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Abstract: Waterflooding is a common oil recovery method where water is injected into the reservoir for
increased productivity. Optimal operational strategy of waterflooding processes has to consider proceeds
realized from produced oil and cost of productions including both injected and produced water. This is a
dynamic optimization problem. The problem could be solved through numerical algorithms based on
traditional optimal control theory which can provide only open-loop control solutions and rely on an
accurate process model. However, reservoir properties are extremely uncertain, and hence open-loop
solutions based on a nominal model are not suitable for applications with real reservoirs. Introduction of
feedback into the optimization structure to counteract the effect of uncertainties has been proposed
recently. In this work, a novel feedback optimization method for optimal waterflooding operation is
presented. In the approach, appropriate controlled variables as combinations of measurement histories
and manipulated variables are first derived through regression based on simulation data obtained from a
nominal model. Then a feedback control law was represented as a linear function of measurement
histories from the controlled variables obtained. Through a case study, it was shown that the feedback
control solution proposed in this work was able to achieve a near-optimal operational profit with only
0.45% worse than that achieved through the true optimal control (with system’s properties assumed to be
known a priori), but 95.05% better than that obtained with the open-loop solution under uncertainties.

Keywords: Reservoir waterflooding, Optimal control, Self-optimizing control, Open-loop solution,
Controlled variable.



1. INTRODUCTION

The prudent search for efficient recovery methods of oil from
ageing reservoirs has sprung studies on optimization
techniques for reservoir waterflooding. Waterflooding is the
most common type of secondary recovery methods (Adeniyi
et al., 2008) which involves injection of water into the
reservoir through an injection well with the aim to properly
sweep the oil in place towards a production well and/or
maintain the reservoir pressure (Grema and Cao, 2013).

A typical waterflooding optimization problem seeks to
determine optimum injection and production settings in order
to maximize a performance index such as net present value
(NPV) or total oil recovery. Several works were reported to
employ the traditional optimal control which provides an
open-loop solution based on an off-line nominal model
(Asadollahi and Naevdal, 2009; Brouwer and Jansen, 2004).
Unfortunately, reservoir properties including its geometry
and boundaries are uncertain (Jansen et al., 2008). There are
some production behaviours that can rarely be captured well
through simulation model such as well coning (Dilib and
Jackson, 2013a). Therefore, for a real oil reservoir, open-loop
optimal solution determined off-line from a model may be
suboptimal or entirely non-optimal.

Several methods have been proposed in the literature to deal
with such uncertainties. For example, in robust optimization
(RO), inputs are implemented in an open-loop fashion which

have to follow a predetermined profile such that system
constraints are satisfied in the presence of any uncertainty or
disturbance (Yeten et al., 2003; Ye et al., 2013; Gabrel et al.,
2014). Because RO approaches are designed to account for
all possible uncertainties, their performance is mostly
conservative which hardly leads to an optimal solution.
Works that reported to use such technique in the field of
waterflooding include that of van Essen and others (van
Essen et al., 2009). It involves use of a set of reservoir
realizations with the assumption that it captures all reservoir
characteristics and production behaviours, a condition which
is very difficult to be met in reality. Another method
developed to counteract the effects of uncertainties is
parametric optimization technique (Fotiou et al., 2006).
Never the less, the method is too complicated to be applicable
to waterflooding processes. Stochastic optimization methods
were also developed to counter the effects of systems
uncertainties (Tu and Lu, 2003; Pastorino, 2007; Wu, 2012).
These methods involve random search within a parameter
space in which potential solutions are evaluated. (Collet and
Rennard, 2007). Slow convergence and high computational
power requirement is a major drawback to these methods. A
practical approach, repeated learning control was developed
for batch processes (Ganping and Jun, 2011; Ahn et al.,
2014), unfortunately it is not applicable to processes that are
not repeatable, typical of petroleum production from
reservoirs.
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The current practice in industries is a procedure that is
commonly referred to as history matching which involves
periodic updating of available reservoir models using
historical data and subsequent determination of operational
strategies based on the updated models. However, solutions
based on history-matched models may be suboptimal or non-
optimal at all because of inability of updated models to
predict reality correctly.

Based on the fact that feedback is an efficient tool to deal
with uncertainties, proposals have been made recently of
including a direct feedback control for optimal waterflooding
operations (Jansen et al., 2008; Dilib and Jackson, 2013a;
Brouwer et al., 2001; Foss, B. and Jensen,J. P., 2011). But a
fundamental task that has not been investigated is
formulation of a simple controlled variable (CV) that should
make the optimality of waterflooding process insensitive to
various geological uncertainties. Recently, we have
developed a robust CV based on the principle of self-
optimizing control (SOC) and tested it on a system with one
degree of freedom (DOF) (Grema and Cao, 2014). In that
work, an optimal feedback control law was represented as a
linear function of production measurements with coefficients
to be determined through least square regression to
approximate the gradient of the cost function against
manipulated variables based on simulated data obtained from
a nominal model. The whole idea is to maintain the selected
CV at zero through feedback control so that the operation is
automatically optimal or near optimal with an acceptable
loss.

This work extended the methodology presented by (Grema
and Cao, 2014) to solve multivariable waterflooding
optimization problem. Results obtained were compared with
the open-loop optimal control approach for cases with
different uncertainties. Furthermore, true optimal control
solutions where the system model was assumed to be perfect
with all properties known a priori are also derived as a
benchmark for the above comparison.

2. APPROACH

2.1 Dynamic Optimization for Reservoir Waterflooding using
SOC

A reservoir model in a discretized form is given as

where � � and � � are the state and input vectors respectively
at time-step, � . For such kind of system, an objective
function, � to be optimized can be represented as

where � consists of contributions at each time step denoted by
� � , � � is a vector of measurements at time step � , and � is
the total number of time steps. From (1), it can be inferred
that any change in � � at time � will affect the states � � � � ,

which will in turn influence the outputs, � � � � through some
measurement functions

A feedback control law is sought to maintain the gradient of
the objective function with respect to control input to be zero
or near zero at each time step such that the overall trajectory
is optimal or near optimal, i.e. the objective function is
minimum or near minimum in the presence of uncertainties.
If any two or more control trajectories are perturbed, then the
deviation of the cost function J, can be approximated by
finite differences between two closely related trajectories,

� �
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� , � � � �
� , … , � � � �

� , if max� � � � �
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� with a sufficiently small � . The deviation in the cost
function can be written using Taylor’s series expansion as

where � � is the total number of inputs and � � , �
� is the gradient

of the objective function with respect to the input channel, �
at time-step, � for the reference trajectory, � .

Generally, the analytical expression of the gradient function
in (4) is difficult to obtain particularly in the presence of
uncertainties. To derive an output feedback control law,

� � = � � �
�
� , �

�
� −1, … �

�
� −� � , which is equivalent to

� � �
�
� , �

�
� −1, … �

�
� −� � − � � = 0, it is proposed to approximate

these gradients by a number of measurement functions with a
set of unknown parameters to be determined through
regression based on simulated data. Therefore, the gradient in
(4) can be replaced by a measurement function, � as

where � � is a parameter vector to be determined through

regression for channel � and the measurement vector
includes current and past measurements with � being the
number of histories, which was found to be 2 after some trial
and error exercises in this study. � can be any polynomial
function such that � � can be easily obtainable, but a linear
combination of measurements was adopted in this work.

For simulated data collection, the following steps are
followed:

1. A control trajectory, � is found via optimal control
computation given as

2. The control trajectory above is used to solve the
model equation in (1) where measurements and
states sequences are obtained which are given
respectively as:

and

3. The control trajectory in step 1 is perturbed to
and the model is solved where

perturbed measurements
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and states are obtained
and � � � � also calculated.

4. Input perturbations are repeatedly applied to model
equations to get perturbed solutions for a predefined
number of trajectories, � .

With the above data collection procedure, a data matrix of
� 	� � 	� is obtained which is used to perform regression by
minimizing the square of the residual given by

Where q represents the right-hand side of (5). The goodness
of fit is evaluated by R2 statistic. For brief description of
regression, the reader is referred to (Ye et al., 2013).

Once the measurement function � is obtained through
regression, then the output feedback control law can be

derived straightaway by solving � = 0. With this output
feedback control law, � , and hence the gradients in (4) are all
near zero, which leads to the optimality or near optimality of
the feedback system.

2.2 Reservoir Model and Uncertainties

A nominal reservoir model was used to collect simulated data
which is of size 20 m x 20 m x 5 m and modelled with
Cartesian grid cells in the x, y and z directions of 20 x 20 x 5
respectively; therefore each cell is 1m x 1m x 1m. The
reservoir has homogeneous rock and fluid properties with a
permeability of 100 mD, porosity of 0.3, oil and water
relative permeability Corey exponents of 2.0 each. There are
two vertical injection (I1 and I2) and production (P1 and P2)
wells located at the corners of the reservoir (Fig. 1). Each of
the four wells is perforated at a distance of 1m vertically (five
perforations for each) and is rate-constrained. The CVs were
developed based on this model. In the CV formulation,
uncertainty is not considered. This is because in practice, it is
difficult to sample the whole space of geological
uncertainties. Furthermore, the CVs developed based on this
model (nominal model) can be tested for robustness against
unexpected reservoir behaviours which are inevitable in real
applications.

The developed CVs were first implemented on the nominal
model (Case I) and then subsequently to different uncertain
cases by varying one or more nominal reservoir properties so
as to mimic real model/system mismatch. In Case II, the size
of the real reservoir was increased to 100 m x 100 m x 10 m
with five layers each of 2 m thickness and random
permeability field with mean values of 200 mD, 500 mD, 350
mD, 700 mD and 250 mD from top to bottom respectively,
see (Grema and Cao, 2014). For Case III, the only uncertainty
introduced is in the shapes of relative permeability curves
where the real exponents for oil and water were assumed to
be 1.5 each. Uncertainties in reservoir geometry, size and
structure were considered in Case IV (Grema and Cao, 2014).
Table 1 summarises these cases.

2.3 Data Collection and Regression

With the arrangement shown in Fig. 1, the manipulative
variables, MVs are injection and total production rates; but
with voidage replacement assumption, the MVs were reduced
to two (two DOF). To be able to implement this assumption,
well pairing was employed where Injector, I1 was paired with
producer, P1 and I2 with P2. So, with this setup, injection
rates from I1 must equal total production rates from P1 at all
time-steps and likewise with I2 – P2 pairing.

The total production time was fixed to two years (730 days)
with a sampling time-step of one day. At each time-step, four
measurements which include oil and water production rates
from wells P1 and P2 are recorded. The measurement vector
is given by

where y � � and y � � are oil and water production rates from P1
respectively while y � � and y � � the respective measurements
from P2. In addition to these measurements, the objective
function, which is the net present value (NPV) of the process
was also computed using the same economic parameters as
used by Grema and Cao (2014) and shown in (11).

where rwi, rwp and ro are water injection and production costs,
and oil price respectively. uwi, yw and yo are water injection
and production rates, and oil production rate respectively. Ninj

and Nprod are number of injection and production wells
respectively. b is a discount factor, ∆tk is time-step size, tk is
the actual time period for which NPV is computed while τ is
the time unit.

Here, 500 solution trajectories were generated. For the first
trajectory, the flooding process was simulated for two years
using the actual optimal control solutions. The optimal
controls were then slightly perturbed for subsequent
trajectories. However, the controls for the first two time-steps
were not perturbed because two past histories are needed (n =
2). Since there are two MVs for this system, (5) can be
modified as

where � � and � � are parameter vectors for the two CVs to be
determined through regression. The vectors of the
measurements, � � and � � are for the respective production
wells P1 and P2 given as

In (12), the MVs, � � and � � which are water injection rates
from I1 and I2 respectively are included so that expressions
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can be obtained explicitly as the feedback control laws. Each
of the parameter vectors in (12) has seven elements
considering number of measurements with past histories.
Modifying for each CV, we have

The feedback control law is obtained by setting � � and � � to
zero in (12)

where � � , � �
� and � � , � �

� are the two optimal settings of injection

wells.

2.4 Performance Evaluation

To evaluate the performance of the developed approach, true
optimal solutions of the three uncertain cases were obtained
by solving the optimal control problem directly on these
mismatched models (ideal solutions) to establish a
benchmark (BM). The open-loop optimal solutions (OC)
obtained based on the nominal model were implemented on
the uncertain models (worst case). The performance of the
SOC approach should therefore lie between those of BM and
OC approaches. The deviation in performance of SOC and
OC methods from the benchmark is evaluated as loss given
by

Fig. 1: Nominal Reservoir with Wells

Table I: Uncertainty Cases

The improvement of SOC strategy over OC is expressed as a
gain computed by (17)

3. RESULTS AND DISCUSSIONS

3.1 Regression

The two feedback control laws obtained are

It can be seen that only three measurements out of total six
are relevant in the CV functions which comprises of both oil
and water production rates. The immediate past
measurements (n = 1) are irrelevant (regression parameter
values of zero) but the current (n = 0) and past two (n = 2).
An excellent regression performance with R-square value of
1.0 was obtained. This indicates that no higher-order
polynomial or more sophisticated model is required. For an
injection-production system where productions from two
wells are equal, we should expect equal injection settings as
suggested by (18). Results of each case are given and
discussed in Sections 3.2 – 3.5

3.2 Case I: Nominal Parameters

The optimal feedback control laws, (18) obtained are
implemented on the nominal model for a period of two years.
This production strategy was compared to the true optimal
solution (OC). The NPV recorded from SOC strategy is
$128,903.70 while that from OC is $128,904.90. The loss is
almost zero (0.0009593%). This shows the CVs obtained are
almost perfect.

Fig. 2 shows injection settings for the two approaches. The
optimal injection settings for the two wells as obtained by
both approaches (OC and SOC) can be seen to be equal at
each time-step. This validates the accuracy of the feedback
control law given in (17). For the OC case, two regions can
be identified from the injection profile; a rapidly increasing
and decreasing region which spans for about 170 days from
the beginning of production then followed by a constant
injection regime for the remaining period. However, three
distinguishing regions can be seen with SOC approach which
consists of a steadily increasing phase (160 days) followed by
a sharp decline phase and finally an ascending phase.

� � , � �
� = −� �

� � [� � � � �
� + � � � � �

� + ⋯ + � � � � �
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� � , � �
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(15)
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Case Property Uncertain Case
II

Permeability and size
Log-normal distribution and

100x100x10 m3

III Corey exponent 1.5

IV
Geometry, Size, Grid

and Structure

Corner point, 225x22.5x 10

m3, 30 x 3 x 1, with fault
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Fig. 2: Injection Settings for the Nominal Case

Another interesting feature is that the injection rates meet just
at the end of production period. It is worth to know that the
variability of the injection settings found by the two
approaches is almost the same with respective standard
deviations of 0.004287 and 0.004351 for OC and SOC.

3.3 Case II: Uncertainty in Permeability and Reservoir Size

For this case where reservoir size is increased by 97.5% with
random permeability fields for each of five layers, it is
obvious that the open-loop solution is non-optimal in this
case with a loss of 93.21% when compared to BM case while
performance of SOC is similar to that of the BM scenario.
The loss here is only 0.018% with a gain of 93.21% over OC
approach.

3.4 Case III: Uncertainty in the Shape of Relative
Permeability Curves

The nominal values of Corey exponents for both oil and
water relative permeability curves are 2.0 while the real
values were considered to be 1.5 each. For this uncertainty, a
loss of only 0.023% was incurred as a result of SOC
implementation with a gain of 0.25%. The loss is 0.27% with
OC approach.

3.5 Case IV: Uncertainty in Reservoir Size, Geometry and
Structure

For this huge uncertainty consideration, open-loop solution
has woefully failed to optimize the waterflooding process
with a loss of 95.07%. On the other hand, the optimal
feedback controls obtained based on the nominal model
proved to be very robust in the presence of these uncertainties
with a loss of only 0.45% when compared to the BM case
that assumed perfect reservoir knowledge. The SOC
approach has a gain of 95.05% over the OC case.

A summary of the results for all the four cases is given in
Table 2.

Table 2: Results Summary

4. CONCLUSIONS AND RECOMMENDATIONS

An optimal feedback control for reservoir waterflooding
operation was formulated using the principle of self-
optimizing control. The CVs were derived from regression
based on a nominal model. For the purpose of CV regression,
injector-producer pairing was employed, where simulated
measurements made up of oil and water production rates
were recorded. The gradients of the objective function with
respect to controls were selected as the CVs. The CVs were
then approximated with linear functions of current and past
measurements (typically two past histories) which were fitted
to the data via least squares regression. The robustness of the
CVs was tested by initially implementing it on the nominal
model and then to cases with system mismatches. The
performance of the SOC method was compared with open-
loop solution based on optimal control theory as well as
benchmark case. Findings are summarised as follows:

1. The two feedback control laws were found to have
same regression coefficients, in other words, the
regression resulted to symmetrical CVs.

2. Implementing the CVs on the nominal model
resulted to an almost zero loss. The true optimal
injection trajectories as found through optimal
control theory were identical for the two injectors.
This was also the case with SOC’s solution.

3. A total failure of the open-loop solution was
observed in two cases when the reservoir size is
increased whereas SOC performed well with
performance indices similar to the benchmark
cases’.

4. The relative performance of SOC increases with
increase in the degree of uncertainty while that of
OC deteriorates in that order.

5. Although uncertainties were not sampled for CV
determination due to the complexity of reservoirs,
the CVs robustness is attributed to the feedback
nature of SOC.

6. The work adopted a simplified reservoir system, it is
therefore recommended to test the robustness of the
method on a realistic reservoir.

NPV($) %
Gain

%
Loss

Case I OC 128,904.90 - -
SOC 128,903.70 - -

Case II BM 4,732,358.83 - -
OC 321,245.07 - 93.21
SOC 4,731,512.20 93.21 0.018

Case III BM 119,037.93 - -
OC 118,710.67 - 0.27
SOC 119,010.69 0.25 0.023

Case IV BM 6,808,782.37 - -
OC 335,602.48 - 95.07
SOC 6,778,147.29 95.05 0.45
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