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Abstract: This paper describes a procedure to design robust controllers for Dynamic Po-
sitioning (DP) of ships and offshore rigs subjected to the influence of sea waves, currents,
and wind loads using H∞ and mixed-µ techniques. To this effect, practical assumptions are
exploited in order to obtain a linear design model with parametric uncertainties describing the
dynamics of the vessel. Appropriate frequency weighting functions are selected to capture the
required performance specifications at the controller design phase. The proposed model and
weighting functions are then used to design robust controllers. The problem of wave filtering is
also addressed during the process of modeling and controller design. The key contribution of
the paper is twofold: i) it affords system designers a new method to efficiently obtain linearized
design models that fit naturally in the framework of H∞ control theory, and ii) it describes, in
a systematic manner, the different steps involved in the controller design process. Part II in a
companion paper contains the details of simulations and results of experimental model tests in
a towing tank equipped with a hydraulic wave maker.
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1. INTRODUCTION

The advent of offshore exploration and exploitation at an
unprecedented scale has brought about increasing interest
in the development of Dynamic Positioning (DP) systems
for surface vessels. Currently, there are more than 2000 DP
vessels of various kinds operating worldwide, see Sørensen
(2011a). DP systems are used with a wide range of vessel
types and in different marine operations; in particular,
in the offshore, oil, and gas industries many applications
are only possible with the use of DP systems for service
vessels, drilling rigs and drilling ships, shuttle tankers,
cable and pipe layers, floating production off-loading and
storage units (FPSOs), crane and heavy lift vessels, geolog-
ical survey vessels, and multi-purpose vessels. Cable and
pipe laying are typical operations that also need tracking
functionality. The main purpose of DP systems is to keep
the position and heading of marine structures within pre-
specified excursion limits under expected weather win-
dows. As such, they play a key role in many offshore
operations aimed at improving the efficiency and safety
of oil exploitation techniques.
DP systems came to existence in the 1960s for offshore
drilling applications for the first time, due to the need to
drill in deep waters and the realization that Jack-up barges
and anchoring systems could not be used economically at
such depths. Early DP systems were implemented using
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PID controllers, and in order to restrain thruster trembling
caused by the wave-induced motion components, notch
filters in cascade with low pass filters were used with the
controllers. However, notch filters restrict the performance
of closed- loop systems because they introduce some phase
lag around the crossover frequency, which in turn tends
to decrease the phase margin. An improvement in perfor-
mance was achieved by exploiting more advanced control
techniques based on optimal control and Kalman filter
theory, see Balchen et al. (1976). All these techniques were
later modified and extended in Balchen et al. (1980); Grim-
ble et al. (1980) and Fossen and Strand (1999). Applying
the LQG to the problem of DP requires the linearization
of the dynamics and kinematics of the plant over differ-
ent operating points; besides, for each operating point a
set of variables (such as covariances of disturbances and
weighting matrices) needs to be computed which makes
the procedure of tuning the controllers costly and bur-
densome. Moreover, Doyle (1978) showed that LQG has
no guaranteed phase and gain margins and the resulting
closed-loop regulator may have arbitrary small stability
margins. This led to the development of a simpler setup
using passive observers and nonlinear multivariate PID
controllers; see Fossen and Strand (1999). The literature
on ship DP is vast and defies a simple summary. See
for example Sørensen (2011b) and the references therein
for a short presentation of the subject and its historical
evolution.
Different sources of uncertainty in the DP problem led
to the application of robust control techniques to DP, see
Katebi et al. (1997, 2001); Donha and Katebi (2007). The
H∞ and mixed-µ are model based techniques and design
of a DP controller based on these methodologies requires
a linear model of the plant (computed by linearization of
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the plant about an operating point). The computation of
the latter for different operating points is cumbersome,
requires intensive computations, and may be very costly.
For these reasons, and in spite of the potential benefits
of using robust DP controllers, the assessment of their
performance has, to be best of our knowledge, been carried
out using only simulations or by performing experimental
tank tests; see Katebi et al. (2001).
DP systems have generally been designed for low-speed
and low Froude number applications, where the basic DP
functionality is either to keep a fixed position and heading
of a ship, or to move it slowly from one location to another.
In this work, using the low speed assumption, a linear
model with parametric uncertainties is developed based
on which, by assigning appropriate frequency weighting
functions and using H∞ and mixed-µ techniques, robust
controllers for different sea conditions (calm, moderate,
high, and extreme seas) are designed.
The structure of the paper is as follows. A brief introduc-
tion to important issues that arise in DP are presented
in section 2. Section 3 proposes a linear representative
vessel model with parametric uncertainties. Section 4 sum-
marizes the main ideas behind the DP robust controller
designing process in calm to high sea conditions. Section 5
explains the DP controller design procedure in extreme sea
conditions. Conclusions and suggestions for future research
are summarized in section 6.

2. DYNAMIC POSITIONING AND WAVE FILTERING

In DP systems, the key objective is to maintain the ship’s
heading and position within desired limits by means of
active thrusters. In order to design a robust DP controller a
linear model of plant must be derived first. Here, we should
stress that in the marine control literature different mathe-
matical models with different complexity levels are used for
different purposes. Two important models (see Sørensen
(2011a)) are formulated as the control plant model (or
design plant model) and the process plant model (or
simulation model). The first is a simplified mathematical
description containing only the main physical properties
of the process or plant and is used for the purpose of
controller design and stability analysis, using for example
Lyapunov stability and passivity tools. The second is a
comprehensive description of the actual process whose
main purpose is to simulate the real plant dynamics and
is used in numerical performance and robustness analysis
and testing of the control systems designed.
In this section we formulate the problem of modeling a DP
system using a low speed assumption. A linear plant model
with parametric uncertainty is obtained and used for DP
controller system design. Later on, in order to evaluate
the performance of the designed controllers, a nonlinear
high fidelity model, the Marine Cybernetics Simulator
(MCSim), is used; For details on the MCSim see Hassani
et al. (2012a).
In DP applications in open waters, waves produce a pres-
sure change on the hull surface of the vessel. This change
of pressure induces different forces and torques on the
vessel. Usually, only first and second order effects of these
pressure-induced forces are studied in DP applications.
The first order effect of the waves has an oscillatory nature
that depends linearly on the wave elevation. Hence, these
forces have the same frequency as that of the waves and
are therefore referred to as wave-frequency forces. The
second order effect of the waves depends nonlinearly on
the wave elevation, see Faltinsen (1990). The nonlinear
component of wave forces are due to the quadratic de-
pendence of the pressure on the fluid-particle velocity
induced by the passing of the waves. They have a wider
frequency range and they excite the vessel not only in the
in the wave frequency range but also in lower and higher

frequency ranges. While the mean wave forces make the
vessel drift, the oscillatory components of the wave forces
can lead to resonance in the horizontal motion of vessel
under positioning control. Hence, the motions of marine
vessels can often be divided into a low-frequency (LF) part
and a wave-frequency (WF) part. For most positioning
applications (usually for calm, moderate and high sea),
only the slowly-varying wave disturbances and mean wave
loads (in addition to wind and current loads) should be
counterbalanced by the propulsion system, whereas the
oscillatory motion induced by the waves (1st-order wave
effect) should not enter the feedback control loop. The
reasons for this could be that either the WF motion does
not matter for the particular operation, or the vessel does
not have enough power and thrust capacity for doing any
noticeable compensation at all. The latter reason is of
great importance, for there is no point in wasting fuel
and cause additional wear and tear of the propulsion
equipment. To this effect, the DP control systems should
be designed so as to react to the low frequency forces on
the vessel only. In the literature, this task is accomplished
by using so-called wave filtering techniques, which separate
the position and heading measurements into low-frequency
(LF) and wave-frequency (WF) position and heading esti-
mates (Fossen (2011)). Wave filtering observers provide an
estimate of the (low frequency) velocities computed from
corrupted measurements of position and heading. Later,
these estimates are used for control purposes. In designing
the robust DP controllers, this task is accomplished by
introducing appropriate frequency weighting functions and
performance signals. The latter will be addressed in details
in next section.
In extreme seas with high wave heights and/or long wave
lengths or in swell dominated seas, the assumption of
producing control action from the LF motion signals only,
may not be so evident, as the WF motions (due to long
wave lengths and thereby low frequency) will enter the
control bandwidth of the DP system. Furthermore, in high
sea states limitation of power and loss of thrust due to
ventilation, cavitation, and thruster-hull interactions will
give reduced performance. See Sørensen et al. (2002), and
Sørensen (2011b) for details on DP in extreme sea condi-
tion. In extreme sea condition the wave filtering is turned
off and all the components of motion are compensated in
the DP controller to the extend that the propulsion system
allows.
In the following sections, the design of a robust DP con-
troller will be addressed separately for normal (calm to
high) seas and extreme seas.

3. MODELING DP SYSTEMS

In what follows, the vessel model, that is by now stan-
dard 1 , is presented. See Fossen and Strand (1999);
Sørensen (2011a). The model admits the realization

ξ̇W = AW (ω0)ξW + EWwW (1)

ηW = R(ψL)CW ξW (2)

ḃ = −T−1b+ Ebwb (3)

η̇L = R(ψL)ν (4)

Mν̇ +Dν = τ +RT (ψtot)b (5)

ηtot = ηL + ηW (6)

ηy = ηtot + v (7)

1 The model described by (1)-(6) has minor differences with respect
to the ones normally described in the literature. While in most of
the references the WF components of motion are modeled in a fixed-
earth frame, in this paper the WF motion is modeled in body-frame.
The reader is referred to Hassani et al. (2012c,b) for details and
improvements of the present model.
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where (1) and (2) capture the 1st-order wave induced
motion in surge, sway, and yaw; equation (3) represents the
1st-order Markov process approximating the unmodelled
dynamics and the slowly varying bias forces (in surge
and sway) and torques (in yaw) due to waves (2nd order
wave induced loads), wind, and currents. The latter are
given in earth fixed coordinates but expressed in body-
axis. In the above, ηW ∈ R3 is the vessel’s WF motion
due to 1st-order wave-induced disturbances, consisting of
WF position (xW , yW ) and WF heading ψW of the vessel;
wW ∈ R3 and wb ∈ R3 are zero mean Gaussian white noise
vectors, and

AW =
[
03×3 I3×3
−Ω3×3 −Λ3×3

]
, EW =

[
03×1
I3×1

]
,

CW = [03×3 I3×3] ,

with

Ω = diag{ω2
01, ω

2
02, ω

2
03},

Λ = diag{2ζ1ω01, 2ζ2ω02, 2ζ3ω03},
where ω0i and ζi are the Dominant Wave Frequency
(DWF) and relative damping ratio, respectively. Matrix
T = diag(Tx, Ty, Tψ) is a diagonal matrix of positive bias
time constants and Eb ∈ R3×3 is a diagonal scaling matrix.
Vector ηL ∈ R3 consists of low frequency (LF), earth-fixed
position (xL, yL) and LF heading ψL of the vessel relative
to an earth-fixed frame, ν ∈ R3 represents the velocities
decomposed in a vessel-fixed reference, and R(ψL) is
the standard orthonormal yaw angle rotation matrix (see
Fossen (2011) for details). Equation (5) describes the
vessels’s LF motion at low speed (see Fossen (2011)),
where M ∈ R3×3 is the generalized system inertia matrix
including zero frequency added mass components, D ∈
R3×3 is the linear damping matrix, and τ ∈ R3 is a control
vector of generalized forces generated by the propulsion
system, that is, the main propellers aft of the ship and
thrusters which can produce surge and sway forces as well
as a yaw moment. Vector ηtot ∈ R3 describes the vessel’s
total motion, consisting of total position (xtot, ytot) and
total heading ψtot of the vessel. Finally, (7) represents the
position and heading measurement equation, with v ∈ R3

a zero-mean Gaussian white measurement noise.

Usually, in the design of controllers or observers for DP
systems (especially for station keeping missions), the fol-
lowing assumptions are made. These assumptions are
widely used in the literature, see Fossen and Strand (1999):
Assumption 1 The position and heading sensor noises are
neglected, that is, v = 0 because the measurement error
induced by measurement noise is negligible compared to
the wave-induced motion. 2

Assumption 2 The amplitude of the wave-induced yaw
motion ψW is assumed to be small, that is, less than
2-3 degrees during normal operation of the vessel and
less than 5 degrees in extreme weather conditions. Hence,
R(ψL) ≈ R(ψL + ψW ). From Assumption 1 it follows
that R(ψL) ≈ R(ψy), where ψy ∼= ψL + ψW denotes the
measured heading.
Assumption 3 Low speed assumption, implying that the
time-derivative of the total heading ψ̇tot is small, bounded,
and close to zero.
We will also exploit the model property that the bias time
constants in the x and y directions are equal, i.e. Tx = Ty.
In what follows we will consider a reference frame consist-
ing of vessel parallel coordinates as introduced in Fossen

2 At this point, we stress that the noise free assumption is only used
to derive a control plant model but later on, in the design process
and simulation and verification, the effect of the measurement noise
will be considered.

(2011); Sørensen (2011a). In sea keeping analysis (vessel
motions in waves) the hydrodynamic frame is generally
moving along the path of the vessel with the x-axis positive
forwards, y-axis positive to the starboard, and z-axis pos-
itive downwards. The XY-plane (in hydrodynamic frame)
is assumed fixed and parallel to the mean water surface.
The vessel is assumed to oscillate with small amplitudes
about this frame such that linear theory can be used to
model perturbations. In station keeping operations (dy-
namic positioning) about desired coordinates xd, yd, and
ψd, the hydrodynamic frame is Earth-fixed and denoted as
the vessel parallel frame. It is defined in a reference frame
fixed to the vessel, with axes parallel to the earth-fixed
frame and the origin is translated to the desired xd and yd
(in this study we assume that xd = yd = 0). Let ηpL ∈ R3

denote the LF position (xpL, y
p
L) and LF heading ψpL of the

vessel, respectively expressed in body coordinates, defined
as

ηpL = RT (ψtot)ηL. (8)
Computing its derivative with respect to time yields

η̇pL = ṘT (ψtot)ηL +RT (ψtot)η̇L

= ṘT (ψtot)R(ψtot)η
p
L +RT (ψtot)R(ψL)ν (9)

Using a Taylor series to expand RT (ψtot) about ψL and
neglecting higher order terms, it follows that

RT (ψtot)R(ψL) ∼= I + ψWS, (10)
where

S =

[
0 1 0
−1 0 0
0 0 0

]
.

Using simple algebra we obtain

ṘT (ψtot)R(ψtot) = ψ̇totS. (11)

From (9), (10) and (11) we conclude that

η̇pL ≈ ψ̇totSη
p
L + ν + ψWSν. (12)

We now study the time evolution of the slowly varying bias
forces, b, expressed in the in the vessel parallel coordinates,
bp, as follows:

bp = RT (ψtot)b. (13)
Clearly,

b = R(ψtot)b
p, (14)

and differentiating both sides yields

ḃ = Ṙ(ψtot)b
p +R(ψtot)ḃ

p. (15)

Using (3), (14) and (15) we obtain

Ṙ(ψtot)b
p +R(ψtot)ḃ

p = −T−1R(ψtot)b
p + Ebwb. (16)

Reordering (16) and multiplying both sides by RT (ψtot)
gives

ḃp = −RT (ψtot)T−1R(ψtot)b
p −RT (ψtot)Ṙ(ψtot)b

p

+RT (ψtot)Ebwb. (17)

Using the assumption that Tx = Ty, it can be checked
that RT (ψtot)T = TRT (ψtot); simple algebra also shows

that RT (ψtot)Ṙ(ψtot) = −ψ̇totS.
Equation (17) can be expressed as

ḃp = −T−1bp + ψ̇totSb
p +RT (ψtot)Ebwb. (18)

Summarizing the equations above yields

ξ̇W = AW (ω0)ξW + EWwW (19)

ηW = R(ψL)CW ξW (20)

ḃp = −T−1bp + ψ̇totSb
p +RT (ψtot)Ebwb (21)

η̇pL = ψ̇totSη
p
L + ν + ψWSν (22)

Mν̇ +Dν = τ + bp (23)
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Moreover, using assumptions 1, 2 and 3 a linear model
with parametric uncertainty is obtained that is given by

ξ̇W = AW (θ1)ξW + EWwW (24)

ηbW = CW ξW (25)

ḃp = −T−1bp + θ2Sb
p + wfb (26)

η̇pL = θ2Sη
p
L + ν + θ3Sν (27)

Mν̇ +Dν = τ + bp (28)

ηfy = ηpL + ηbW + n (29)

where ηbW are WF components of motion on body-

coordinate axis, and wfb and ηfy are a new modified dis-

turbance and a modified measurement defined by wfb =

RT (ψy)Ebwb and ηfy = RT (ψy)ηy, respectively,
3 n ∈ R3

is the measurement noise, and finally θ1, θ2, and θ3 are
ω0, ψ̇tot, and ψW , respectively, which will be treated as
parametric uncertainties. 4

4. ROBUST DP CONTROLLER DESIGN IN
NORMAL SEA CONDITIONS

This section describes the application of H∞-based, µ
synthesis controller design techniques to the solution of
the DP problem. See Skogestad and Postlethwaite (2006);
Francis (1987) for an introduction to these techniques and
Balas (2009) for a mixed-µ design suite implemented in
Matlab. In what follows, we adopt the general setup and
nomenclature in the seminal work of Doyle et al. (1989).
This leads to the standard feedback system of Fig. 1 (a),
where w is the input vector of exogenous signals, z is
the output vector of errors and performance signals to
be reduced, y is the vector of measurements that are
available for feedback, and u is the vector of actuator
signals. Suppose that the feedback system is well-posed,
and let Twz(s) denote the closed loop transfer matrix from
w to z. The H∞, synthesis problem is to find, among
all controllers that yield a stable closed loop system, a
controller K that minimizes the infinity norm ∥Twz(s)∥∞
of Twz(s). We remind the reader that ∥Twz(s)∥∞ equals
sup{σmax(Twz(jω)) : ω ∈ R} where σmax(.) denotes the
maximum singular value. Furthermore, ∥Twz∥∞ may be
interpreted as the maximum energy gain of the closed
loop operator Twz. In mixed-µ synthesis, the structured
singular value of a linear fractional transformation (LFT)
of the plant and controller are used instead of the max-
imum singular values. The Structured Singular Values,
denoted SSV or complex-µ (later modified to mixed-µ),
were introduced in Doyle (1982) and Packard and Doyle
(1993). In order to obtain a good design for a controller
K, accurate knowledge of the plant is required. In practice,
obtaining an accurate process model of the plant is almost
impossible. The model may be inaccurate and there may
be unmodelled dynamics and parametric uncertainties in
the plant. To deal with this problem, the concept of model
uncertainty must be considered. The unknown plant P
is assumed to belong to a “legal” class of control plant
models, P, built around a nominal model P0. The set
of models P is characterized by a matrix ∆, which can
be either a full matrix or a block diagonal matrix, that

3 When designing observers for wave filtering in DP, since the
controller regulates the heading of the vessel, the designer can assign

a new intensity to wf
b
; however, assigning the intensity of the noise

in practice requires considerable expertise.
4 In this paper, during the controller design process θ1, θ2 and
θ3 are treated as fixed parametric uncertainties. The methodology
introduced can be extended to deal with time-varying parametric
uncertainties with bounded rates of variation; see Rosa et al. (2009).
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Fig. 1. Standard Feedback Configuration (with and with-
out uncertainty).
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Fig. 2. Nominal Setup with Frequency Weighting Func-
tions to Design a Robust Controller.

includes all possible system structured uncertainties. We
also use the weighting matrices (and incorporate them
into P ) to express the uncertainty in terms of normalized
uncertainties in such a way that ∥∆(s)∥∞ ≤ 1. The general
control configuration in Fig. 1 (a) may be extended to
include model uncertainty as shown in Fig. 1 (b).

Fig. 2 shows the nominal setup for designing a robust
controller. Later, this setup will be used to form the
standard feedback system of Fig. 1 which will be used
in the mixed-µ synthesis methodology; Balas (2009). To
this effect, we design a robust DP controller which yields
stability and performance robustness; using the mixed-µ
software (see Balas (2009)), the performance parameter Ap
in Fig. 2 is increased as much as possible, until the upper-
bound on the mixed-µ, µub(ω), satisfies the inequality

µub(ω) ≤ 1 ∀ω. (30)

In what follows we explain the different blocks of the
Fig. 2 in detail. Using the control model of the marine
vessel given in (24)-(29), a state-space representation of
the plant, including the disturbance and noise inputs, is
given by

ẋ(t) = A(θ)x(t) +B u(t) + Lw(t),

y(t) = C1x(t) + v(t),

z(t) = C2x(t),

where u(t) = τ(t) is a control vector of generalized forces

generated by the propulsion system, w(t) = [wW wfb ]
T is a

disturbance vector, v(t) is measurement noise, y(t) is the
measured output (total motion in body-frame), z(t) is the
performance signal (LF component of motion in parallel-

frame), the state vector is x(t) = [ξW
T ηpL

T
νT bpT ]T , and

the system matrices (A(θ), B, C) are defined in the obvious
manner. Notice that the A(θ) matrix contains parametric
uncertainties (θ1, θ2, and θ3) as defined before. We assume
that the pairs (A(θ), B) and (A(θ), C) are controllable
and observable, respectively, for all admissible parameter
values.
Table 1 shows the definition of the sea conditions associ-
ated with the particular model of offshore supply vessel
that is used in our study. In the study we will design
a robust DP controller for four different scenarios: calm
seas, moderate seas, high seas, and, extreme seas. The in-
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Table 1. Definition of Sea States

Sea States DWF Significant Wave Height
ω0 (rad) Hs (m)

Calm Seas > 1.11 < 0.1
Moderate Seas [0.74 1.11] [0.1 1.69]

High Seas [0.53 0.74] [1.69 6.0]
Extreme Seas < 0.53 > 6.0

Table 2. Interval of Parametric Uncertainties

Sea States θ1 θ2 θ3
rad/s rad/s rad

Calm Seas [1.11 1.8] Int∗ [−0.038 0.038]
Moderate Seas [0.74 1.11] Int [−0.04 0.04]

High Seas [0.53 0.74] Int [−0.042 0.042]
Extreme Seas [0.39 0.53] Int [−0.04 0.04]
∗ Int=[−5× 10−4 5× 10−4]

tervals of parametric uncertainty for θ in the four different
scenarios are given in Table 2.

4.1 Frequency Weighting Functions

As is well known, given a plant with structured and
unstructured uncertainty it is not possible in general to
obtain (by proper controller design) robust stability and
performance uniformly, across all frequencies, where the
latter is measured with the help of properly chosen perfor-
mance signals. For this reason, it is crucial (for H∞ control
systems design) that frequency-dependent performance
weights be introduced so as to reflect desired performance
objectives over different frequencies. Appropriate selection
of these weights provides flexibility in the control design
process. The DP control design methodology that we pro-
pose builds heavily on the new design model introduced
here and exploits the difference in the frequency contents
of ηL and ηW . In the process, the choice of a weighting
function for low frequency disturbance attenuation pur-
poses is crucial.
During the process of DP robust controller design, con-
trollers, we used the mixed-µ synthesis toolbox to maxi-
mize Ap (in Fig. 2) while making sure that robust stability
and performance are observed. Fig. 3 depicts graphically
the magnitude of the frequency response of nominal per-
formance weighting transfer function, Wp(s). We remark
that the performance weight Wp(s) penalizes output ηpL
in the low frequency range where the slowly varying dis-
turbance bp has most of its effect. The gain parameter
Ap in Wp(s) specifies our desired level of LF disturbance-
rejection. The larger Ap, the greater the penalty on the
effect of the disturbances on the LF motion. For superior
disturbance-rejection in the LF range, Ap should be as
large as possible. Moreover, the performance weightWp(s)
places a smaller penalty on performance output ηpL in
the mid-range frequencies where WF motion has most of
its effect. In particular, this selection dictates our wave
filtering demands to the H∞ controller. Such a Wp(s) can
be found by cascading a low-pass and a narrow band-
pass filter together, see Fossen (2011); Sørensen (2011a)
for details of DP wave filtering using cascaded low-pass
and notch filtering.
To reduce the thruster modulation to the lowest possible
level, an appropriate weighting function should be chosen
to penalize the control action differently over different
frequencies. The rational is that the weight should be
selected so that the control energy is penalized in the
high-frequency. This avoids saturation as well as excitation
of the high-frequency dynamics. The magnitude of the
frequency response of a nominal control weighting transfer
function, Wu(s), is presented graphically in Fig. 3. This
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Fig. 3. Choice of Weighting Functions Wp(s) and Wu(s).

selection allows for larger control activity in lower frequen-
cies and penalizes large controls at higher frequencies.

4.2 Unmodelled Dynamic and Unstructured Uncertainty

Robust controllers designed using mixed-µ synthesis can
yield robust stability and performance in presence of both
parametric uncertainty and unstructured uncertainties (or
unmodelled dynamics). In the work of Katebi et al. (1997),
a robust H∞ controller is designed by minimizing the
infinity norm of the transfer matrix from disturbances
to a performance signal. That being done, the authors
examined what amount of unmodelled dynamics could be
tolerated in the feedback loop, using a small gain theorem.
Clearly, such formulation may lead to conservative results.
In this paper we aim for less conservative results with
maximum performance and also simplicity in the design
procedure. To capture the effect of unmodelled dynamics
in our control plant model, it is also assumed that in-
put forces and torque are provided through an actuator
whose bandwidth is unknown but in some fixed known
interval and its dc gain has 2 percent uncertainty; this
amplifier can be described in the form of some nominal
first order transfer function G0(s) and a multiplicative un-
certainty described with some transfer function Wunc(s).
The computed frequency-domain upper-bound for the un-
structured uncertainty, which serves in this example as
a surrogate for unmodelled dynamics, Wunc(s), captures
some important practical features. This implies that the
designed controller K(s) provides robust-stability and-
performance for the nominal vessel model with some per-
centage of model perturbation (one can easily compute its
exact value) over different frequencies; see Hassani et al.
(2012a) for details.
Summarizing our design process, Fig. 4 shows the appro-
priate augmented structure for DP H∞ controller design.

5. ROBUST DP CONTROLLER DESIGN IN
EXTREME SEA CONDITION

In extreme seas and extreme conditions the nonlineari-
ties due to large motions will be more noticeable for the
WF motions. Also, the coupling between the horizontal
plane motions and the vertical motions will become more
important. As the sea state builds, it is also a challenge
to distinguish the LF motions from the WF motions. At
higher sea states, the period of the waves gets longer,
resulting in decreasing wave frequencies. Thus, the formu-
lation of hydrodynamics models appropriate for controller
designs is still a subject for research. In such conditions
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Fig. 4. Standard Feedback Configuration Developed for
DP.

(extreme seas or swell with very long wave periods) wave
filtering should be turned off, see Sørensen (2011b), and
in particular Sørensen et al. (2002) for details on the
effect of wave filtering in extreme seas. Based on Sørensen
et al. (2002) the state space control plant model for DP in
extreme sea can be described by

ḃ = −T−1b+ Ebwb (31)

η̇ = R(ψ)ν (32)

Mν̇ +Dν = τ +RT (ψ)b (33)

ηy = η + v (34)

which is similar to the one in (1)-(7), excluding the WF
motion components.
To design a robust DP controller for extreme sea condi-
tions, the methodology explained in the previous section
can be used. However, the frequency weighting functions
must be changed. We suggest a new frequency weighting
function Wp(s) as

Wp(s) = ApWL(s)

where WL(s) is some low-pass filter and Wp(s) is applied
to the total motion of the vessel, i.e. the controller should
compensate for both LF and WF motions.

6. CONCLUSION

This paper proposed a new strategy for the design of
robust DP controllers for marine vessels under different
sea conditions using mixed-µ synthesis. The next part of
this work, Hassani et al. (2012a), describes the outcome
of the design process and contains details of simulations
as well as results of experimental model tests in a water
tank.
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