1, KF2 and
KF3, yielding IMM L1. These pairs of models are chosen
because they yield better performance compared to the
other possible combinations (not shown) of process and
observation models. Recall that seabed variables are used
only in KF5.

Figure 4 illustrates downhole pressure estimation for the
well W1 by the IMM NL1 and IMM L1 schemes. For
convenience, data corresponding to a period of 7 months
were divided into 9 windows. In Figure 4a, one can see
an increasing drift in the measured PT1 data. This drift
is expected for oil wells as they age. Though this drift is
observed in the downhole pressure, it does not appear in
any other process variable. Therefore, input data do not
contain this information. Even though the process models
are autoregressive, the drift’s dynamics is too slow and
cannot be captured during the modeling step with the
chosen sampling period.

Still testing downhole pressure estimation for the well W1,
Figure 5 illustrates the results for schemes KF4 and KF5.
Measured data was the same as described for Figure 4.

In order to evaluate what is the gain of using nonlin-
ear models compared to linear models while composing
(U)KFs and IMM filter banks, we run tests using data from
two wells, W1 and W2. The results for W1 are shown in
in Figure 4. For W2, ten closed-loop schemes were tested.
Five of them were assembled using the models described

in Table 2 as: i) {W2 f̂1,W2 ĥ1}, ii) {W2 f̂2,W2 ĥ2}, iii)

{W2 f̂3,W2 ĥ1} and iv) {W2 f̂4,W2 ĥ2} using KF, and
v) combining the four pairs of models using an IMM filter
bank. Henceforth, these five schemes will be respectively
referred as KF6, KF7, KF8, KF9 and IMM L2. The other
five schemes for W2 are the same used in (Teixeira et al.,
2014) as UKF1, UKF2, UKF3, UKF4 and IMM and are
not shown here for brevity. In this paper, for notational
convenience, they will be referred as UKF4, UKF5, UKF6,
UKF7 and IMM NL2. Note that only nonlinear models are
used in scheme IMM NL2, while affine models are used in
IMM L2. Figure 6 illustrates downhole pressure estimation
for the well W2 by the IMM L2 and IMM NL2 schemes.
Data were divided into 6 windows.
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Fig. 4. (a) W1 downhole pressure estimation using IMM built
with linear (IMM L1) and nonlinear (IMM NL1) models and
(b) RMSE index (kgf/cm2) calculated for each one of the 9
windows of data. Each point in the plot is the average RMSE
for a window. The horizontal solid lines determines the average
RMSE for the period of 7 months, while the vertical dashed
lines determines the windows of data.
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Fig. 5. (a) W1 downhole pressure estimation using KF4 and KF5,
and (b) RMSE index (kgf/cm2) calculated for each one of the
9 windows of data.

It is very important to note that, for comparison reasons,
the models used in IMM L1 and IMM L2 were built to
be affine versions of the nonlinear models composing IMM
NL1 and IMM NL2, respectively. That is, we used the same
input and output variables in the models and, whenever
possible, the same modelling data. For example, process

models W1 f̂4 and W1 f̂5 are affine versions of W1 f̂1

and W1 f̂2, respectively. The same applies to observation

models, as W1 ĥ4 and W1 ĥ5 are linear versions of W1 ĥ1

and W1 ĥ2. Thus, this relation can be extended to the
(U)KFs and IMM filter banks, being KF1 and IMM L1
linear versions of UKF1 and IMM NL1, respectively.

From figures 4 and 6, we see that the KFs and linear
IMM filter banks (IMM L1 and IMM L2) were consis-
tently beaten by their nonlinear counterparts, except for
KF2 and KF8 which were better than UKF2 and UKF6,
respectively. However, we see that the comparative per-
formance of the aforementioned schemes was not signi-
ficatively different. For W1, the largest difference between
RMSE indexes occurred for KF3 and UKF3, with values of
5.41 kgf/cm2 and 4.02 kgf/cm2, respectively. Considering
that PT1 varies in the range 145-160 kgf/cm2 in this well,
the improvement of UKF3 over KF3 may not pay off.
Taking into account only the RMSE indexes obtained for
IMM L1 and IMM NL1, 2.77 kgf/cm2 and 1.73 kgf/cm2,
respectively, we see that the nonlinear scheme improved
accuracy in about 1 kgf/cm2.

Similar results were obtained for W2. RMSE indexes ob-
tained for IMM L2 and IMM NL2 were 3.11 kgf/cm2 and
1.54 kgf/cm2, respectively, yielding accuracy improvement
of 3.1% by the use of nonlinear models, considering that
PT1 varies in the range 60-110 kgf/cm2 in this well.
Though nonlinear models yield better results when com-
posing UKFs and IMM filter banks, the usage of linear
and affine models seems to pay off. Besides, it is simpler
to extend the structure of an affine model of a specific well
to other wells, as well as to deal with the retuning of the
models to address time-varying dynamics. Also, it is easier
to guarantee global stability of affine models.

5.2 Platform versus Seabed process variables

Finally, in order to corroborate the results obtained in
(Teixeira et al., 2014), we investigate what is the cost of
using only platform process variables compared to the case
in which seabed (specifically, wet christmas tree) variables
are also assumed to be measured. Wet christmas tree
variables are often highly correlated to downhole variables;
however, their measurements are not always available.

We consider two wells to investigate this point: W1,
whose results are shown in Figure 5, and W3 as fol-
lows. For the latter, two closed-loop schemes were tested:

i) {W3 f̂1,W3 ĥ1} and ii) {W3 f̂2,W3 ĥ2} using KF,
which will be referred as KF10 and KF11, respectively.
Note that only platform variables are used in KF10, while
seabed variables are used only in KF11. Figure 7 illustrates
downhole pressure estimation for the well W3 using the
KF10 and KF11 schemes. Data with duration of 7 months
were divided into 7 windows,.

From Figures 5 and 7, one can see that KF4 and KF10
(that is, filters that use platform measurements) yield
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Fig. 6. (a) W2 downhole pressure estimation using IMM built with
linear models (IMM L2) and IMM built with non-linear models
(IMM NL2), and (b) RMSE index (kgf/cm2) calculated for each
one of the 6 windows of data.

smaller RMSE indexes compared to KF5 and KF11. If
we consider that PT1 varies in the range 145-160 kgf/cm2

for well W1 and 120-180 kgf/cm2 for well W3, using only
platform variables improved accuracy in about 0.6% for
the first and 3.1% for the last. Comparing to the results
obtained in (Teixeira et al., 2014), where the use of seabed
variables improved estimation in about 3.3%, it seems that
measuring seabed variables is not critical for monitoring
downhole pressure.

6. CONCLUDING REMARKS

The problem of designing data-driven soft sensors to esti-
mate the downhole pressure in gas-lifted oil wells is investi-
gated in this paper. Most soft sensors developed for gas-lift
oil wells (reported in the literature) are model-driven and,
thus, require the knowledge of physical parameters. We
employ a two-step procedure, in which black-box models
identified from historical data are used in interacting mul-
tiple model filter banks. That is, we perform closed-loop
model prediction.

Experimental results suggest that the gain of using non-
linear models compared to affine models does not pay off.
For the data tested, the largest difference between RMSE
indexes from comparable nonlinear and linear schemes was
2.29 kfg/cm2, for a well where the downhole pressure varies
in the range 60-110 kgf/cm2. Moreover, the usage of affine
models has other advantages, such as simpler extension of
structure from a specific well to another, as well as simpler
model retuning to address time-varying dynamics.

Finally, we evaluated the advantage of measuring seabed
process variables and using such measurements in state
estimation. For the data tested in this paper, the small

(a)

(b)

Fig. 7. (a) W3 downhole pressure estimation using KF10 and
KF11, and (b) RMSE index (kgf/cm2) calculated for each one
of the 7 windows of data.

differences between the RMSE indices suggest that mea-
suring seabed variables is not critical to monitor downhole
pressure.
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