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Abstract: This paper presents a modification to L1 adaptive control that allows for distur-
bances entering at the output and application of this control strategy to Managed Pressure
Drilling with harmonic disturbances representing the heave motion of a floating drilling rig.
By incorporating the disturbance at the output into the reference model, it is shown that the
L1 adaptive control structure can be left unchanged while the original transient performance
bounds are preserved. It is further shown that rejection of the output disturbance can be
taken care of entirely in the filter design step of L1 adaptive control using the internal model
principle. A systematic filter design procedure based on LMIs is provided, that requires only one
tuning parameter to be adjusted by the designer. The control design is applied to disturbance
attenuation and set-point tracking in the so-called heave problem in oil well drilling. We present
experimental results of control system tests in a medium size test facility emulating a 900m long
well.

Keywords: Managed Pressure Drilling (MPD), Active Heave Compensation, Robust Output
Regulation, Drilling and Well Technology

1. INTRODUCTION

Deepwater offshore drilling operations are very complex.
This is especially true in regions such as the Gulf of
Mexico, where wells are drilled in water depths of up
to 3 kilometers, drilling depths can exceed 6 kilometers,
and geologic formation pressures can exceed 1400 bar Mac
(2011).

In drilling operations, a fluid called mud is pumped into
the drill string, flows through the drill string and out of
nozzles in the bit. It then flows up the well in the annular
volume around the drill string carrying away cutting debris
(see Figure 1). In addition to carrying cuttings, the drilling
mud is used to control pressures inside the wellbore. To
avoid fracturing, collapse of the well, or influx of fluids
from the reservoir surrounding the well, it is crucial to
control the pressure in the open part of the well within
a certain operating window. In conventional drilling, this
is done by mixing a mud of appropriate density and ad-
justing mud pump flow rate. In Managed Pressure Drilling
(MPD), the well is sealed and the mud exits through a con-
trolled choke, allowing for faster and more precise control
of the pressure in the well. In automatic MPD systems, the
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choke is controlled by an automatic control system which
manages the well pressure to be within specified upper
and lower limits. Several disturbances and possible faults
affect a drilling system. These include packoff, stuck pipe,
washout, twist-off, delay in measurements and control, well
ballooning (wellbore breathing), fluid loss, hole cleaning
problems because of gumbo shale, equipment failure, kick-
loss scenarios, wellbore instability, tripping, and the heave
motion of the drilling rig while making connections Han-
negan (2012); Skalle and Podio (1998); Mahdianfar et al.
(2012a). Moreover, uncertainty in hydraulic parameters
(such density, rheology of the drilling mud, temperature
distribution in the well, frictional pressure loss for the
pipe flow and the annular flow in the well, effective bulk
modulus, well geometry Lohne et al. (2008); Florence and
Iversen (2010); Mahdianfar et al. (2013)) makes drilling
even more challenging. Therefore, when designing MPD
control systems, one should take into account various op-
erational procedures, uncertainties and disturbances that
affect the pressure inside the well.

The study presented in this paper is motivated by the
heave disturbance challenge in offshore drilling. When
drilling from a floating rig, the rig moves vertically with the
waves, referred to as heave motion. When drilling ahead
with weight on bit, a heave compensation system is in
effect that isolates the drill string from the heave motion
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Fig. 1. Schematic of an MPD system. Shown by courtesy
of Statoil.

of the rig. As drilling proceeds, the drill string needs to be
extended with new sections. Thus, every couple of hours
or so, drilling is stopped to add a new segment of about
27 meters to the drill string, referred to as a connection.
During connections, the pump is stopped and the drill-
string is disconnected from the heave compensation mech-
anism and put into slips rigidly attached to the rig. The
drill string then moves vertically with the heave motion
of the floating rig, and acts like a piston on the mud in
the well. The heave motion can be as large as 3 meters in
amplitude with a period of 10-20 seconds, Godhavn (2010),
resulting in severe pressure fluctuations in the bottom of
the well. Pressure fluctuations have been observed to be
an order of magnitude higher than the standard limits for
pressure regulation accuracy in MPD Pavlov et al. (2010).
Downward movement of the drill string into the well gives
pressure increase (surging), and upward movement gives
pressure decrease (swabbing). Excessive surge and swab
pressures can lead to mud loss resulting from high pressure
fracturing the formation, or a kick-sequence (uncontrolled
influx from the reservoir) that can potentially grow into
a blowout, as a consequence of low pressure. The first
attempt at handling this problem by automatic control of
the top-side choke was presented in Pavlov et al. (2010).
Two nonlinear control algorithms based on a lumped
model were designed, and their performance were tested
on a full-scale drilling rig. The controllers demonstrated
good performance for slowly varying vertical drillstring
movements, but failed in case of fast varying drillstring
movements. The identified cause of this was the distributed
nature of the flow, which was not taken into account in
those controllers, Landet et al. (2012a). A series of papers
followed addressing the distributed nature of the system
by using a distributed parameters model of a hydraulic
flow line. In Landet et al. (2012c,b) two controllers based

on a finite difference discretization of the flow line are
presented, and show in simulations to have significant at-
tenuating effect on downhole pressure oscillations. In Mah-
dianfar et al. (2012a) an infinite-dimensional observer that
estimates the heave disturbance is designed for a simplified
distributed model that ignores friction. An observer-based
controller that rejects the effect of the disturbance on the
down-hole pressure is designed, and a model reduction
technique based on the Laguerre series representation of
a transfer function is used to reduce the controller to a
simple, rational transfer function. In Mahdianfar et al.
(2012b) the results are extended by incorporating friction
partially into the model, and in Aamo (2013) they are
extended by rigorously incorporating friction. In Anfinsen
and Aamo (2014) the results are further refined to allow
for attenuation of the effect of the disturbance at any point
in the well, for instance at the casing shoe. A constrained
model predictive controller is designed in Nikoofard et al.
(2013, 2014) for handling heave disturbance and output
regulation constraints. MPC is also used in Albert et al.
(2014), which was the first successful result from the so-
called Heave Lab 1 .

Common for all previous works on the heave problem, is
that uncertainty in model parameters is not taken rigor-
ously into account in the control design, although several
parameters in the well are uncertain during drilling oper-
ations Lohne et al. (2008); Mahdianfar et al. (2013). This
fact, along with the complexity of some of the proposed
methods such as MPC, motivate the present work in which
adaptive control theory is employed. Robust adaptive con-
trol has been an active research topic for decades Ioannou
and Sun (1996); Hovakimyan and Cao (2010); Lavretsky
and Wise (2013). In this paper we employ L1 adaptive out-
put control architecture from Cao and Hovakimyan (2008).
A comprehensive overview of the L1 adaptive control the-
ory can be found in Hovakimyan and Cao (2010). Several
successful applications of L1 adaptive control, especially
in aerospace and flight control systems, are reported in
Hovakimyan et al. (2011); Xargay et al. (2012). A key
feature of the L1 adaptive control theory is that its ar-
chitectures decouple the control loop from the estimation
loop, which allows for employing fast estimation rates
without sacrificing robustness. Furthermore, the versatility
of L1 adaptive control architecture allows for various mod-
ifications to its basic blocks, as observed in Kharisov et al.
(2011); Kharisov and Hovakimyan (2011). The filtering
structure of L1 adaptive controllers allows for development
of systematic methods for robustness/performance tuning,
and also for optimization of the positive invariant set in the
presence of saturation, Li et al. (2013). Similar to Kharisov
et al. (2011); Kharisov and Hovakimyan (2011), but yet a
different and novel modification of the main structure of
L1 adaptive output feedback controller is considered here
to accommodate the disturbance entering at the system
output.

In Section 2 of the paper it is shown that by incorporating
the disturbance at the output into the reference model, the
L1 adaptive control structure can be left unchanged while
preserving the usual transient performance bounds. It is

1 The Heave Lab is a medium scale (900m well) experimental facility
at NTNU, tailor made for testing control strategies for the heave
problem

IFAC Oilfield 2015
May 27-29, 2015

Copyright © 2015, IFAC 113



further shown that rejection of the output disturbance can
be taken care of in the filter design step of L1 adaptive
control using the internal model principle. A systematic
filter design procedure based on LMIs is provided in
Section 3, that requires only one tuning parameter to be
adjusted by the designer. The control design is successfully
applied to the heave problem described above and tested
in the Heave Lab. Experimental results are reported in
Section 4.

Notation. Throughout this paper subscripts n and d
denote the numerator and denominator of SISO trans-
fer functions, respectively. For a signal ξ(t) ∈ R, t ≥
0, its truncated L∞ and L∞ norms are ‖ξt‖L∞ =
sup0≤τ≤t |ξ(τ)|, ‖ξ‖L∞ = supτ≥0 |ξ(τ)|. The L1 gain of
a bounded-input-bounded-output (BIBO) stable proper
SISO system is defined by ‖H(s)‖L1

=
∫∞
0

|h(t)|dt, where
h(t) is the impulse response of H(s). Denoting by u(t) and
y(t) the input and output of system H, respectively, the
bound ‖yt‖L∞ ≤ ‖H(s)‖L1

‖ut‖L∞ will be used frequently.

2. L1 ADAPTIVE CONTROL DESIGN

The main difference between derivations in this part and
the results in Cao and Hovakimyan (2008) is inclusion and
treatment of unmatched periodic disturbances at the plant
output, hence the name L1 adaptive output regulator. This
results in new asymptotic output regulation constraints on
the underlying filter in L1 adaptive control. We consider
systems in the form

y(s) = A(s)(u(s) + d(s)) +Do(s)do(s), (1)

where u(t) ∈ R and y(t) ∈ R are the input and output
of the system, A(s) is a strictly proper tranfer function,
Do(s) is a strictly proper and stable transfer function, and
d(s) and do(s) are disturbances at the input and output,
respectively. The system is the same as the one in Cao
and Hovakimyan (2008), with the exception of the output
disturbance term Do(s)do(s), which satisfies the following
assumption.

Assumption 1. There exists a constant γd > 0 such that

|do(t)| ≤ γd, |ḋo(t)| ≤ γd. (2)

Furthermore, do(s) has known structure defined by the
disturbance generating polynomial dn(s). That is,

dn(s)do(s) = d0(0, s), (3)

where d0(0, s) is a polynomial in s arising from initial

conditions of the disturbance do(t) (do(0), ḋo(0), d̈o(0),
etc.).

In other words, dn(s) contains as zeros the poles of do(s).
Please note that conditions (2) and (3) imply that the
polynomial dn(s) can only have zeros in the left-half plane
or simple zeros on the imaginary axis. In particular, in the
application to Managed Pressure Drilling we are interested
in the case when (3) describes a harmonic oscillator, heave
disturbance oscillations, with frequencies determined by
dn(s) and initial conditions by d0(0, s).

d(s) is the Laplace transform of unknown disturbances
matched with plant input, d(t) = f(t, y(t)), where f is
an unknown map that satisfies the following assumptions
Cao and Hovakimyan (2008).

Assumption 2. There exist constants L > 0 and L0 > 0
such that for all y1, y2 ∈ R and t ∈ R+,

|f(t, y1)− f(t, y2)| ≤L|y1 − y2|, (4)

|f(t, y)| ≤L|y|+ L0. (5)

Assumption 3. There exist constants L1 > 0, L2 > 0 and
L3 > 0 such that for all t ∈ R+,

|ḋ(t)| ≤ L1|ẏ(t)|+ L2|y(t)|+ L3. (6)

The control objective is the same as in Cao and Ho-
vakimyan (2008), namely to design an adaptive output
feedback controller that makes the output y(t) track the
output of a reference model, that is

y(s) ≈ M(s)r(s), (7)

where r(t) ∈ R is a bounded and continuous reference
signal. As in Cao and Hovakimyan (2008), we consider
M(s) = m/(s + m) with m > 0. Following Cao and
Hovakimyan (2008), we rewrite system (1) as

y(s) =M(s)(u(s) + σ(s)), (8)

σ(s) =
(A(s)−M(s))u(s) +A(s)d(s) +Do(s)do(s)

M(s)
,(9)

and define the closed-loop reference model

yref (s) =M(s)(uref (s) + σref (s)), (10)

σref (s) =
(A(s)−M(s))uref (s) +A(s)dref (s) +Do(s)do(s)

M(s)
,

uref (s) =C(s)(r(s)− σref (s)), (11)

where dref (t) = f(t, yref (t)) and

C(s) = Cn(s)/Cd(s) = (Cd(s)−C0(s)dn(s))/Cd(s). (12)

Remark 4. Notice that the reference system (10)-(11) is
not implementable, since it depends on the unknown
system uncertainties and disturbances, and it is used only
for analysis purposes.

The polynomials C0(s) and Cd(s) must be designed such
that C(s) is strictly proper,

H(s) =
A(s)M(s)

C(s)A(s) + (1− C(s))M(s)
(13)

is BIBO stable and

‖G(s)‖L1
L ≤ 1, G(s) = H(s)(1− C(s)). (14)

The problem of designing C(s) is handled in Section 3.
Enforcing the structure (12) on C(s), ensures that the
disturbance at the output is attenuated asymptotically
with time.

Lemma 5. Consider the closed-loop reference model in
(10)–(11), and suppose the filter C(s) has structure (12)
and satisfies (13). Then the effect of do(s) on the closed-
loop reference model output yref is rejected asymptotically
with time.

Proof. is given in Mahdianfar et al. (2015).

Consider the L1 adaptive controller from Cao and Hov-
akimyan (2008), given as

˙̂y =−mŷ(t) +m(u(t) + σ̂(t)), ŷ(0) = 0, (15)

˙̂σ =ΓcProj(σ̂(τ),−mP (ŷ(t)− y(t))), σ̂(0) = 0, (16)

u(s) =C(s)(r(s)− σ̂(s)), (17)
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wherem is the time constant of the desired reference model
(7), P > 0, Γc > 0 and the projection operator confines
σ̂(t) to |σ̂(t)| ≤ ∆. While P is arbitrary, Γc and ∆ must
be chosen sufficiently large. Block Diagram of the system
and controller is shown in Figure 2. The following result
holds under the stated conditions.

Theorem 6. Signals of the closed loop consisting of system
(1) and controller (15)–(17) satisfy

‖ŷ − y‖L∞ ≤ γ0, (18)

‖y − yref‖L∞ ≤ γ1, (19)

‖u− uref‖L∞ ≤ γ2, (20)

where γ0, γ1 and γ2 are constants inversely proportional to√
Γc.

Proof. The proof follows the steps of the proof of Theorem
1 in Cao and Hovakimyan (2008) and can be found in
Mahdianfar et al. (2015).

Remark 7. Precise conditions on Γc and ∆ are provided
in Mahdianfar et al. (2015). They are different from the
ones provided in Cao and Hovakimyan (2008) due to the
disturbance entering at the output.

Remark 8. The bounds (18)–(20) are qualitatively the
same as in standard L1 adaptive control. Notice that (19)
implies in addition that the controller attenuates the effect
of the output disturbance in view of Lemma 4.

Control law with 
regulation constraints

Uncertain plant

projection adaptation law

Reference
 command measured output

Output Predictor

L1 Adaptive Output 
Regulator

u

-

di
do

estimated output

y(t)

)(ˆ tσ

)(tr

)(ˆ ty

Fig. 2. L1 Adaptive Output Regulator.

3. SYSTEMATIC FILTER DESIGN

Linear matrix inequalities (LMIs) have been used for
design and analysis of robust adaptive controllers in Li
et al. (2008); Peaucellea and Fradkov (2008); Peaucelle
et al. (2009). In the present work, the choice of C(s)
is critical to stability and performance of the regulator
presented in the previous section. Here, we present a design
methodology based on LMIs for selecting C(s) to meet the
design objectives. To this end, insert

u(s) = KI(s)v(s) (21)

into (1), where KI(s) is an internal model compensator
that will be specified shortly. Disregarding the disturbance
at the output, Do(s)do(s), which has no bearing on what
follows, we get

y(s) = A(s)(KI(s)v(s) + d(s)). (22)

We now seek to find the compensator

v(s) = −K(s)y(s) (23)

that minimizes the peak-to-peak gain from d(s) to y(s).
Inserting (23) into (22) we get

y(s) =
A(s)

1 +A(s)KI(s)K(s)
d(s). (24)

So, we want to find the K(s) that minimizes∥∥∥ A(s)

1 +A(s)KI(s)K(s)

∥∥∥
L1

. (25)

The solution to this optimal control problem leads to
irrational compensators Dahleh and Pearson (1987), but
sub-optimal rational compensators can be found along the
lines of Boyd et al. (1994); Abedor et al. (1998); Scherer
et al. (1997). We will use the procedure for computing
K(s) and ζ, the upper bound on the norm in (25), provided
in Scherer et al. (1997). Let

ẋ=Ax+B1v +B2d, (26)

y =Cx, (27)

be a minimal realization of (22) and

ẋcl =Axcl + Bd, (28)

y = Cxcl, (29)

a minimal realization of the closed-loop (24). From Scherer

et al. (1997), we have that for fixed λ > 0, if X, Y , Â, B̂,

Ĉ, D̂, µ, ζ satisfy the LMIsλX λI 0 ∗
λI λY 0 ∗
0 0 (ζ − µ)I ∗

CX C 0 ζI

 > 0 (30)

(
AX+XAT+B1Ĉ+(B1Ĉ)T+λX ∗ ∗

Â+(A+B1D̂C)T+λI ATY+Y A+B̂C+(B̂C)T+λY ∗
BT

2 Y B2 −µI

)
(31)

then the closed-loop system is stable and∥∥∥ A(s)

1 +A(s)KI(s)K(s)

∥∥∥
L1

≤ ζ(λ). (32)

To optimize the bound, a line search over λ > 0 can be
carried out to obtain

ζ∗ = inf
λ>0

ζ(λ). (33)

After solving the LMIs, the controller construction pro-
ceeds by finding nonsingular matrices M and N such that

MN T = I −XY. (34)

A state-space realization of K(s) is then given by

DK = D̂ (35)

CK = (Ĉ −DKCX)M−T (36)

BK = N−1(B̂ − Y B1DK) (37)

AK =N−1
(
Â−NBKCX − Y B1CKMT (38)

−Y (A+B1DKC)X
)
M−T . (39)

The following result specifies the internal model com-
pentsator KI(s) and provides the filter C(s) of the pre-
vious section with the desired properties.
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Theorem 9. Let KI(s) be a proper transfer function with
poles given by the polynomial dn(s) (i.e. KId(s) = dn(s)).
If

A(s)

1 +A(s)KI(s)K(s)
(40)

is BIBO stable with∥∥∥ A(s)

1 +A(s)KI(s)K(s)

∥∥∥
L1

< ζ(λ), (41)

then the filter

C(s) =
KI(s)K(s)M(s)

1 +KI(s)K(s)M(s)
(42)

has the form (12), renders H(s) as defined in (13) BIBO
stable, and ensures ‖G(s)‖L1L ≤ 1 for G(s) as defined in
(14), with L = 1/ζ(λ).

Proof. is given in Mahdianfar et al. (2015).

Remark 10. The narrow margins between pore pressure
and fracture gradient in offshore MPD operations leave
little margin for safe drilling and completion. In MPD
systems, there are standard limits for pressure regulation
accuracy. These constraints are expressed in time-domain
and therefore application of the proposed method for
designing a controller to minimize error signal peak value
subject to a peak value constraint on the control is very
well motivated.

4. APPLICATION TO THE HEAVE PROBLEM IN
MANAGED PRESSURE DRILLING

4.1 The Heave Lab

In this section, the theory from the previous sections is
applied to the heave problem described in the introduction.
A medium scale lab has been built at NTNU, tailor-
made for testing control strategies for the heave problem.
Figure 3 shows the photograph of the lab. It consists
of a choke, a back-pressure pump, 900 meters copper
pipe, a piston connected to an AC motor, 12 pressure
transmitters, 3 flow-meters, DAQ cards and a computer.
This experimental setup represents a well with MPD
equipment as shown in Figure 1. The copper pipe models
the annular volume of the well around the drill pipe. Since
there is no flow through the drill pipe during connections,
the drill pipe and mud pump are not represented in
the lab facility. The bottom-hole-assembly is represented
by a piston, which is controlled by the AC motor to
generate heave-like disturbances. The piston moves inside
a transparent plastic pipe connected to one end of the
copper pipe. The choke and the back-pressure pump are
connected at the other end of the copper pipe. Figure 4
shows a schematic of the lab.

4.2 System Identification

A model for the heave lab in the form (1) is developed
using standard system identification techniques in MAT-
LAB Ljung (2013). The inputs are choke opening, u(t),
and piston velocity, v(t), while the output is down-hole
pressure, y(t) (pressure transmitter P2 in Figure 4). The
transfer functions from choke and piston velocity to down-
hole pressure are identified as

A(s) =
0.15s− 0.29

0.67s2 + 0.8s+ 1
(43)

3.3 components 15

Figure 2: Lab with central measurements and components marked

Figure 3: Locker with Control Buttons for the Backpressure Pump
The pump is currently turned on and is running at full capacity,
100 %

Fig. 3. MPD Heave Lab Albert et al. (2014).

Fig. 4. MPD Heave Lab schematic Albert et al. (2014).

and

D(s) = −1.15s+ 3.39

1.31s+ 1
, (44)

respectively. Two data sets were used for system identifi-
cation and verification. Fit to estimation and verification
data are 73.11% and 61.8% in terms of normalized root
mean square error (NRMSE) measure, respectively. Time
domain response and comparison with the identified model
is shown in Figure 5. Choke input and piston velocity
spectrum of the identification data are computed using
FFT. They indicate the model is accurate for the frequency
interval 0 − 0.5Hz, which is above our practical require-
ments. Choke input frequency spectrum, used for system
identification, is illustrated in Figure 6.
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4.3 Control Design

Wave elevation of regular waves in deep water can be
modeled by a single sinusoid Perez (2005). Therefore, the
speed of the drill string v(t) can be considered to be the
output of a harmonic oscillator with frequency ω. A more
thorough analysis of the effect of sea waves on floating
drilling rigs is done in Nikoofard et al. (2013, 2014).
Please note that during connection operations drilling
is stopped and therefore the angular velocity of drill-
string is zero. Robust adaptive regulators are designed
and tested successfully for the scenarios of pure harmonic
heave disturbance with periods t = 3, 5, 10s and a constant
offset, that is

v(t) = c1 + c2 sin(ωt+ φ) (45)

for some constants c1, c2 and φ. For these cases, the output
disturbance in (1) takes the form

Do(s) =− 1

1.31s+ 1
, (46)

do(s) =
1.15s+ 3.39

s(s2 + ω2)
(47)

for ω ∈ {2π/3, 2π/5, 2π/10}. One of the constraints im-
posed on Do(s) is strict properness, which is the reason
why the zero of D(s) in (44) is placed in do(s) rather
than Do(s) in the definitions (46)–(47). This is possible
since the resulting do(s) has a well defined Laplace inverse
which is bounded. The denominator of do(s), which comes
from the form of v(t) in (45), defines the disturbance
generating polynomial to be included in the filter design
as dn(s) = s(s2 + ω2). The reference model is selected as
M(s) = m

s+m , m = 0.2, so that it gives the desired settling
time of about 20 seconds. The desired adaptation rate, pro-
jection bound, and projection tolerance bound are set at
Γc = 1200 and ∆ = 50, ε = 0.1 respectively. Based on the
chosen reference model M(s), and the identified transfer
function A(s) from (43), using the filter design procedure
in Section 3 the filters are derived. LMIs (30)-(31) are
solved using YALMIP Lofberg (2004) as the interface and
SeDuMi 1.3 Sturm (1999) as the solver. To optimize the
bound in (32), a line search over λ is performed between
[0.03, 1.5], 50 steps, LMIs (30)-(31) are solved and the
corresponding ζ values are computed. The Bode plots of
filters are shown in Figure 7.
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Fig. 7. Bode plots of designed filters.

4.4 Experimental Results

The set-point for the desired bottom-hole pressure is
r = 5 bar. For the scenarios of heave disturbance with
5, and 10 seconds period, the bottom-hole pressure, and
the choke control signals are illustrated in Figures 8, and
9 respectively. In these experiments at about t = 75s and
t = 120s the closed-loop control is switched to constant
choke opening, and as a result surge and swab pressures
are not compensated afterwards. Experimental results for
the case of heave disturbance with period of 3 seconds, the
most challenging scenario, are shown in Figure 10. Clearly
the proposed regulator has been successful in regulating
the output to the desired set-point and attenuating the
effect of heave disturbance.
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Fig. 8. Bottom-hole pressure and choke opening, heave
disturbance with 5 seconds period.
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Fig. 9. Bottom-hole pressure and choke opening, heave
disturbance with 10 seconds period.

5. CONCLUSIONS

In this paper, a control system design approach is proposed
and applied for disturbance attenuation and set-point reg-
ulation in the so-called heave problem in oil well drilling.
Furthermore it is tested in a medium size experimental
test facility. The results demonstrate that the proposed
regulator efficiently regulates the down-hole pressure to
the desired set-point, with significant attenuation of pe-
riodic disturbances. The control system methodology is a
modification to L1 adaptive control that allows for dis-
turbances entering at the plant output. By incorporating
the disturbance at the output into the reference model,
it is shown that the L1 adaptive control structure can be
left unchanged while the original transient performance
bounds are preserved. It is further shown that rejection of
the output disturbance can be taken care of entirely in the
filter design step of L1 adaptive control using the inter-
nal model principle. A systematic filter design procedure
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Fig. 10. Bottom-hole pressure and choke opening, heave
disturbance with 3 seconds period.

based on LMIs is provided, that requires only one tuning
parameter to be adjusted by the designer.
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