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Abstract: This article uses an active control dedicated to the positioning of subsea structures
like flow lines. This kind of operation consists in connecting the bottom end of a very long
pipeline to the wellhead, by dynamically modifying the pipeline top end position, which is
linked to a Dynamically Positioned Vessel (DPV). Such long pipelines are usually called risers,
because they are used to rise the drilling mud or the hydrocarbons from the wellhead to the
platform. Nowadays this operation is often done manually. The use of an active control intends
to reduce the operation time, and to make it possible even under bad weather conditions. The
considered subsea structure can be aproximated as a cable submerged in a flow and modelled
by the Bernoulli cable equation, completed with a damping factor, that linearly depends on
the structure speed. This article tests previous works regarding the tracking system used to
follow the reference trajectory of the motion planning considering the Euler-Bernoulli beam
equation for large rotations, that is the most used model to define the dynamic behavior of
this kind of structures.
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1. INTRODUCTION

Deeper and deeper, subsea drilling and exploration rep-
resent new technological challenges for the offshore oil
industry. One of these challenges is the installation of
longer and longer structures to link the oil platform to
the seabed.

The reentry operation consists in positioning the riser
bottom end above the wellhead in order to connect
them while controlling the riser bottom end by the
displacements of the surface vessel, in spite of the riser’s
flexibility, of waves and subsea currents. To reach this
goal, it is necessary to move the riser bottom end to the
wellhead as fast as possible and to make it stop accurately
above the wellhead. The main idea is, first, to design an
open loop trajectory to move the riser bottom end from
its initial position to the wellhead and, second, a closed
loop controller to ensure that the bottom end position
prescribed trajectory is satisfactorily tracked in presence
of various types of unknown disturbances. This work tests
the control system proposed by Fortaleza et al. Fortaleza
et al. (2008) and Fortaleza et al. (2011) considering the
Euler-Bernoulli beam equation for large rotations, that is
the most used equation to define the dynamic behavior
of this kind of structures.

2. GOVERNING EQUATIONS

Equation (1) is the Euler-Bernoulli for a beam under
traction and external forces from the fluid, It is the most
used equation to represent subsea structures like risers
and mooring cables. z represents the vertical direction,

Fig. 1. Platform during the reentry operation

ms the riser linear mass, E the Young’s modulus, Υ the
horizontal displacement of the structure and t the time.
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Subsea structures usually have uniform cross-section, in
these cases the equation (1) can be represented by:
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In these cases, the transversal force associated to the
beam model is represented by Euler-Bernoulli beam
equation for large rotations. The transversal force as-
sociated to the traction is similar to the internal
transversal force in a cable, and is represented by
∂(T (z)(∂Υ/∂z))/∂z. In some special cases, the difference
between these two terms is so large that the structure
behavior can be represented by only one of them. This is
often the case for flexible risers, that are usually slender
with small second moment of area J when compared to
the riser length (J = πr4/4 for a circular section of radius
r).

2.1 Hydrodynamic forces

The hydrodynamic forces are defined in a general way by
the Navier-Stokes equations. They are the unique exter-
nal forces, except for the riser structure ends where exter-
nal forces are present due to the boundary conditions. In
the case of the reentry operation, the main hydrodynamic
forces are in the plane including the riser bottom end and
the wellhead. These forces denoted Fn(z, t) can be defined
by the Morison’s equation (valid for the actual Reynolds
number of the flow around the structure):
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In this equation, µ is the drag constant and mF is
the fluid added mass. Denoting m = mS + mF , and
considering the hydrodynamic force (3), equation (2)
becomes
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In practical cases, the displacement has low frequencies,
the beam effects can be neglected. The tension for a
disconnected riser in these conditions is a linear function
of its weight (T = (ms − ρS)z), where ρ represents
the water density and S the transverse section surface.
Neglecting the beam effects and dividing equation (4) by
m we get:
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The constant term (ms − ρS)/m can be replaced by an
effective gravity g. It is proposed to linearize the drag
term, substituting the term µ

m
|∂Υ

∂t
| by the constant τ ,

that is calculated as a function of µ/m and of the mean
value of ∂Υ

∂t
along the structure. With this approximation

the system equation becomes the cable equation defined
by Bernoulli (see Petit and Rouchon (2001)) plus a linear
damping factor:
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3. A USEFUL FORMULA

This section presents an analytical solution of equa-
tion (6) in the Laplace domain, following the idea pro-
posed by Petit and Rouchon Petit and Rouchon (2001)
for an undamped cable and here adapted to a damped
cable. This solution is useful to define the behavior of the
riser bottom end as function of the riser top position with
out the imprecisions due to the space discretization. This
solution is used to calculate the motion planning, and the
tracking system of section 6. The first step is the change
of variable l = 2

√
z/g, which yields ∂

∂z
= 2

gl
∂
∂l

, trans-

forming equation (6) into a g−independent equation:
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Using a t−Laplace transform and considering the cable

at rest at t = 0, equation (7) can be rewritten, with Υ̂
the Laplace transform of Υ, as the following ordinary
differential equation:

−ls2Υ̂(l, s)− τ lsΥ̂(l, s) +
∂Υ̂

∂l
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The change of variable ζ = il
√

s(s + τ) transforms (8)
into a Bessel equation of the first kind:
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Its solution Υ̂(z, s) has the following form:
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Here J0 and Y0 are respectively the Bessel functions of
first and second kinds (see Abramowitz and Stegun
(1972)). Sought after solutions being finite for ζ = 0,
they are such that c2 = 0:

Υ̂(z, s) = Υ̂(0, s)J0(2i
√

s(s + τ)
√

z/g) (11)

4. MOTION PLANNING

This solution, namely (11), proves that the corresponding
model turns out to be differentially flat, because any state
of the system and its input (position and speed of the
structure along the z-axis) can be calculated from the
bottom trajectory (flat output), see Fliess et al. (1995)
and Lévine (2009) for more details. This useful property
is now used to design the motion planning. The solution
(11), is now expanded in Taylor’s series, in order to
formally invert the Laplace transform. Then we deduce,
in the time domain, an approximation of the open loop
riser top end trajectory, that is a function of the reference
trajectory for the riser bottom end.

We rewrite equation (11) using J0’s integral formula (see
e.g. Abramowitz and Stegun (1972)):

Υ̂(z, s) =
1

2π

∫ π

−π

exp(−2
√

s(s + τ)
√

z/g sin θ)Υ̂(0, s)dθ

(12)

and expand the term exp(−2
√

s(s + τ)
√

z/g sin θ) in
equation (12) around τ = 0:
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Fig. 2. Open loop control and reference trajectory.
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The open loop solution Υo(L, t), where L is the riser
length, is obtained by numerical integration of (15). The
simulation example in Figure 2 shows that the approx-
imations made have a negligible effect on the system
response. The considered discrete system in all numerical
simulations is obtained by discretizing equation (2). In
figure 2, the numerical simulation uses the hydrodynamic
force represented in equation (3).

5. LYAPUNOV DESIGN

This section presents a strategy that uses a Lyapunov
function to design a tracking system, in order to ensure

the stability and reduce the difference between the real
position of the structure and its reference trajectory.

Consider the relative displacement ΥR around the refer-
ence trajectory Υo: ΥR = Υ − Υo. The objective is to
define a tracking system to enforce the convergence of
ΥR to zero.

Theorem 1. Consider system (6). The control law

Υ(L, t) = Υo(L, t)

−k

∫ t
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∂z
(L, v) +

ΥR(L, v)
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)
dv

(16)

can be used to asymptotically track any bottom end
reference Υo(0, t). In equation (16), k is the controller
gain, ϑ a tuning parameter, and Υo(L, t) a top end
reference trajectory, computed from the specified bottom
end reference trajectory Υo(0, t) from equation (15).

Proof. Consider the system given by (6). Following the
idea proposed by Thull et al Thull et al. (2006), a
candidate Lyapunov function H, based on the system
energy associated to ΥR, is given by
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Parameter ϑ represents the convergence time and deter-
mines the energy associated to the relative displacement
of the structure top end. Using equation (6), the time
derivative of H is computed as follows:
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=
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After integration by parts, we get
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We therefore introduce the control law
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With this law, dH/dt ≤ 0, so the system converges to the
largest invariant set contained in dH/dt = 0.

dH/dt = −kL

(
g
∂ΥR

∂z
(L, t) +

ΥR(L, t)

ϑ2

)2

−τ

∫ L

0

(
∂ΥR

∂t

)2

dz

(21)

This set is such that
∫ L
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)2

dz = 0 (22a)
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This first relation implies ∂ΥR/∂t(z, t) = ∂2ΥR/∂t2(z, t) =
0 for all z and all t, The application of this result in
equation (6) gives the second relation. The solution of the
second relation is ΥR(z) = c ln(z), where c is an arbitrary
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Fig. 3. Block diagram of the tracking system.

constant. At rest, the balance of the external forces is
given, at the top end, by the sum of Ft, accounting for
the horizontal part of the tension at the top end of the
structure, and Fp, the resultant of the disturbances. By
definition, Ft is proportional to ∂ΥR/∂z(L, t). In this un-
perturbed case, Fp = 0, so Ft = 0 and ∂ΥR/∂z(L, t) = 0,
which leads to ΥR(L, t) = 0. The unique possible solution
ΥR(z) = c ln(z) with ΥR(L) = (∂ΥR)/(∂z)(L) = 0 is
c = 0. That proves the convergence of ΥR to zero for all
z, and in particular gives ΥR(0, t) = ΥR(L, t) = 0: the
stability is proven.

6. INVERSE MODEL CONTROL

There are different alternatives to attenuate the dis-
turbances. We propose to combine system inversion for
tracking, the inverted model being defined by equa-
tion (15), with an open loop design that reduces the effect
of waves.

Regarding equation (3), it may be seen that an artificial
increase of the structure speed ∂Υ/∂t implies a larger
system damping, that reduces the relative effect of the
flow speed changes. So, an open loop trajectory, that is
fast enough to increase the damping during a given period
of time, can reduce the effect of waves. Figure 3 presents
the block diagram of the tracking system. The transfer
function G(s) between the riser top end Υ(L, s) and the
riser bottom end Υ(0, s) is represented by

G(s) =
2π

∫ π

−π
exp(−2

√
s2
√

z/g sin θ)
(23)

Theorem 2. Denote Υo is the reference trajectoriy and Υ
is the real riser position. The control law

Υ(L, s) = Υo(L, s)

−kG(s)−1e−ǫs

s
(Υ(0, s)−Υo(0, s))

(24)

stabilizes system (6) around any trajectory Υo(0, s) if
k < π/(2ǫ).

Proof. The Bessel function of first order J0 only has real
zeros (see e.g. Ismail and Muldoon Ismail and Muldoon
(1995)). Thus, the poles of G(s) only lie in the region
Re(s) < 0. As G(s) does not have unstable zeros or poles,
there is no cancellation between unstable zeros and poles
in closed loop. The stability of the feedback law can be
analyzed by the simplified Nyquist criterion. Denote by

M(s) the open loop transfer function between Υo(0, s)
and Υ(0, s):

M(s) = k exp(−ǫs)/s (25)

Rewriting exp(−ǫs) in trigonometric form and replacing
s by iω:

M(iω) =
k(cos(ǫω)− i sin(ǫω))

iω
(26)

For k > 0, the largest negative real value of (26) is
achieved for ω = ω0 = π/(2ǫ). For this value, M(ω0) =
−k/ω0. A sufficient condition for the closed loop stability
is M(ω0) > −1, which leads to k < π/(2ǫ).

In practise, a value of k much smaller than k < π/(2ǫ) is
used for the sake of robustness. Typically, k = π/(16ǫ).

G(s) has a maximum delay equal to ǫ = 2
√

L/g (see
equation (15), so its inverse G(s)−1 is associated to
the same delay to insure causality. The delay of the
control estimation is an important problem for the high
frequencies, however for the low frequencies this delay is
negligible.

Theorem 3. The control law given by equation (24) re-
jects low frequency disturbances.

Proof. The closed loop transfer function between the
disturbance P (s) and the system output Υ(0, s) is

Υ(0, s)

P (s)
=

s

s + ke−ǫs
(27)

Setting s = iω, the transfer function (27) gives the system
gain associated to every frequency ω:

Υ(0, iω)

P (iω)
=

iω

iω + ke−ǫiω
(28)

For low frequency disturbances (ω → 0), the influ-
ence of the disturbances on the output tends to zero
(|Υ(0, iω)/P (iω)| → 0).

Figure 4 gives an example of what can be obtained
with this approach for the control of a structure with
waves and sea current disturbances. The tracking system
combined to the motion planning stabilizes the riser
bottom end at its target during a certain period (region
close to t = 1000 s in the figure). During this period,
the connection of the riser bottom end to the wellhead is
possible.

The shape of the reference trajectory is such that the
reference speed is kept large enough almost until the end
of the displacement to dampen the wave disturbances
before the structure has reached its target. It naturally
implies that the initial distance between the bottom end
of the structure and the wellhead is also large enough

Note, however, that the maximum speed along such
reference trajectory cannot be chosen too large for the
following reasons:

• if the speed is too large, the small angle assumption
may be violated, and higher order terms may be
required in the expansion of the damping term;

• if the acceleration is too large, the beam effect may
become significant.
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Fig. 4. Structure under disturbances due to wave and sea
current effects.

7. CONCLUSION

The motion planning consists in a two steps procedure:
first assimilate the structure to a cable with linear damp-
ing; then invert the analytical solution to the latter
model in the Laplace domain, to express it in the time
domain thanks to a series expansion. The final result is
a function that has the bottom end as input reference
trajectory, and the top end trajectory as output. Without
disturbances and model errors, the so-obtained top end
trajectory approximately generates the desired bottom
end reference trajectory.

Two different closed loop controls have been proposed.
The first one is based on a Lyapunov design for which
the feedback is based on the top end structure angle
measurements. The other way to design a feedback law
consists in inverting the previously obtained open loop
mapping with the addition of a delay. The main practical
result is the possibility of sufficiently attenuating the
wave effects to ensure reentry under difficult weather
conditions, even when the non linearities due to the beam
effect are considered during the numerical simulations.
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Lévine, J. (2009). Analysis and Control of Nonlinear
Systems: A Flatness-Based Approach. Mathematical
Engineering Series, Springer.

Petit, N. and Rouchon, P. (2001). Flatness of heavy chain
systems. SIAM Journal on Control and Optimization,
40, 475–495.

Thull, D., Wild, D., and Kugi, K. (2006). Application of
combined flatness- and passivity-based control concept
to a crane with heavy chains and payload. IEEE Inter-
national Conference on Control Applications, 656–661.

Appendix A. NUMERICAL SIMULATIONS

The considered discrete system for the numerical sim-
ulations in this article comes from the discretization of
equation (4). The simulated offshore structure is a typical
drilling riser in deep water. Its dimensions and numerical
constants are represented in table A.1.

Table A.1. Simulated structure: dimensions
and constants.

Type Value Unit

Internal Diameter 50 mm
External Diameter 55 mm

Height 2 km
Upper bounder condition Fixed top
Lower bounder condition Free bottom

Steel Density 7.860× 103 kg/m3

Steel Elastic Modulus 210× 109 Pa

Water Density 103 kg/m3

The numerical model was obtained by finite difference
discretization. The continuous function Υ(z, t) was ap-
proximated by a discrete vector Y (t) and the derivatives
with respect to z by the following recursive formula:

∂jYn

∂zj
=

1

l

(
∂j−1Yn+0.5

∂zj−1
− ∂j−1Yn−0.5

∂zj−1

)
(A.1)

The values of Y are only available for n ∈ {0, . . . , N}.
Thus, for the first derivatives at n ∈ {0, . . . , N}, since the
values Yn+0.5 and Yn−0.5 are not available, we complete
(A.1) by:

∂Yn

∂z
=

Yn+1 − Yn−1

2l
(A.2)
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