
The optimization problem in
model-reduced gradient-based history

matching

S lawomir P. Szklarz ∗ Marielba Rojas ∗∗

Ma lgorzata P. Kaleta ∗∗∗

∗Delft Institute of Applied Mathematics, Delft University of
Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands (e-mail:

s.p.szklarz@tudelft.nl).
∗∗Delft Institute of Applied Mathematics and Department of

Geotechnology, Delft University of Technology, P.O. Box 5031, 2600
GA Delft, The Netherlands (e-mail: marielba.rojas@tudelft.nl).
∗∗∗ Shell Global Solutions International, Kessler Park 1, Urals

Buildings, 2288 GS Rijswijk, The Netherlands (e-mail:
malgorzata.kaleta@shell.com)

Abstract: We present preliminary results of a performance evaluation study of several gradient-
based state-of-the-art optimization methods for solving the nonlinear minimization problem
arising in model-reduced gradient-based history matching. The issues discussed also apply to
other areas, such as production optimization in closed-loop reservoir management.
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1. INTRODUCTION

Accurate numerical modeling of complex systems in appli-
cations such as oil-reservoir simulation, weather forecast-
ing, and ocean modeling, usually involves calibration of
the model based on observations of the system’s behavior
and on model predictions. Model calibration is known as
data assimilation in weather and ocean modeling, and as
history matching in reservoir simulation.

The model-calibration problem is usually posed as the
nonlinear least-squares problem of minimizing the misfit
between the model prediction and the available observa-
tions. In most applications of interest, discretization yields
a very large number of model parameters and therefore,
large-scale nonlinear optimization methods must be used.
For example, in reservoir simulation, the number of dis-
cretized parameters such as permeability and porosity is
typically of the order of 105−107. Moreover, in simulation-
based applications only function and gradient information
is available. Hence, the choice of methods is limited to first-
order optimization methods, and to second-order methods
that only require approximate second-order information.

In recent years, model-order reduction techniques have
been proposed in the context of model calibration (see
Kaleta et al. (2011); Kaleta (2011); Vermeulen and
Heemink (2006)) as an alternative to computing the ad-
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joint of the original system in gradient-based history
matching. In this approach, a sequence of approximate
models in a reduced parameter space is constructed and
a sequence of corresponding nonlinear least-squares prob-
lems for the reduced model is solved in order to deter-
mine a small number of parameters that are then used to
reconstruct an estimate of the original parameters. The
behavior of the original objective function is monitored at
these approximations to the original parameters, to check
for decrease in value. Algorithmically, the scheme is an
inner-outer iteration where the inner iteration corresponds
to computing the solution of a small-scale nonlinear least-
squares problem, and the outer iteration controls the de-
crease of the original objective function. In Kaleta et al.
(2011); Kaleta (2011); Vermeulen and Heemink (2006),
model-order-reduction techniques are used to construct
the reduced models. In particular, the Proper Orthogo-
nal Decomposition (POD) proposed in Karhunen (1946);
Loéve (1946), and Balanced POD, proposed in Moore
(1981), were extensively explored.

We consider the efficient numerical solution of the nonlin-
ear least-squares problem arising in model-reduced history
matching proposed in Vermeulen and Heemink (2006), and
extended in Kaleta et al. (2011) and Kaleta (2011), i.e.
the inner iteration in the scheme described above. The
problem solved in the inner iteration can be written as:

min
η
Ju(η, z) ≡ 1

2

No∑
i=1

vi(η, z)
TC−1

i vi(η, z) (1)

+
1

2
w(η, θ)TC−1

p w(η, θ) + λTf(η, z)
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where:

θ is a vector in the original parameter space;
η is a vector in the reduced parameter space;
x = x(t) are the original state variables;
z = z(t) are the reduced state variables;
t is time;
No is the number of time steps at which observations
are gathered;
vi(η, z) = di − hi(η, z);
di is the observation at time ti;
θp is a vector of known parameter values (the prior);
w(η, θ) = θp − θk − Φηη;
k is the outer iteration index;
Cp is the covariance matrix of the prior’s errors;
Ci is the covariance matrix of the observation errors
at time ti;
hi(η, z) describes the relationship between the re-
duced state variables and the observations.

In (1), f(η, z) is a linear approximation, in the reduced
variable and parameter spaces, to the dynamic operator
that describes the system (reservoir simulator), and λ is
the vector of Lagrange multipliers or adjoint-state vector
of the reduced model. Note that the parameter-estimation
problem is an inverse problem that is usually ill-posed. In
this kind of problems, regularization techniques are needed
in order to control the effect of errors (noise). In (1), the
information corresponding to the prior (second term in
(1)) is a regularization term.

Constructing a reduced model requires reduction of both
states and parameters. To reduce the state variables, we
construct the matrix Φz withNz orthonormal columns cor-
responding to the dominant directions or data patterns of
so-called snapshots of the system’s behavior. Analogously,
to represent the parameters in a reduced-order space, we
construct the matrix Φη with Nη columns corresponding
to the dominant eigenvectors (parameter patterns) of a
low-rank approximation of the covariance matrix of the
parameter field. The original parameters θ and the reduced
parameters η (approximately) satisfy θ = θp + Φηη. See
Kaleta (2011); Kaleta et al. (2011) for further details. If
Nx is the number of original state variables and Nθ is
the number of components of the discretized parameter
field, then Nz and Nη are chosen such that Nz � Nx and
Nη � Nθ.

Problem (1) can also be formulated as a bound-constrained
minimization problem. In this case, we are interested in
solving:

min
η
Jc(η, z) ≡

1

2

No∑
i=1

vi(η, z)
TC−1

i vi(η, z)

+ λTf(η, z) (2)

subject to L ≤ η ≤ U
where all quantities are defined as in problem (1), and
the inequalities are understood component-wise. In solving
both (1) and (2), we assume that either relevant gradients
or approximation to them are available.

A considerable simplification can be made in the minimiza-
tion problems (1) and (2) by linearizing the functions hi at
given values θk and xi = x(ti). This yields the expression:

hi(η, z) =

hi(θ
p, xp

i ) +
∂hi(θ, xi)

∂θ
Φηη +

∂hi(θ, xi)

∂xi
Φzz, (3)

where xp

i = xp(ti) is the value of the state variables (at
time ti) corresponding to the prior θp. Note that with
this choice of hi, the functions Ju and Jc become convex
quadratics. Therefore, the resulting optimization problem
has a unique solution and most (descent) optimization
methods are usually very efficient on this kind of prob-
lems. Note that although this simplification introduces
additional approximation errors, this is often the only
practicable approach since the nonlinear problems are
usually very challenging. However, whenever possible, the
nonlinear case should be preferred.

In this work, we present preliminary results of a perfor-
mance evaluation study of several gradient-based opti-
mization methods for solving (1). Note that, although the
work focuses on history matching, most of the issues arise
in model calibration in other areas as well as in produc-
tion optimization in closed-loop reservoir management (see
Jansen (2011a)).

The presentation is organized as follows. In Section 2,
we present an overview of state-of-the-art optimization
methods suitable for solving (1) and (2). In Section 3,
we describe the reservoir model used as test problem. In
Section 4, we describe our experiments, and present and
discuss the results. Concluding remarks are presented in
Section 5.

2. OPTIMIZATION METHODS

In this section, we review gradient-based methods for
solving the problem:

min
η∈Ω

f(η) (4)

where f : IRn → IR is assumed to be continuous and
differentiable, and Ω is a convex set. Problem (1) and (2)
are minimization problems of type (4), with Ω = IRn in
(1), and Ω = {`i ≤ ηi ≤ ui, i = 1, 2, . . . , p} in (2). In
practice, the problems are possibly large-scale.

2.1 Unconstrained minimization

Efficient derivative-based techniques exist for solving prob-
lem (4) in the unconstrained case, i.e. when Ω = IRn.
Most of the techniques are so-called descent methods
where the search direction is chosen so that the objec-
tive function decreases along that direction. Two of the
main search directions are the Newton direction and the
Cauchy or gradient direction. In order to compute the
Newton direction, second-order information is needed.
However, several gradient-based approximations exist that
yield efficient and accurate methods. In this work, we
focus on the following state-of-the-art families of methods
which are representative of the approximate-Newton and
Cauchy minimization approaches, namely: quasi-Newton
methods, in particular the BFGS and limited-memory
BFGS approaches combined with line search or trust-
region globalization strategies (see Conn et al. (2000);
Nocedal and Wright (1999)); and the spectral-projected-
gradient (SPG) methods proposed in Birgin et al. (2000)

Copyright held by the International Federation of
Automatic Control

14



In quasi-Newton methods, an approximation to the New-
ton direction is computed by approximating the Hessian
of the objective function at the current iterate. So-called
secant approximations of the Hessian matrices are the
most popular and efficient. In particular, the BFGS ap-
proach is very efficient for medium-scale problems when
all previous gradients and iterates can be stored. In the
large-scale case, the limited-memory BFGS approach is
preferred since it requires the storage of only a few of the
previous gradients and iterates. Indeed, Oliver et al. (2008)
report that limited-memory BFGS was the most efficient
method for solving the problems in their history-matching
test set. Gauss-Newton-type methods are also based on
approximating Hessian matrices.

Most practical minimization methods that follow descent
directions converge to a local minimizer provided that
the starting point is close enough to the solution. Robust
versions incorporate so-called globalization strategies that
guarantee convergence regardless of the choice of starting
point. The most popular globalization strategies are line
search and trust region, and they can be incorporated into
most algorithms.

As the name indicates, projected-gradient methods are
based on iterations that follow projected, and possibly
modified negative gradient directions. The methods are
designed for constrained minimization on convex sets
and are efficient when projections onto such sets can be
computed inexpensively. The spectral-projected gradient
methods are among the most efficient of these approaches,
thanks to the incorporation of a non-monotonic line search
strategy.

Note that, with the exception of projected-gradient tech-
niques, all methods above require the solution of a se-
quence of linear systems with a symmetric and posi-
tive definite matrix. In the medium-scale case, Cholesky
factorizations are typically used for solving the sys-
tems, whereas large-scale problems are solved with the
Conjugate-Gradients method. For more information on
solutions of linear systems, see for example Golub and Van
Loan (1996).

2.2 Bound-constrained minimization

If the feasible set Ω in (4) is a convex set different from IRn,
for example a (hyper)box as in (2), we can use projected-
gradient-type methods. In particular, SPG methods are
very efficient in practice since they usually identify the
optimal face of the feasible set very quickly.

Other techniques include: active set methods, which iter-
atively construct a set of active constraints; interior-point
methods, which generate iterates in the interior of the fea-
sible set; sequential quadratic programming (SQP) meth-
ods, which solve a sequence of simple problems (quadratic
objective, linear constraints) by using Newton’s method
to solve a related nonlinear system of equations. All tech-
niques can be globalized by means of line search or trust-
region mechanisms.

3. RESERVOIR MODEL

The test problem in our study was a synthetic 2D reservoir
model describing isothermal, slightly-compressible, two-

phase (oil-water) flow in the five-spot well configuration
shown in Figure 1, with four production wells on the
corners and one injection well in the center.

Fig. 1. Well configuration for a simple 2D reservoir model.

The initial reservoir pressure was 30 × 106Pa and the
initial water saturation was assumed to be connate water
saturation. Water was injected at a rate of 0.003m3/s. The
production wells were operated at a constant pressure of
25× 106Pa.

Gravity and capillary pressures were neglected, while
porosity was assumed to be uniform with value 0.3. The
only uncertain parameter was the permeability field. The
data was generated as follows. The “true” field was chosen
from 1000 model realizations. The remaining samples were
used to obtain the prior permeability θp and the prior co-
variance matrix Cp. Bottom-hole pressure and production
rates were assumed to have Gaussian errors with zero mean
and standard deviations equal to 10% and 5% of the actual
data, respectively. Synthetic production data was obtained
by adding to the true data Gaussian errors with zero mean
and variance equal to a fixed percentage of the true data.
In addition, observations were assumed to be independent,
and therefore the covariance matrices Ci were diagonal.
Simulations were performed with the academic reservoir
simulator SimSim described in Jansen (2011b).

Observations were taken at the five wells every 30 days
during a period of 250 days. This resulted in eight assimi-
lation times for a total of 40 observations. Hence, No = 8.
The dimension of the field was 700m×700m×2m divided
into 21×21×1 uniform Cartesian grid blocks. The reduced
model was constructed by means of the POD method. See
Kaleta (2011) for more details.

4. NUMERICAL STUDY

Our numerical study consisted of comparing several Mat-
lab implementations of the methods described in Section
2.1 when used for solving problems (1) and (2) on the
test problem described in Section 3. In this work, we
present results for problem (1), in the convex-quadratic
case obtained by using the linearization (3).

We compared the performance of the codes for solving
only the first minimization problem in the inner-outer
iteration model-reduced, gradient-based, history-matching
procedure described in Section 1, i.e. we solved the inner
problem for k = 1 only, with k the outer-iteration index
and θ1 = θp. The reason for this choice was two-fold.
Firstly, it is usually in the first inner iteration that a
significant reduction in the objective function is achieved;
and secondly, running the complete algorithm can be too
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lengthy in the context of this study where several methods
were used for the inner iteration. The test problem was
the reservoir model described in Section 3. The number
of original parameters was Nθ = 441 and the number of
original state variables was Nx = 882. Comparisons were
performed with a number of reduced parameters Nη = 20
and Nη = 300. The number of reduced state variables was
Nz = 109 when Nη = 20, and Nz = 358 when Nη = 300.

The comparisons were performed using the idea of targets.
In this approach, we solved the problem with a state-of-
the-art code (the best code) with default settings. Then,
we adjusted the settings of the other codes to try to match,
with a relative error of 10−3 or less, the minimum objective
function value (target) computed with the best code.

The experiments were carried out in MATLAB R2010b on
an ASUS F5Z with an AMD Athlon X2 dual-core QL-60
1.90GHz processor and 2GB RAM, running the Windows
7 Professional (32-bit) operating system. The floating-
point arithmetic was IEEE standard double precision with
machine precision 2−52 ≈ 2.2204× 10−6.

We compared the following Matlab implementations of the
optimization methods described in Section 2.1:

• KBFGS: Trust-region, quasi-Newton BFGS option
of KNITRO version 7.0. See Byrd et al. (2006).
• KLBFGS: Trust-region, quasi-Newton limited-memory
BFGS option of KNITRO version 6.0. See Byrd
et al. (2006).
• MBFGS: Line-search, quasi-Newton BFGS option of

Matlab’s fminunc routine.
• IBFGS: Line-search, quasi-Newton BFGS routine in
IMMOPTIBOX. See Nielsen (2010).
• SPG: the SPG method. See Birgin et al. (2000, 2001).

We also tested the trust-region option of Matlab’s fminunc
routine. However, in spite of the very low number of
function and gradient evaluations reported, the code was
considerably slower than the others. This seems to be due
to the fact that the Hessian matrices are approximated
by means of finite differences which require additional
function evaluations. For this reason, this option is not
included in our study. We also emphasize that the codes
above are at a different stage of development. Therefore,
timings are not reported since most of the codes are not
programmed in the most efficient manner, which possibly
leads to high overhead. Moreover, the KNITRO package is
not programmed in Matlab, but a Mexfile interface to the
C/C++ code is provided with the software. The KNITRO
package is the most mature, robust, and optimized code
of the ones considered, being a free-trial version of a
commercial code. Therefore, in all experiments the target
was the minimum objective function value computed by
KNITRO’s full BFGS method using the default settings.

The results are shown in Tables 1 and 2, where we report
for each method: the number of function evaluations (F),
the number of gradient evaluations (G), the value of
the objective function Ju at the optimum (J∗u), and the
number of conjugate-gradients iterations when applicable
(CG).

Several comments are in order regarding the results in
Tables 1 and 2. We summarize them as follows:

Table 1. Unconstrained, convex, quadratic
problem, Nη = 20.

Method F G CG J∗u
KBFGS 23 17 81 24.04

KLBFGS 28 34 276 24.04

MBFGS 76 76 n/a 24.05

IBFGS 13 14 n/a 24.04

SPG (m = 30) 63 61 n/a 24.04

Table 2. Unconstrained, convex, quadratic
problem, Nη = 300.

Method F G CG J∗u
KBFGS 778 466 1818 29.61

KLBFGS 259 189 2082 29.62

MBFGS 236 236 n/a 29.62

IBFGS 143 163 n/a 29.62

SPG (m = 5) 400 230 n/a 29.57

• The SPG method can get lower function values than
the other methods tested. This was observed in all
our experiments.

• For the convex quadratic case, large values for the
backtracking parameter m for the SPG method seem
to speed up convergence.

• The IBFGS implementation of the (full) BFGS ap-
proach was consistently the most efficient in terms
of number of function and gradient evaluations. Note
that this method does not require additional calcula-
tions such as CG iterations.

• The KNITRO package involves other significant cal-
culations (CG iterations) besides function and gradi-
ent evaluations, and this may affect the actual time
required to solve a problem.

In our experiments, the size of the optimization problem
is small enough (20 or 300) that full-BFGS methods
are affordable. However, note that the smaller dimension
(20) is about 5% of the original dimension (441). For
real problems of dimension 105 − 107, even this small
percentage becomes significant and therefore, large-scale
techniques such as limited-memory BFGS and SPG are
the only options. Observe also that, of the methods tested,
only the commercial package KNITRO implements the
LBFGS approach. Therefore, the SPG method becomes
very attractive. Moreover, given that (unlike KNITRO),
the method does not require any additional calculation be-
sides function and gradient evaluations, we expect that an
efficient implementation of the method will be very com-
petitive on this kind of problems, especially if appropriate
tuning of the backtracking parameter m is performed.

Figure 2 shows four permeability fields, in natural-log
scale, for the test problem described in Section 3: the
true field; the prior; the fields obtained after one outer
iteration when the inner minimization problem is solved
with IBFGS, using reduced models or orders Nη = 20
and Nη = 300.

We observe in Figure 2 that the quality of the first-
iteration approximation to the permeability field corre-
sponding to Nη = 20 seems better than the one corre-
sponding to Nη = 300. Indeed, we can also confirm this
quantitatively by computing the Root Mean Square Error
for the fields. The values of the error for the prior field,

Copyright held by the International Federation of
Automatic Control

16



True Prior

Nη = 20 Nη = 300

Fig. 2. Permeability fields for a 2D reservoir model.

for the solution corresponding to Nη = 20, and for the
solution corresponding to Nη = 300 are, respectively: 1.16,
0.69, and 1.17. Therefore, it appears that not only is a
large number of patterns not necessary from the point of
view of recovering relevant parameter features, but also
including too many patterns might bring in perturbations
(noise) into the approximation. This seems to indicate that
reducing the original model to a low-dimensional space
has an additional regularization effect in the parameter
estimation problem.

Finally, we note that the convex quadratic problem can
also be formulated as a linear least squares problems and
therefore matrix-computations techniques such as the QR
factorization or the LSQR method proposed in Paige and
Saunders (1982) can in principle be used in place of a
nonlinear optimization approach. This is certainly possible
in our case where the corresponding coefficient matrix
is usually small and sparse. In practice, observations are
gathered monthly for several years, and though sparse the
coefficient matrix becomes very large and only large-scale
techniques such as LSQR can be used. We emphasize that
this approach only applies to the convex quadratic case.
Since the ultimate goal is to preserve the nonlinearity in
the objective function, it seemed appropriate to choose
methods for solving nonlinear problems. This choice also
makes it easier to compare the accuracy of solutions
obtained using the convex-quadratic objective function
and the nonlinear function.

5. CONCLUDING REMARKS

We have presented preliminary results from a numerical
evaluation of nonlinear optimization software for solv-
ing the minimization problem in model-reduced gradient-
based history matching. Our results indicate that the im-
plementation of the well-known BFGS approach in Nielsen
(2010) is the most efficient of the software tested and
should be preferred for problems of medium scale. The
results also indicate that the SPG method is a promising
(publicly available) option for solving large-scale instances
of the minimization problem considered. We showed that it
is also possible to formulate the unconstrained minimiza-
tion problem as an equivalent bound-constrained problem,

and also to treat the nonlinear problems in the reduced pa-
rameter space. These extensions are the subject of Szklarz
et al. (2012).

Even though in general the main computational cost in
model-reduced gradient-based history matching is con-
centrated on the collection of the snapshots and on the
linearization of the system’s equations, the cost of solving
a sequence of large and possibly highly-nonlinear opti-
mization problems might become significant in practice.
Therefore, choosing efficient methods for solving these
problems becomes a relevant issue. Studies such as the
one presented in this work might be useful in guiding the
choice of appropriate methods.
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Appendix A. EXPERIMENT SETTINGS

A.1 Unconstrained minimization

The initial point η0 = 0 was used for all methods. The
parameter m, which determines the backtracking scope in
the line-search strategy of the SPG method, was set to
30 when Nη = 20, and 5 when Nη = 300. Other settings
relate to the stopping criteria used in the codes and are
summarized in Table A.1. In the table, εf , εg, εx ∈ (0, 1),
and fk = f(ηk), fk−1 = f(ηk−1), gk = ∇f(ηk), g0 =
∇f(η0)

Table A.1. Stopping criteria for unconstrained
optimization methods

Method Stopping Criteria

KBFGS ‖gk‖∞ ≤ max{q ∗ optol, optolabs},
with q = max{1,min{|fk|, ‖gk‖∞}}

KLBFGS as in KBFGS

MBFGS ‖ηk − ηk−1‖∞ < εx(1 + ‖ηk−1‖∞) or
‖gk‖∞ < εg‖(1 + ‖g0‖∞)

IBFGS ‖ηk − ηk−1‖2 ≤ εx(εx + ‖ηk−1‖2) or
‖gk‖∞ ≤ εg

SPG ‖ηk − ηk−1‖2 ≤ εx or |fk − fk−1| ≤ εf or
‖PΩ(ηk − gk)− ηk‖∞ ≤ εg

In Table A.1, PΩ in the stopping criteria for the SPG
method denotes projection onto the feasible set Ω. As
mentioned before, Ω = IRn in the unconstrained case.
Thus, in this case the stopping criteria becomes ‖gk‖∞ ≤
εf .

The following settings were used in all experiments. For
KBFGS and KLBFGS, the default values were used; for
MBFGS, εx = 10−6, εg = 10−6; for IBFGS, εx = 10−8,
εg = 10−6; for SPG when Nη = 20, εx = 10−4, εf =
10−4, εg = 10−6 for SPG when Nη = 300, εx = 10−12,
εf = 10−12, εg = 10−6. Default values were used for other
stopping criteria such as maximum number of iterations.
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