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Abstract: To maximize the daily production from an oil and gas field, mathematical opti-
mization may be used to find the optimal operating point. When optimizing, a model of the
system is used to predict the outcome for different operating points. The model is, however,
subject to uncertainty, e.g., the gas oil ratio estimates may be imprecise. The uncertainty is
often ignored, and what is known as the expected value problem is solved. Because of inherent
uncertainties, there is a great chance that constraints will be violated when implemented. In
this paper, we formulate the production optimization problem as a stochastic programming
problem, and use Conditional Value at Risk to handle the constraints. This allows us to control
the conservativeness of the solution in an efficient manner.
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1. INTRODUCTION

During exploitation of hydrocarbon resources, a wide
range of decisions are made on how to produce the field.
They range from choosing equipment to deciding on choke
positions and gas lift rates for the different wells. These
decisions will affect the production and profitability of the
field, and there is a growing interest in using optimization
tools for decision support to increase the profitability.
The term Real-Time Optimization (RTO) is used in the
oil and gas industry about processes which include some
sort of mathematical optimization to maximize profit. An
overview of RTO within oil and gas production systems
can be found in Bieker et al. (2006).

Since the production system and reservoir is a complex
system, it is difficult to optimize everything simultane-
ously. However, the process contains parts with highly
different time constants; in particular the reservoir evolves
slowly compared to the dynamics of valves and pipelines.
This allows for a hierarchical treatment when controlling
the process. In Foss and Jensen (2011), this hierarchy is
divided into the four layers Asset Management, Reservoir
Management, Production Optimization, and Control and
Automation. In this work, we concentrate on production
optimization, however, it is closely linked to the other lay-
ers of the hierarchy, and especially reservoir management.

In most of the reported industry implementations, produc-
tion optimization is done without considering the uncer-
tainty of model parameters. Unfortunately, the quantities
used in such an optimization problem are seldom known
precisely. For instance, the gas oil ratio (GOR) and water
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cut (WC) of wells can be quite uncertain, due to sparse
well tests, changing operating conditions and measurement
errors. Although they are known to be uncertain, the
optimization problem would typically be solved using the
most likely GOR and WC, which could be the values
obtained from the last well test. This leads to what is
known as the expected value solution. This is an intuitive
approach, however, it neglects the inherent uncertainty of
the problem. It was pointed out in Bieker et al. (2007a);
“The handling of model uncertainty is a key challenge for
the success of RTO”.

When introducing uncertainty in the optimization prob-
lem, the objective function can be expressed as a function
of the decision variables and the unknown parameters. We
write J(x, ω), where x is the vector of decision variables
and ω is the vector of unknown parameters. ω is stochastic,
hence the objective function is also stochastic. Thus, for a
given decision x, we can not determine the exact outcome,
because it is also dependent on the unknown parameters ω.
For an unconstrained problem, the expected value solution
can be obtained by solving

min
x
J(x,E[ω]) (1)

where E[ω] denotes the expected value of ω. We denote
this as the deterministic problem. However, this approach
basically ignores the uncertainty in the parameters. What
we are really interested in, is solving the stochastic prob-
lem, which can be expressed as

min
x

E[J(x, ω)] (2)

when using a risk neutral preference. Note that in general,
E[J(x, ω)] 6= J(x,E[ω]).

The stochastic problem is significantly harder to solve than
the deterministic problem, since evaluating the objective
function involves multidimensional integration. As a con-
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sequence of this, approximate algorithms are often used,
for instance by sampling ω, we can approximate

E[J(x, ω)] ≈ 1

N

N∑
i=1

J(x, ωi) (3)

where ωi represents different realizations, all with the
same probability. This is known as the sample average
approximation (SAA).

One of the challenges when handling the uncertainty, is
the need to describe, or actually model, the uncertainty. It
is no longer enough to provide a reasonable estimate of the
parameters, it must also be specified “how certain” they
are. One way of doing this is to provide the probability
distribution function of the parameters, however, they
are seldom known precisely. There exists techniques for
estimating the uncertainty. We will assume that such a
technique is available since the focus of this work is the
optimization problem. In Elgsæter et al. (2008), boot-
strapping is used for obtaining parameter and uncertainty
estimates.

We first give an overview of previous work in Section 2,
before focussing on stochastic programming in Section 3.
We then introduce a case study with results in Section 4
and 5, before a discussion and conclusion in Section 6.

2. PREVIOUS WORK

As mentioned, most of the earlier work on RTO ignore
uncertainty, and thus solve what is known as the expected
value problem. There are, however, a few publications
treating the uncertainty explicitly, particularly in the
reservoir management domain.

2.1 Work on reservoir management under uncertainty

In Aitokhuehi and Durlofsky (2005), a small number of
geological realizations is used to optimize the average
recovery factor in closed loop reservoir optimization. A
risk term is also used in the objective.

van Essen et al. (2009) optimize the expected NPV by
controlling the water injection. An ensemble of 100 re-
alizations is used for the test case of 8 injection and 4
production wells, showing that this approach significantly
improves the average NPV compared to approaches using
only a single reservoir model.

Chen et al. (2009) combine an ensemble-based optimiza-
tion scheme with the ensemble Kalman filter for closed
loop reservoir optimization. The method uses the ensem-
ble for estimating the gradient, eliminating the need for
adjoints and thus any reservoir simulator can be used. An
example where the expected NPV is optimized for a water
flooding scenario is given.

In Alhuthali et al. (2010), waterflooding is optimized by
minimizing the expected deviation from desired arrival
time at the producers over a set of realizations. An
approach minimizing the maximum deviation is also used.
Chen et al. (2011) use a robust scheme to combine short
and long term optimization. The long term solution is
obtained by optimizing the expected NPV for an ensemble
of reservoir realizations, and is used as a constraint in the

short term problem. The short term problem involves a
more heavily discounted expected NPV over a short time
horizon, with a constraint limiting the decrease in the long
term expected NPV. Operating constraints are included in
a robust fashion, so all constraints must be satisfied for all
realizations.

Wang et al. (2012) optimize well placement under un-
certainty, using retrospective optimization to limit the
number of realizations needed. The number of realizations
are gradually increased in the algorithm. Li et al. (2012)
optimize both the placement and operation of wells using
simultaneous perturbation stochastic approximation to re-
duce the cost associated with gradient evaluation.

Capolei et al. (2013) compare the solution from a stochas-
tic formulation to the certainty equivalence solution, when
the model ensembles are updated based on measurements
from a true model. They conclude that when updating
the model ensemble, the certainty equivalence approach
is superior to the stochastic solution. The comparison is,
however, only done for 1 or 2 realizations, and not all of
the realizations. A different choice of the true model could
thus result in another conclusion.

Dilib and Jackson (2013) use an approach where the
parameters of a closed loop controller is optimized to
maximize the NPV of the nominal case, and their results
suggest this can reduce the effect of uncertainty. The test
case is, however, quite simple, and their conclusion can not
be generalized.

2.2 Work on short term production optimization under
uncertainty

Although there exists numerous publications for reservoir
management under uncertainty, there are only a few pub-
lished papers on short term production optimization under
uncertainty. In Elgsæter et al. (2010), a structured ap-
proach for changing the setpoint when there is uncertainty
is proposed. The uncertainty is, however, not considered
in the optimization itself, only to assess the solution from
the optimization. To our knowledge, the only publication
where the uncertainty is explicitly handled in the opti-
mization problem is by Bieker et al. (2007b). They pro-
pose to formulate the optimization problem as a priority
list between the wells. This list represents an operational
strategy the operator should follow, and whenever there
is spare capacity or production must be decreased, he
should follow the list. Assuming that all wells are closed,
the highest priority well should be opened until it is fully
open, or a constraint is hit. If there is still more capacity
left, the operator should open the second highest priority
well and so on.

3. STOCHASTIC PROGRAMMING

When optimizing systems containing uncertainty, it is
often natural to use the expected value of the objective
function by averaging over the different realizations. Often
the system will also be subject to some limitations, which
are modeled as constraints in the optimization problem.
For the deterministic problem, they are usually expressed
as c(x) ≤ 0, but if the constraints are uncertain, they
will also depend on the unknown parameters ω. There are
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different ways of handling the constraints, one is to use
the expected value as in the objective, i.e. E[c(x, ω)] ≤ 0.
This means the constraint is satisfied on average, but this
is rarely satisfactory. A stricter approach when using SAA,
is requiring all realizations to satisfy the constraint

c(x, ωi) ≤ 0 ∀ i ∈ {1 . . . N} (4)
This approach is used in Chen et al. (2011), and has a
clear resemblance to robust optimization. However, these
constraints can also make the solution overly conservative.

In stochastic programming, chance constraints or prob-
abilistic constraints are often used, formulating the con-
straint in a probabilistic way

Pr (c(x, ω) ≤ 0) ≥ η (5)

where η is a parameter, defining the confidence level of
the constraint being satisfied. A typical value for η is 90%.
The chance constraint is closely related to the value-at-risk
(VaR), defined as

VaRη(z) = inf {t | Pr(z ≤ t) ≥ η} (6)

which implies that the chance constraint in (5) is equiva-
lent to

VaRη(c(x, ω)) ≤ 0 (7)
When the chance constraint is linear and the uncertain
parameters are normally distributed, the chance constraint
can be converted into a second-order cone constraint. That
is a convex deterministic problem, but unfortunately the
convexity property does not hold in general for nonlinear
problems.

We can, however, construct a convex conservative estimate
of (5), following the derivation in (Shapiro et al., 2014,
section 6.2.4). Introducing the step function

u(z) =

{
1, if z ≥ 0

0, otherwise
(8)

For a random variable Z we have that

Pr (Z > 0) = E [u(Z)] (9)

so (5) can be written as

E [u(c(x, ω))] ≤ 1− η (10)

The step-function u is clearly a nonconvex function, and
we are interested in a convex overestimate of it. We
introduce the nondecreasing, nonnegative convex function
ψ : R→ R such that ψ(z) ≥ u(z) ∀ z ∈ R. We then have

E (ψ(Z)) ≥ E [u(Z)] = Pr(Z > 0) (11)

Also note that the step function is invariant to a positive
scaling of the argument, u(tz) = u(z) ∀ t > 0, so that

inf
t>0

E (ψ(tZ)) ≥ E [u(Z)] = Pr(Z > 0) (12)

and we obtain a conservative approximation of the con-
straint by writing

inf
t>0

E (ψ(tZ)) ≤ 1− η (13)

It can be shown that ψ(z) = [1 + z]+ where [z]+ =
max(0, z), is the best choice for ψ, and then (13) is
equivalent to (Shapiro et al., 2014)

inf
t∈R

{
t+

1

1− η
E [c(x, ω)− t]+

}
≤ 0 (14)

where the expression

inf
t∈R

{
t+

1

1− η
E [Z − t]+

}
(15)

is denoted as the Conditional Value at Risk (CVaR) for Z
at level η. The use of CVaR for approximating chance con-
straints is attributed to Rockafellar and Uryasev (2000).

It can also be shown that the minimum value is t∗ =
VaRη(Z), and for a continuous random variable Z

CVaRη(Z) = E [Z|Z ≥ VaRη(Z)] (16)

A very nice property of CVaR is that it can easily be
approximated by SAA, and retains convexity properties.
That is, if c(x, ω) is convex for any ω, the CVaR constraint
is also convex. By sampling of ω, we can add the constraint

t+
1

(1− η)N

N∑
i=1

[c(x, ωi)− t]+ ≤ 0 (17)

and the non-smooth term can be avoided by introducing

zi ≥ c(x, ωi)− t, zi ≥ 0 (18)

to obtain the constraint set

t+
1

(1− η)N

N∑
i=1

zi ≤ 0 (19)

c(x, ωi)− t ≤ zi, zi ≥ 0 (20)

Although CVaR can be seen as a convex approximation of
VaR, using CVaR in itself to formulate the probabalistic
constraint is reasonable. Because of the definition of VaR,
it is insensitive to the outcome of the 1 − η worst case
realizations. Furthermore, VaR is not a coherent measure
of risk (Artzner et al., 1999), in contrast to CVaR. For
instance, VaR of the sum of two variables can be greater
than the sum of VaR of the individual variables.

In this paper we propose to use CVaR as a means to in-
clude uncertainty in the production optimization problem.

4. CASE STUDY

To illustrate the use of CVaR for constraint handling,
we provide a case study with eight gas lifted platform
wells. The objective is to maximize the oil production
by adjusting the gas lift rates and wellhead pressure
of each well. The production is initially limited by the
gas processing capacity, however, later an example with
both gas and water processing capacity limitations is
introduced.

The GOR and WC of each well are considered uncer-
tain. There are clearly other sources of uncertainty in the
model, however, this work focuses on the above mentioned
uncertainties. The method is applicable as long as real-
izations can be generated, representing the uncertainty.
Well Performance Curves (WPC) are obtained using a
steady-state multiphase flow simulator called MARLIM
(Petrobras inhouse simulator) by varying the GOR and
WC of each well. For all the wells, realizations are obtained
by sampling from a normal distribution with the mean
equal to the latest well test, and a standard deviation of
5 for GOR and 1 for WC. The WPC are obtained for a
set of different wellhead pressures and gas lift rates, that
is, we obtain one curve for varying wellhead pressure, and
another for varying gas lift rate. The curves are linearly
interpolated in the optimization using Special Ordered
Sets of type 2 (SOS2). SOS2 is an ordered set of variables
where at most 2 of them can be non-zero simultaneously,
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Fig. 1. Showing 20 different realizations for a single well

Table 1. Sets used in optimization model

I set of wells
S set of realizations
A(i) set of breakpoints when varying wellhead pressure for well i
B(i) set of breakpoints when varying gas lift for well i

and if there are 2, they must be consecutive variables.
SOS2 is implemented by the use of binary variables.

In Figure 1 we show 20 realizations of WPC for a single
well. Each of the black lines represents a realization,
obtained from sampling the GOR and WC probability
distributions. The red line represents the WPC using the
mean of GOR and WC. The denomination in all figures
are standard cubic meters per day.

4.1 Model description

In the following we give a detailed description of the
model. In general, variables are in lowercase letters, while
parameters are denoted by capital or Greek letters. Sub-
script is used for denoting index sets, and superscript for
description of variables or parameters. The sets are defined
in Table 1.

The binary variables ygli , y
open
i are used to determine if

well i is open or closed, and if gas lift is applied. Note that

ygli ≤ y
open
i ∀ i ∈ I (21)

The piecewise linear interpolation is done using λpwhi,a , λgli,b,
which are SOS2 variables that must satisfy∑

a∈A(i)

λpwhi,a = yopeni − ygli ∀ i ∈ I (22)

∑
b∈B(i)

λgli,b = ygli ∀ i ∈ I (23)

0 ≤ λpwhi,a ≤ 1 ∀ i ∈ I, a ∈ A(i) (24)

0 ≤ λgli,b ≤ 1 ∀ i ∈ I, b ∈ B(i) (25)

The simulator provides the datapoints. Pwhi,a is the well-
head pressure at the sample points, and Qoi,a,s is the cor-
responding oil rate for all different realizations. Similarly,

Qgli,b is the sample points for gas lift rates, while Qoi,b,s
are oil rates. We also include that a choke controlled well
can have a preset nonzero gas lift rate to ensure stability;

Qgl,whctrli , and the wellhead pressure when using gas lift

is set to P gli . The wellhead pressure can then be expressed
as

pwhi =
∑

a∈A(i)

λpwhi,a Pwhi,a + ygli P
gl
i ∀ i ∈ I (26)

and the gas lift rate as

qgli =
∑
b∈B(i)

λgli,bQ
gl
i,b + (yopeni − ygli )Qgl,whctrli ∀ i ∈ I (27)

while the oil flow rate of each well for the different
realizations is expressed as

qoi,s =
∑

a∈A(i)

λpwhi,a Qoi,a,s +
∑
b∈B(i)

λgli,bQ
o
i,b,s ∀ i ∈ I, s ∈ S

(28)
The gas rate and water rate from the reservoir of each
well can then be expressed in terms of the GOR and WC
of each well for each realization, GORi,s and WCi,s as

qgi,s = GORi,sq
o
i,s ∀ i ∈ I, s ∈ S (29)

qwi,s =
WCi,s

1−WCi,s
qoi,s ∀ i ∈ I, s ∈ S (30)

We use box constraints on the control input; wellhead

pressure is constrained by Pwhi , P
wh

i , while gas lift rate is

constrained by Qgl
i
, Q

gl

i . Because wellhead is constrained

to P gli when using gas lift, and similar for the gas lift when
adjusting wellhead pressure, the constraints are formulated
as

ygli P
gl
i + (yopeni − ygli )Pwhi ≤ pwhi ∀ i ∈ I (31)

ygli P
gl
i + (yopeni − ygli )P

wh

i ≥ pwhi ∀ i ∈ I (32)

ygli Q
gl

i
+ (yopeni − ygli )Qgl,whctrli ≤ qgli ∀ i ∈ I (33)

ygli Q
gl

i + (yopeni − ygli )Qgl,whctrli ≥ qgli ∀ i ∈ I (34)

Robust constraints can easily be added, for instance to
make the water handling capacity constraint hold for all
realizations ∑

i∈I
qwi,s ≤ Cw ∀ s ∈ S (35)

This set constraint can, however, be overly conservative.
By using CVaR we obtain a probabilistic constraint, and
we can control the conservativeness by varying the confi-
dence parameter η. In the following, with a slightly simpler
notation, we use α = 1−η. We introduce the new variables
tw and zws ≥ 0 ∀ s ∈ S, and the CVaR constraint for the
water handling capacity can be expressed as∑

i∈I
qwi,s − tw ≤ zws ∀ s ∈ S (36)

tw +
1

αwN

∑
s∈S

zws ≤ Cw (37)

and similar for gas handling capacity, introduce tg and
zgs ≥ 0 ∀ s ∈ S, and the constraints∑

i∈I

(
qgi,s + qgli

)
− tg ≤ zgs ∀ s ∈ S (38)

tg +
1

αgN

∑
s∈S

zgs ≤ Cg (39)

Finally, we use the expected total oil production as objec-
tive
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Fig. 2. Expected value solution

J =
1

N

∑
s∈S

∑
i∈I

qoi,s (40)

where N is the number of realizations.

5. RESULTS

The model is implemented using MATLAB and YALMIP
(Löfberg, 2004), while CPLEX is used for solving the
optimization problem.

We first solve the expected value problem to obtain the
setpoint for all the wells in the gas capacity constrained
case. This setpoint is then used for an ensemble of 10 000
realizations, to evaluate the setpoint. This evaluation is
also done by linearly interpolating between the samples
obtained from MARLIM. In Figure 2, we can see the
histogram for the total oil and total gas using this solution.
The red line represent the constraint on gas processing
capacity. As expected, in roughly 50% of the realizations,
the constraint is violated.

By introducing the CVaR formulation, we can control how
restrictive the constraint should be. In all the stochastic
problems solved, we use an ensemble of 1 000 when
solving the optimization problem. The setpoint from the
optimization problem is then evaluated on the ensemble
of 10 000 realizations we used for evaluating the expected
value solution. In Figure 3, we have used αg = 0.1. We see
that we have obtained a conservative solution, which is far
less likely of violating the constraint. By setting αg = 0.01,
we can obtain a more conservative solution. The shape of
the histogram in this case is very similar to previous ones,
therefore we only give the expected oil production and
number of violated constraints in Table 2.

Fig. 3. Stochastic solution, αg = 0.1

Table 2. Summary of gas processing capacity
constrained case study

mean total oil violated constraints

expected value solution 3222 5011

stochastic α = 0.1 3077 416

stochastic α = 0.01 3005 47

robust solution 2962 7

An alternative to the CVaR formulation is using the robust
formulation in (35). We solve this problem using the same
ensemble as for the stochastic problems, and evaluate it
on the 10 000 realization ensemble. The key numbers are
given in Table 2. Some of the realizations are still violated.
This is because the optimization is done with a different
ensemble.

The CVaR formulation can handle multiple constraints. If
two constraints are to hold jointly with probability 1− α,
this can be handled by treating them individually using
1 − α = (1 − α1)(1 − α2). This can, however, result in
a very conservative constraint when the constraints are
correlated. In Figure 4, we have used a constraint on both
the gas and water processing capacity.

6. DISCUSSION AND CONCLUSION

It should be noted that the comparison of mean total oil
rates between the solutions is not completely relevant.
Although the expected value solution yields the highest
value, it violates the constraint for 50% of the realizations.
This means the operator in these cases can not implement
the solution, and thus simply needs to disregard it. This
supports the use of CVaR. For safety critical operations,
however, a robust approach could be better suited.

Also note that since we are interpolating between the
samples obtained from MARLIM, the results are only
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Fig. 4. Stochastic solution, αg = αw = 0.05

valid for the linearly interpolated curves. Because of the
concave shape of the WPC, the linear interpolation is
an underestimate of the MARLIM model. This means
more realizations will break the constraints for the true
MARLIM simulator.

We have presented how a production optimization problem
containing uncertainty can be formulated, and especially
how constraints can be handled using CVaR. Although
this is not new within the stochastic programming com-
munity, it is to the authors knowledge, the first time it
is applied to the production optimization problem. The
solution obtained is a more conservative solution than the
expected value solution, but less conservative than the
robust formulation. More importantly, CVaR provides a
means to control how conservative the solution should be
by adjusting α.
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