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Abstract: In remote operation of offshore platforms, real time control systems must be well
maintained for efficient and safe operations. Early detection of control and equipment perfor-
mance degradation is critical and is the foundation for implementing higher level integrated
optimization. Poor control performance is usually the result of undetected deterioration in
control valves, inadequate performance monitoring, and poor tuning in the controllers. In this
work, data-driven approaches to monitoring control performance are applied to an offshore plat-
form. The minimum variance control benchmark for single loops and the covariance benchmark
for multi-loops are used to detect deteriorated control variables. The covariance benchmark is
used to determine the directions with significantly worse performance versus the benchmark.
To detect valve stiction, the Savitzky-Golay smoothing filter is combined with a curve fitting
method. The Savitzky-Golay filter has the advantage of preserving features of the distribution
such as relative maxima, minima and widths. A stiction index is used to indicate whether a
valve stiction occurred. The OSIsoft PI system is suggested as the implementation platform.
Real-time data can be exchanged between PI and MATLAB via OPC interface.

Keywords: Valve stiction detection; Savitzky-Golay smoothing filter; oil production; control
performance monitoring

1. INTRODUCTION

Control system performance is a critical component of off-
shore platform operations. Control systems must perform
well to attain maximum performance, reliability, regula-
tory compliance, and safety. In the multi-level integrated
optimization hierarchy, real time control systems work at
the fastest time scale (Foss and Jensen (2011)), which are
the best place for early event detection and are the foun-
dation for implementing higher level advanced decision
environment.

However, even in the well-maintained industrial processes
it is typical that as much as one third of the controller per-
form poorly and only one third of the controllers work near
their optimal settings. Poorly conditioned control systems
consume more energy, wear out equipment faster, lead to
more waste, and make higher level data analysis and de-
cision making unreliable. The objective of control systems
health monitoring is to make sure that controllers perform
at their best capability to maintain the process to the set
point and minimize undesirable disturbances to the oper-
ations of other processes upstream or downstream of the
? Financial support for this work from CiSoft (Center for Interactive
Smart Oilfield Technologies) is gratefully acknowledged.

controller. Early work in the general control performance
monitoring literature can be found in Harris (1989), Huang
et al. (1997), and Qin (1998). Some work in the detection
and diagnosis of oscillations in control loops can be found
in Taha et al. (1996), Miao and Seborg (1999), Thornhill
et al. (2003b) and Thornhill et al. (2003a). Applications of
the control performance monitoring techniques have been
reported. For example, Huang and Shah (1997) assessed
control loop performance on a paper-machine headbox;
Yuan et al. (2009) applied the control performance as-
sessment techniques on a furnace control process; Morris
and Zhang (2009) examined the control performance of a
biotechnological process; Thornhill et al. (1999) reported
application of control loop performance assessment in a
refinery setting.

Although great success of control performance monitoring
has been reported in numerous industries, relative little
work is reported for upstream oil production facilities,
especially for offshore oil platforms. To maintain optimum
control performance for offshore platforms, control loop
performance needs to be monitored remotely and with
high assurance to achieve stringent maintenance and avoid
unnecessary dispatching of maintenance personnel to the
platforms. This can be achieved by diagnosing the root
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Fig. 1. Our Proposed Framework

causes of poor performance, assessing the degree of degra-
dation remotely, and taking appropriate corrective recom-
mendations when poor performance is detected. However,
the detection, diagnosis and resolution of these problems
are difficult, particularly in large and complex offshore
platforms.

The objective of this work is to mitigate this problem
by monitoring the performance of control loops using
data-driven methods. The desirable approach would be to
identify several aspects of poor control performance and
generate a list of problematic loops with diagnoses of the
individual problems so that these can be prioritized and
corrected. The proposed framework is shown in Fig. 1.

The framework includes six steps. The first three steps are
importing, pre-processing and filtering the data. Then a
benchmark, e.g., the minimum variance control benchmark
by Harris (1989), for single loops and the covariance
benchmark for multi-loops are used to detect deteriorated
control variables (Yu and Qin (2008a)). The curve fitting
method proposed by He et al. (2007), which is one type of
pattern recognition, is used to detect valve stiction.

To make them as a user-friendly tool for the engineers, we
suggested the OSIsoft PI system as the implementation
platform. PI system is a process historian, which gath-
ers event-driven data, in real-time, from multiple sources
across the plant and/or enterprise. The reasons for choos-
ing PI are: existing PI infrastructure eliminates additional
capital expense; engineers are familiar with PI system;
there is zero additional capital cost associated with PI; and
there is zero risk. The PI-ACE (advanced computing en-
gine) allows programming of complex calculations, and it
can be used in VB.NET development environment, which
provides the ability to call COM and .NET objects and
a library of user-written functions. Therefore, we suggest-
ed developing PI-ACE module in VB.NET development
environment, and the module has the capability to call a
library of our written MATLAB functions. Real-time data
could be exchanged between PI and MATLAB via OPC
interface with MATLAB OPC toolbox and PI DA/HDA
Server.

This article is organized as follows. The use of a covariance
benchmark to detect deteriorated control variables in
multi-loops is described in Section 2. An integration of
the Savitzky-Golay filter and the curve fitting method to

detect valve stiction is developed in Section 3. Results on
control performance monitoring of an offshore platform are
shown in Section 4. Section 5 concludes the paper.

2. COVARIANCE BENCHMARK FOR MULTI-LOOPS

2.1 Data-driven covariance benchmark

Yu and Qin (2008a) proposed a data-based covariance
benchmark for control performance monitoring. Within
the covariance monitoring scheme, a period of ”golden”
operation data is used as a user-specified benchmark, and
generalized eigenvalue analysis is used to extract the direc-
tions with the degraded control performance against the
benchmark. The confidence intervals for the population
eigenvalues are derived on the basis of their asymptotic
distribution. This can be used to determine the directions
or subspaces with significantly worse performance versus
the benchmark. The covariance-based performance indices
within the isolated worse performance subspaces are then
derived to assess the performance degradation.

Let the benchmark period be I and the monitored period
be II, then the direction along which the largest variance
ratio of the monitored period versus the benchmark period
is:

p = arg max
pT cov(yII)p

pT cov(yI)p
(1)

The solution of the above equation is equivalent to the
following generalized eigenvalue analysis:

cov(yII)p = λcov(yI)p (2)

Where λ is the generalized eigenvalue and p is the cor-
responding eigenvector. The eigenvector corresponding to
the largest generalized eigenvalue λmax represents the di-
rection of the largest variance inflation in the monitored
period against the benchmark period. This direction is
referred to as worst performance direction.

The covariance performance index is defined as:

Iv =
|cov(yII)|
|cov(yI)|

(3)

Where | · | is the determinant.

It can be further derived as:

Iv =
|cov(yII)|
|cov(yI)|

= |Λ| =
q∏

i=1

λi (4)

To examine the significance of population eigenvalues λi
with respect to the threshold value one, the confidence
intervals for the population eigenvalues are derived on the
basis of their asymptotic distribution. The lower bound
and the upper bound of the confidence interval are denoted
as L(λi) and U(λi). If the lower bound L(λi) > 1, then
the control performance of the monitored period is worse
than that of the benchmark period.

2.2 Angle-based contribution for diagnosis

To identify the controlled variables responsible for per-
formance degradation, Yu and Qin (2008b) proposed to
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examine the angle between each individual variable and
the worse performance subspace. The cosine of the angle
is defined as the contribution index. If the index is close
to one, it indicates that the angle approaches zero and
the variable is virtually in the worse subspace. Then the
corresponding controlled variable contributes significantly
to the performance degradation. If the index is zero, the
angle is 90◦ and the corresponding controlled variable has
no contribution to the worse subspace. A threshold value
of the angle 45◦ is selected.

The contribution index is denoted as cos(θk). It is defined
as:

cos(θk) =
‖ êk ‖
‖ ek ‖

= ‖ êk ‖ (5)

Where ek = [0 · · · 0k−1 1 0 · · · 0]
T

is the kth unit vec-
tor and represents the kth controlled variable. êk is the
projection of unit vector ek onto the worse subspace P .

It can be further derived as:

cos(θk) =

∥∥∥∥(P̃T P̃ )
− 1

2 (P̃T ek)(eTk ek)−
1
2

∥∥∥∥ (6)

Where P̃ is the orthonormal basis transformed from P .

The confidence interval could be derived from the asymp-
totic statistics of canonical correlation. Then, if the index
is larger than the upper bound of the interval, the corre-
sponding variable can be determined as a contributor to
the worse subspace.

3. VALVE STICTION DETECTION

Oscillations may be a very drastic form of plant perfor-
mance degradation in the process industries. Oscillation-
s in control loops may be caused either by aggressive
controller tuning, disturbances, or the presence of non-
linearity, such as static friction, dead-zone, and hysteresis.
Valve stiction is the most severe source of oscillations. He
et al. (2007) proposed the use of curve fitting method for
the isolation of oscillations due to sticking valves from
those due to control instability or external disturbances.
Valve stiction tends to cause a triangular type of oscillation
after an integrating element, while aggressive controller
tuning and external oscillating disturbances tend to cause
a sinusoidal wave after an integrating element.

In our work, we combine the Savitzky-Golay smoothing
filter and curve fitting method to detect valve stiction.

3.1 Savitzky-Golay smoothing filter

The field data are noisy. The premise of data smoothing is
that one is measuring a variable that is both slowly varying
and also corrupted by random noise.

The Savitzky-Golay smoothing filter was first described by
Savitzky and Golay (1964). The Savitzky-Golay method
essentially performs a local polynomial regression on a
series of values to determine the smoothed value. The main
advantage of this approach is that it tends to preserve fea-
tures of the distribution such as relative maxima, minima
and width, which are usually ’flattened’ by other adjacent
averaging techniques.

To illustrate the Savitzky-Golay method, consider the
specific example in which five data are used to approximate
a quadratic polynomial. The polynomial can be expressed
in the form:

poly(i) = a0 + a1i+ a2i
2 (7)

Where the coefficients a0, a1 and a2 are determined from
the simultaneous equations in which the abscissa i is the
index of for the data. The origin is always placed at the
central data and so the abscissa values corresponding to
each of the data are {−2,−1, 0, 1, 2}:

1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4


[
a0
a1
a2

]
=


f−2

f−1

f0
f1
f2

 (8)

Or

Aa = f (9)

Where the evenly spaced data {f−2, f−1, f0, f1, f2} are
selected with the target of replacing the value for f0 with
the value for the polynomial at i = 0 or poly(0) = a0.
The coefficients to the polynomial are determined in the
least-squares sense. The normal equation is:

ATAa = AT f (10)

Or

a = (ATA)
−1
AT f (11)

The top row of (ATA)
−1
AT yields the prescription for

computing the value of a0, namely:

a0 = [ s0 s1 s2 s3 s4 ]


f−2

f−1

f0
f1
f2

 (12)

Thus, for each set of five such data, the central data can
be replaced by the value determined for a0.

3.2 Curve fitting method

According to He et al. (2007), in the case of control-
loop oscillations caused by controller tuning or external
oscillating disturbances, the controller output (OP) and
process variable (PV) typically follow sinusoidal waves for
both self-regulating and integrating processes. In the case
of stiction, for self-regulating processes, the PI controller
acts as the first integrator and the OP’s move follows a
triangular wave, whereas for integrating processes such as
level control, the PV signal follows a triangular wave.

In our work, the raw data of OP or PV were treated
with Savitzky-Golay smoothing filter first, and then curve
fitting method was applied to detect valve stiction.

Both sinusoidal fitting and triangular fitting were per-
formed to the smoothed data. The mean squared errors
for both fitting methods were calculated. Then a stiction
index was defined as the ratio of the MSE value of the

Copyright held by the International Federation of
Automatic Control

27



Fig. 2. Offshore production facility separation unit

sinusoidal fitting to the summation of the MSE values of
both the sinusoidal and triangular fittings:

SI =
MSESin

MSESin + MSETri
(13)

The following rules were recommended:

SI ≤ 0.4 ⇒ no stiction
0.4 < SI < 0.6 ⇒ undetermined

SI ≥ 0.6 ⇒ stiction
(14)

4. RESULTS

An offshore platform was studied by using the above
mentioned performance assessment approaches. The op-
erating data were collected from the production facility
under closed-loop operation. The data were collected on a
five second basis. The production facility consists of five
major units: Separation, Compression, Oil treating, Water
treating, and HP/LP flare. We focused on the loops that
were considered the most important for optimizing the
production.

4.1 Single loop monitoring by minimum variance control
benchmark

The separation unit of the offshore platform was investi-
gated. Fig. 2 shows the process flow diagram. There are
six key control loops in this unit. The detailed description
for these control loops is given in Table 1.

Table 1. The description of control loops from
the separation unit

Loop ID Category Description

Loop 1 Pressure control Test separator back-
pressure control

Loop 2 Temperature control Test separator inlet
temperature control

Loop 3 Temperature control HP oil separator inlet
temperature control

Loop 4 Temperature control LP oil degasser inlet
temperature control

Loop 5 Pressure control Treater degasser
backpressure control

Loop 6 Temperature control Oil treater outlet
temperature control

According to the feedback invariance law, for a system
with time delay, a portion of the output variance is
feedback control invariant. This portion of the output
variance equals the variance achieved under the minimum
variance control.

The performance index is defined as:

η =
Jmv

var(y)
(15)
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Fig. 3. Process variable plots for the six loops in the
separation unit

Where JMV is the minimum variance.

If the index is close to 1, then further reduction in the
output variance is not possible by re-tuning the controller,
and the output variance can be reduced by process re-
engineering. If the index is close to 0, then there is high
potential for reducing the output variance by re-tuning
the existing controller. And (1 − η) would represent the
potential for improvement.

Harris (1989) showed the possibility of estimating the
minimum variance from routine operating data. Many
researchers further developed the technique. In this work,
we used the FCOR approach proposed by Huang and
Kadali (2008). The procedures are as follows: 1. A set of
data points were extracted during the routine operation; 2.
A time series model was estimated from this set of data;
3. Specify a time delay d according to a priori process
knowledge; 4. Get the impulse response model from the
model obtained in step 2; 5. Calculate the minimum
variance from the first d terms of the impulse response
model and the noise variance.

The process variable plots for the six loops in the sep-
aration unit are shown in Fig. 3. The MVC benchmark
monitoring results are shown in Table 2 and Fig. 4. In
Fig. 4, the blue part represents the performance index η,
and the green part is (1− η). For example, for Loop 2, the
performance index of 0.49 implies that current variance
can be potentially reduced by a factor of 0.51 if an optimal
tuning is implemented. Loop performance measure could
be ranked and classified. The results indicated that Loops
1,3 and 5 had a good performance of current loop tunings,
and there was little potential for further reduction in pro-
cess variance by adjusting or re-designing the controller.
Loop 6 had a small index of 0.31, therefore, it needed
attention and further diagnosis. Further diagnosis of the
oscillation behavior of loop 6 will be shown in subsection
4.3.

4.2 Multi-loops monitoring by covariance benchmark

Besides the separation unit, the VRU compression&gas
export unit is another important unit on the offshore
production facility. Therefore, the VRU compression&gas
export unit was investigated in this subsection using
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Fig. 5. Offshore production facility VRU compression&gas
export unit

covariance benchmark. Fig. 5 shows the process flow
diagram. There are seven key control loops in this unit.
The detailed description for these control loops is given in
Table 3.

A period of good operation data (2000 samples) was set
as the benchmark data, and then another period of data
(2000 samples) was monitored. The process variable plots
for the seven loops in the VRU compression&gas export
unit are shown in Fig. 6.

The generalized eigenvalue analysis between the covari-
ance matrices of the benchmark data and the monitored
data was performed. The full spectrum of sample eigenval-
ues in descending order and the corresponding cumulative
percentages are shown in Fig. 7.

The calculated overall performance index Iv is 29.68, and
thus the volume of the monitored data is 29.68 times of
the benchmark data. It implies that the overall control
performance of the monitored period is inferior to the
performance of the benchmark period. When looking at
each individual eigenvalue in Fig. 7, it can be found that
the control performance is degraded along some directions.

Table 2. MVC benchmark monitoring results
for the six loops in the separation unit

Loop ID 1 2 3 4 5 6

η 0.6637 0.4879 0.6701 0.5643 0.7086 0.3054
Jmv 0.0292 0.0031 0.0017 0.0012 0.0031 0.0114

var(y) 0.0440 0.0063 0.0026 0.0020 0.0043 0.0373
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Fig. 6. Process variable plots for the seven loops in the
VRU compression&gas export unit

The maximum eigenvalue is 17.57, which means the vari-
ance along the first eigenvector direction is increased by a
factor of 17.57. Therefore, the control performance of the
monitored period is significantly worse than that of the
benchmark period along this eigendirection.

The benchmark data and the monitored data were pro-
jected to the first eigendirection. In Fig. 8, the monitored
period exhibits larger variation than the benchmark period
along the first eigendirection. The corresponding largest
eigenvalue 17.57 reflects the variance ratio of the projected
data along this direction. These variance changes cannot
be easily seen in the original data in Fig. 6, which shows
the effectiveness of the covariance-based performance mon-
itoring method.

Table 3. The description of control loops from
the VRU compression&gas export unit

Loop ID Category Description

Loop 1 Pressure control VRU Compressor
Suction to LP Flare
Pressure Control

Loop 2 Pressure control VRU Compressors
Suction Pressure
Control

Loop 3 Pressure control VRU Compressor
Suction Scrubber
#2 Recycle Pressure
Control

Loop 4 Temperature control Flash Gas Compres-
sor #1 3rd Stage Dis-
charge Temperature
Control

Loop 5 Temperature control Flash Gas Compres-
sor #1 4th Stage Dis-
charge Temperature
Control

Loop 6 Temperature control Flash Gas Compres-
sor #2 3rd Stage Dis-
charge Temperature
Control

Loop 7 Temperature control Flash Gas Compres-
sor #2 4th Stage Dis-
charge Temperature
Control
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The computational results for the confidence intervals
of population eigenvalues are shown in Fig. 9. It can
be seen that the lower bounds of eigenvalues for the
first five eigendirections exceed the threshold value line.
Consequently, the first five eigendirections are determined
as the worse directions.

To diagnose and identify which loops contributed to the
worse subspace, the angle based contribution chart was
implemented. The angle based contribution chart within
the worse performance subspace is shown in Fig. 10. It can
be seen that the contribution index values of Loops 4, 5, 6,
and 7 exceed the 95% control limit. Therefore, these four
loops contributed significantly to the worse performance,
and these four loops are determined as degraded loops.

4.3 Detecting valve stiction in oscillation loops

In subsection 4.1, loop 6 in the separation unit was
detected to have a deteriorated performance with a small
MVC index of 0.31, and this loop exhibited a oscillatory
behavior. Therefore, we further diagnosed this loop to
determine whether a valve stiction occurred.
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Fig. 9. The 95% confidence intervals for population eigen-
values
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Fig. 10. Angle based contribution charts with 95% con-
fidence limits in the worse performance subspace of
period II over benchmark period I

A set of 1500 samples of the controller output (OP) were
collected from this loop. A portion of the OP is shown in
Fig. 11. A Savitzky-Golay smoothing filter with order 3
and window size 41 was applied to this set of data. And
then curve fitting method was applied on both raw data
and smoothed data. The stiction indices for both the raw
data and smoothed data are shown in Fig. 12. The stiction
index of the raw data is 0.5001, which falls into the grey
area of between 0.4 and 0.6. The stiction index of the
smoothed data is 0.6248, and it indicates that a valve
stiction occurred in this loop. Therefore, the Savitzky-
Golay smoothing filter helps to distinguish this kind of
marginal data and increases the stiction index when valve
stiction occurs.

Another two oscillatory loops in the offshore production
facility were examined as well. We denoted these two
loops as Loop A and Loop B. Curve fitting results on the
smoothed data are shown in Fig. 13. It is clear that OP
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Fig. 13. Curve fitting results on smoothed data: (Left)
Triangular fitting for loop A and (Right) Sinusoidal
fitting for Loop B

of loop A follows a triangular wave, while OP of loop B
follows a sinusoidal wave.

Table 4.

Loop ID SI (raw data) SI (smoothed data) Whether stiction

Loop 6 0.5001 0.6248 stiction
Loop A 0.8089 0.8132 stiction
Loop B 0.0116 0.0098 no stiction

The stiction indices for all the above three oscillatory loops
are listed in Table 4. The stiction indices on smoothed
data of loops A and B are 0.8132 and 0.0098, respectively.
That indicates that oscillation in loop A was caused by
valve stiction, and oscillation in loop B was caused by
unstable controller or external disturbance. The stiction
indices on the raw data of loops A and B are 0.8089 and
0.0116, respectively. Compared to the stiction index on
the smoothed data, it can be seen that the Savitzky-Golay
smoothing filter helps to increase the stiction index when
valve stiction occurs, and helps to decrease the stiction
index when there is no stiction.

5. CONCLUSION

Data-driven methods have been successfully applied on
the offshore platform control performance assessment and
monitoring in this paper. Minimum variance benchmark
or a covariance benchmark is used. For the covariance
benchmark, generalized eigenvalue analysis is performed to
find the directions with the worst control performance in
the monitored period versus the benchmark period. Angle
based contribution is used for control performance diag-
nosis. The Savitzky-Golay smoothing filter combined with
curve fitting method has been developed to detect valve
stiction. A better fit to a triangular wave indicates valve
stiction, and a better fit to a sinusoidal wave indicates
non-stiction.

The results in this paper demonstrate the effectiveness of
these approaches. 15 key control loops, which are con-
sidered most important for higher level production opti-
mization, are examined. The data-driven benchmark based
statistical performance monitoring approach successfully
determined directions with worse control performance in
the monitored period against the benchmark period. The
angle based contribution successfully determined loops
with degraded performance. The combination of Savitzky-
Golay smoothing filter and curve fitting method success-
fully detects valve stiction. The Savitzky-Golay smoothing
filter helps to improve the effectiveness by increasing the s-
tiction index when valve stiction occurred, especially when
the stiction index of the raw data falls into the grey area.
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