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Abstract: This paper describes a recently introduced methodology to perform value of information 

(VOI) analysis within a closed-loop reservoir management (CLRM) framework, and adds a first step to 

improve the computational efficiency of the procedure. CLRM is a combination of model-based  

optimization and model-parameter identification applied to large-scale models of subsurface hydrocarbon 

reservoirs. The approach is illustrated with a simple two-dimensional model of an oil reservoir produced 

with water injection. The results are compared with previous work on other measures of information 

valuation. We show that our method is a more complete, although also more computationally intensive, 

approach to VOI analysis in a CLRM framework. We recommend it to be used as the reference for the 

development of more practical and less computationally demanding tools for VOI assessment in real 

fields. 
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1. INTRODUCTION 

Over the past decades, numerical techniques for model-based 

optimization and ‘history matching’ (i.e. parameter 

identification) of subsurface hydrocarbon reservoirs have 

developed rapidly, while it also has become possible to 

obtain increasingly detailed reservoir information by 

deploying different types of well-based sensors and field-

wide sensing methods. Many of these technologies come at 

significant costs, and an assessment of the associated value of 

information (VOI) becomes therefore increasingly important. 

In particular assessing the value of future measurements 

during the field development planning (FDP) phase of an oil 

field requires techniques to quantify the VOI under 

geological uncertainty. An additional complexity arises when 

it is attempted to quantify the VOI for closed-loop reservoir 

management (CLRM), i.e., under the assumption that 

frequent life-cycle optimization will be performed using 

frequently updated reservoir models. Recently we introduced 

a new methodology to assess the VOI in a such a CLRM 

context (Barros et al, 2014). Here we repeat the description, 

and, in addition, propose a modification to improve the 

computational efficiency of the procedure.  

In the Background section we introduce the most relevant 

concepts and review some previous work on information 

measures. Next, in the Methodology section, we present the 

proposed workflow for VOI analysis and thereafter, in the 

Examples section, we illustrate it with some case studies in 

which the results of the VOI calculations are analyzed. 

Finally, in the Discussion and conclusion section, we address 

the computational aspects of applying this workflow to real 

field cases, and we suggest a direction for further research. 

2. BACKGROUND 

2.1 Closed-loop reservoir management 

CLRM is a combination of frequent life-cycle production 

optimization and parameter identification (also known as 

‘data assimilation’ or ‘computer-assisted history matching’). 

Life-cycle optimization aims at maximizing a financial 

measure, typically net present value (NPV), over the 

producing life of the reservoir by optimizing the production 

strategy. This may involve well location optimization, or, in a 

more restricted setting, optimization of well rates and 

pressures for a given configuration of wells, on the basis of 

one or more numerical reservoir models. History matching 

involves modifying the parameters of one or more reservoir 

models, or the underlying geological models, with the aim to 

improve their predictive capacity, using measured data from a 

potentially wide variety of sources such as production data or 

time-lapse seismics. For further information on CLRM see, 

e.g., Jansen et al. (2005, 2008, 2009), Naevdal et al. (2006), 

Sarma et al. (2008); Chen et al. (2009) and Wang et al. 

(2009). 

2.2 Robust optimization 

An efficient model-based optimization algorithm is one of the 

required elements for CLRM. Because of the inherent 

uncertainty in the geological characterization of the 

subsurface, a non-deterministic approach is necessary. 

Robust life-cycle optimization uses one or more ensembles of 

geological realizations (reservoir models) to account for 

uncertainties and to determine the production strategy that 

maximizes a given objective function over the ensemble; see, 

e.g., Yeten et al. (2003) or Van Essen et al (2009). The 

objective function JNPV is defined as 
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  NPV NPV NPVJ , (1) 

where μNPV and σNPV are the ensemble mean (expected value) 

and the ensemble standard deviation of the objective function 

values Ji of the individual realizations: 
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The symbol λ in equation (1) is a risk attitude parameter to 

represent risk-averse or risk-prone decision strategies with 

positive or negative values respectively. The objective 

function Ji, for a single realization i is defined as 
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where mi is a realization of the vector of uncertain model 

parameters (e.g. grid block permeabilities or fault 

multipliers), t is time, T is the producing life of the reservoir, 

qo is the oil production rate, qwp is the water production rate, 

qwi is the water injection rate, ro is the price of oil produced, 

rwp is the cost of water produced, rwi is the cost of water 

injected, b is the discount factor expressed as a fraction per 

year, and τ is the reference time for discounting (typically one 

year). The outcome of the optimization procedure is a vector 

u containing the settings of the control variables over the 

producing life of the reservoir. Note that, although the 

optimization is based on N models, only a single strategy u is 

obtained. Typical elements of u are monthly or quarterly 

settings of well head pressures, water injection rates, valve 

openings etc.  

2.3 Data assimilation 

Efficient data assimilation algorithms are also an essential 

element of CLRM. Many methods for reservoir-focused data 

assimilation have been developed over the past years, and we 

refer to Oliver et al. (2008), Evensen (2009), Aanonsen et al. 

(2009) and Oliver and Chen (2011) for overviews. An 

essential component of data assimilation is accounting for 

uncertainties, and it is generally accepted that this is best 

done in a Bayesian framework: 
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where p indicates the probability density, and d is a vector of 

measured data (e.g. oil and water flow rates or saturation 

estimates from time-lapse seismic). In equation (5) the terms 

p(m) and p(m|d) represent the prior and posterior 

probabilities of the model parameters m, which are, in our 

setting, represented by initial and updated ensembles 

respectively. The underlying assumption in data assimilation 

is that a reduced uncertainty in the model parameters leads to 

and improved predictive capacity of the models, which, in 

turn, leads to improved decisions. In our CLRM setting, 

decisions take the form of control vectors u, aimed at 

maximizing the objective function J. 

2.4 Information valuation 

Previous work on information valuation in reservoir 

engineering focused on analyzing how additional information 

impacts the model predictions. One way of valuing 

information is proposed by Krymskaya et al. (2010). They 

use the concept of observation impact, which was first 

introduced in atmospheric modelling. Starting from a 

Bayesian framework, they derive an observation sensitivity 

matrix, which contains self and cross-sensitivities (diagonal 

and off-diagonal elements of the matrix, respectively). The 

self-sensitivities, which quantify how much the observation 

of measured data impacts the prediction of these same data 

by a history-matched model, provide a measure of the 

information content in the data. 

Another approach is taken by Le et al. (2014) who address 

the usefulness of information in terms of the reduction in 

uncertainty of a variable of interest (e.g. NPV). They 

introduce a method to estimate, in a computationally feasible 

way, how much the assimilation of an observation 

contributes to reducing the spread in the predictions of the 

variable of interest, expressed as the difference between P10 

and P90 percentiles, i.e. between the 10% and 90% 

cumulative probability density levels.  

Both approaches are based on data assimilation to obtain a 

posterior ensemble which forms the basis to compute various 

measures of information valuation. In this case, the 

measurements are obtained in the form of synthetic data 

generated by a synthetic truth. This preempts our proposed 

method of information valuation in which we will use an 

ensemble of models in the FDP stage, of which each 

realization will be selected as a synthetic truth in a 

consecutive set of twin experiments. 

2.5 VOI and decision making 

The two studies that we referred to above (Krymskaya et al., 

2010 and Le et al., 2014) only measure the effect of 

additional information on model predictions and do not 

explicitly take into account how the additional information is 

used to make better decisions. In these studies it is simply 

assumed that history-matched models automatically lead to 

better decisions. However, there seems to be a need for a 

more complete framework to assess the VOI, including 

decision making, in the context of reservoir management. 

VOI analysis originates from the field of decision theory. It is 

an abstract concept, which makes it into a powerful tool with 

many potential applications, although implementation can be 

complicated. 

An early reference to VOI originates from Howard (1966) 

who considered a bidding problem and was one of the first to 

formalize the idea that information could be economically 

valued within a context of decision under uncertainties. Since 

then, several applications have appeared in many different 

fields, including the petroleum industry. Bratvold et al. 

(2009) produce an extensive literature review on VOI in the 

oil industry and also identify several potential 

misconceptions and misunderstandings in the use of VOI 

analysis. Through examples with a petroleum-oriented 

perspective they show how a VOI analysis should be carried 

out rigorously. They affirm that “VOI attributes no value to 

‘uncertainty reduction’ or ‘increased confidence’” and that 

“value is added by enabling the decision maker to better 
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‘tune’ his/her choice to the underlying uncertainty”. Thus, 

their main message is that “one cannot value information 

outside of a particular decision context”, and they continue 

“The fundamental question for any information-gathering 

process is then whether the likely improvement in decision 

making is worth the cost of obtaining the information.” (All 

citations from Bratvold et al., 2009). Finding an answer to 

this question is the ultimate goal that drives the work 

described in this paper. 

3. METHODOLOGY 

In our setting, decisions in CLRM take the form of 

optimizing the production strategy u under uncertainty which 

involves repeated robust optimization of a large number of 

variables: the vector u typically has tens to hundreds of 

elements and needs to be updated when new information 

becomes available. As noted by Bratvold et al. (2009), in 

many cases the reported work on VOI in the petroleum 

industry is related to other types of decisions and 

uncertainties. Most of the examples are about whether to drill 

or not to drill a well in a certain location (Bhattacharjya et al., 

2010), or about whether a fault is sealing or not. These 

problems contain limited numbers of decision alternatives 

and uncertainty scenarios. The tools used to solve them 

involve decision trees and influence diagrams, which are 

feasible when dealing with binary or simple discrete 

scenarios. The CLRM problem seems to contain too many 

variables to be approached in the same way. However, the 

question to be answered is essentially the same and so should 

be the conceptual approach. 

Reducing uncertainty in a model prediction has no value by 

itself, and therefore one cannot assign a value to information 

without modelling the decisions that are made based on the 

model forecasts. VOI is decision-dependent. We therefore 

propose to combine data assimilation and decision making (in 

the form of optimization) to create a more complete 

workflow to value information. By doing that, we intend to 

not only quantify how information changes knowledge 

(through data assimilation), but also how it influences the 

results of decision making (through optimization). 

In the proposed workflow, the analysis is performed in the 

design phase – when no real data are yet available. Note that 

classical CLRM is performed during the operation of the field 

whereas we are considering here an a-priori evaluation of the 

value of CLRM (i.e. in the design phase). The workflow 

starts with a prior ensemble of realizations which 

characterizes the initial uncertainty associated with the model 

parameters. From this ensemble, one realization is selected to 

be the synthetic truth and the remaining realizations form the 

prior ensemble for a robust optimization procedure to 

maximize the economic value of the ensemble. The resulting 

strategy is applied to the synthetic truth, and synthetic data 

from the analyzed measurements are generated by running a 

reservoir simulation over the specified control time interval 

(typically one or more months). With these, data assimilation 

is performed and a posterior ensemble obtained. As a next 

step robust optimization is carried out on this posterior to find 

an new optimal production strategy (from the time the data 

became available to the end of the reservoir life-cycle), and 

the procedure is repeated while gradually progressing over 

the producing life of the reservoir in time steps equal to the 

specified control time interval. The exercise of matching data 

generated by a synthetic ‘truth’ model, a common practice in 

the data assimilation community, is in this way extended to 

include the effects of the model updates on the reservoir 

management actions. 

The strategies obtained for the prior and the posterior 

ensembles are then tested on the synthetic truth and their 

economic outcomes (NPV values ,NPV priorJ and ,NPV postJ ) are 

evaluated. The difference between these outcomes is a 

measure of the VOI incorporated through the CLRM 

procedure for this particular choice of the synthetic truth.  

The choice of one of the realizations to be the synthetic truth 

in the procedure is completely random. In fact, because the 

analysis is conducted during the FDP phase, any of the 

models in the initial ensemble could be selected to be the 

‘truth’. Note that this also implies that the VOI is a random 

variable. One of the underlying assumptions of our proposed 

workflow is that the truth is captured by the initial ensemble. 

Hence, the methodology only allows to quantify the VOI 

under uncertainty in the form of known unknowns. 

Obviously, specifying uncertainty in the form of unknown 

unknowns is impossible, which therefore is a fundamental 

shortcoming in any VOI analysis. 

Because any of the N models in the initial ensemble could be 

the truth, the procedure has to be repeated N times, 

consecutively letting each one of the initial models act as the 

synthetic truth. This allows us to quantify the expected VOI 

over the entire ensemble: 
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We note that in the literature on VOI, most of the times the 

term VOI is used to refer to the expected VOI. The flowchart 

in Fig. A.1 (Appendix A) shows the complete procedure 

including the aforementioned repetition. 

The workflow can be adapted to compute the expected value 

of clairvoyance (VOC), which gives a feeling for the 

technical limit (i.e. the maximum possible expected VOI) that 

could be obtained from measurements. In this case, data 

assimilation does not form part of the loop. Instead, perfect 

information is assumed to become available through a 

revelation of the truth at a certain moment in time. Such a 

clairvoyance implies the availability of completely 

informative data without observation errors, and the expected 

VOC therefore forms a theoretical upper bound to the 

expected VOI. Moreover, because this modified workflow 

does not require data assimilation, and, after the truth has 

been revealed, only requires optimization of a single (true) 

model, it is computationally significantly less demanding. 

4. EXAMPLE 

As a next step, we applied the proposed VOI workflow to a 

simple reservoir simulation model representing a two-

dimensional (2D) inverted five-spot water flooding 

configuration; see Fig. 1. In a 21 × 21 grid (700 × 700 m), 

with heterogeneous permeability and porosity fields, the 

model simulates the displacement of oil to the producers in 

the corners by the water injected in the center. Table 1 lists 
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the values of the physical parameters of the reservoir model. 

We used N = 50 realizations of the porosity and permeability 

fields, conditioned to hard data in the wells, to model the 

geological uncertainties. The simulations were used to 

determine the set of well controls (bottom hole pressures) that 

maximizes the NPV. The economic parameters considered in 

this example are also indicated in Table 1. The optimization 

was run for a 1500-day time horizon with well controls 

updated every 150 days, i.e. M = 10, and, with five wells, u 

has 50 elements. We applied bound constraints to the 

optimization variables (200 bar ≤ pprod ≤ 300 bar and 300 bar 

≤ pinj ≤ 500 bar). The whole exercise was performed in the 

open-source reservoir simulator MRST (Lie et al., 2012), by 

modifying the adjoint-based optimization module to allow for 

robust optimization and combining it with the EnKF module 

to create a CLRM environment for VOI analysis. The 

average NPV for the ensemble is $ 65.1 million when using 

baseline control (fixed bottom hole pressures: 400 bar in the 

injector and 250 bar in the producers) and $ 70.2 million 

when using robust optimization over the prior (i.e. without 

additional information). The workflow was repeated for 

different observation times, tdata = {150, 300, … , 1350} 

days. For this 2D model we assessed the VOI of the 

production data (total flow rates and water-cuts) with 

absolute measurement errors (ԑflux = 5 m³/day and ԑwct = 0.1). 

The VOI and the VOC were computed for each of the nine 

observation times. 

 

 

Fig. 1. 2D five-spot model (left); 12 randomly chosen 

realizations of the uncertain permeability field (right). 

Table 1.  Parameter values for 2D five-spot model 

Rock-fluid parameters Initial conditions 

ρo = 800 kg/m3 p0 = 300 bar 

ρw = 1,000 kg/m3 Soi = 0.8 [] 

μo = 0.5 cP Swi = 0.2 [] 

μw = 1 cP   

no = 2 [] Economic parameters 

Sor = 0.2 [] ro = 80 $/bbl 

kro,or = 0.9 [] rwp = 5 $/bbl 

nw = 2 [] rwi = 5 $/bbl 

Swc = 0.2 [] b = 0.15 [] 

krw,wc = 0.6 []   

 

Figs. 2 and 3 depict the results of the analysis for production 

data. Dashed lines correspond to expected values and solid 

lines to percentiles quantifying the uncertainty of the 

information measures. The markers correspond to the 

observation times at which the analysis was carried out. In 

Fig. 2 we note that clairvoyance loses value with observation 

time, following a stepwise behavior. In addition, by 

observing the percentiles, we realize that, in this case, the 

VOC has a non-symmetric probability distribution. The high 

values of P10 indicate that, for some realizations of the truth, 

knowing the truth can be considerably more valuable than 

indicated by the expected VOC; however, the P50 values, 

which are always below those of the expected VOC, indicate 

what is more likely to occur. The same holds for the VOI, as 

can be observed in Fig. 3. Here, Px is defined as the 

probability that x % of the outcomes exceeds this value. The 

observation that provides the best VOI is the one at tdata = 150 

days, followed by a second modest peak at tdata = 450 days. 

The non-monotonous decrease of the VOI may be caused by 

the nature of the optimization and parameter identification 

procedures (which search for a local optimum). However, 

some of it may also be caused by different observations 

having different VOI (e.g. water measurements before and 

after water breakthrough). Note that in our example the 

earliest observation seems to be the most valuable one, but 

that this may be case-specific. 

 

Fig. 2. Value of clairvoyance (VOC) as a function of 

clairvoyance time in the 2D model. 

 

Fig. 3. Value of information (VOI) as a function of 

observation time for production data in the 2D model. 

Fig. 4 depicts the expected values of VOI (blue dots) and 

VOC (black line). The plot confirms that clairvoyance can be 

considered the technical limit for any information gathering 

strategy and that the expected VOC forms an upper-bound to 

the expected VOI. We also note that the expected VOI comes 

closer to the expected VOC with time. Indeed, as water 

breakthrough is observed in more producers, the production 

data of this five-spot pattern become more effective in 
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revealing the main features of the true permeability and 

porosity fields. 

 

Fig. 4. Results for the 2D model; the expected VOI is 

upper-bounded by expected VOC. 

Using the proposed workflow as the reference for VOI 

assessment, for this case, we recommend the production data 

to be collected at tdata = 150 days and we estimate this 

additional information to be worth $ 1.4 million. 

Another important finding after running all the simulations is 

that the optimal production strategies obtained for the 

different prior ensembles are almost equal. Fig. 5 depicts the 

optimal well controls, in the form of bottom-hole pressures 

(BHP), for one of the producers in the 2D model example. 

This occurs because, for every repetition of the VOI 

procedure (Fig. A.1), the prior ensembles differ only by one 

realization; and, when we are dealing with considerably large 

ensemble sizes (N = 50 in the example), replacing only one 

realization tends to have a minor impact on the ensemble. 

Consequently, the outcome of the robust optimization over 

these different prior ensembles is almost the same. These 

results suggest that there is an opportunity to reduce the 

number of simulations required in the proposed workflow. 

For instance, in our example, we could reduce the number of 

prior robust optimizations from 50 to 1, which represents a 

significant improvement regarding the computational costs 

associated with the VOI assessment procedure: 

approximately 420,000 simulations for the original 

formulation and 215,000 for the modified formulation to 

compute the VOI for one observation time; and 

approximately 2,100,000 simulations for the original 

formulation and 1,895,000 simulations for the modified 

formulation to compute all the VOI values depicted in Fig. 4 

(9 observation times).  

 

Fig. 5. Optimal well controls (BHP) at producer 1 for the 50 

different prior ensembles in the 2D model example. 

5. DISCUSSION AND CONCLUSION 

We proposed a new workflow for VOI assessment in CLRM. 

The method uses elements available in the CLRM 

framework, such as history matching and robust 

optimization. First, we identified the opportunity to combine 

these elements with concepts of information value theory to 

create a VOI analysis instrument. We then designed a generic 

procedure that can, in theory, be simply implemented in a 

variety of applications, including our optimal reservoir 

management problem. Next, the workflow was illustrated 

with an example. Because we take into account that the 

production strategy is updated periodically after new 

information has been assimilated in the models, we believe 

that our proposed method is more complete than previous 

work to estimate the VOI in a reservoir engineering context. 

The main drawback of our proposed VOI workflow is its 

computational costs; it involves the repeated application of 

robust optimization and data assimilation, which requires a 

very large number of reservoir simulations. Depending on the 

types of optimization and data assimilation methods used 

(e.g. adjoint-based, ensemble-based, or gradient-free) there 

may be large differences in the computational requirements, 

but even in case of using the most efficient (i.e. adjoint-

based) algorithms, the computational load of the workflow 

will be huge. Hence, if the method is to be applied to real-

field cases, some serious improvements regarding the number 

of simulations required are necessary. In this paper, we 

showed a first step in this direction by suggesting a way to 

reduce the number of robust optimizations necessary. 

However, more has to be done. One potential method could 

be to use clustering techniques to select a few representative 

realizations rather than a full ensemble. Furthermore, 

reduced-order modelling or response surface techniques to 

generate surrogate models could facilitate the application of 

our workflow to larger reservoir models by reducing the 

number of full reservoir simulations. Despite its 

computational cost, we conclude that our approach 

constitutes a rigorous VOI assessment for CLRM. For this 

reason, we recommend that it be used as the reference for the 

development of more practical and less computationally 

demanding tools to be applied in real-field cases. 
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Appendix A. WORKFLOW FOR VOI ASSESSMENT 

 

Fig. A.1. Proposed workflow to compute the expected VOI. 
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