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Abstract: This paper presents a Discrete-Time Variable-Structure Control (DTVSC) for the
dynamic positioning system of a marine supply vessel. The DTVSC guarantees robustness with
respect to disturbances and parametric variations. Two wave-filtering approaches are employed:
the Extended Kalman filter (EKF) and the multi-rate Kalman filter (MREKF) . The proposed
solution is compared with a PID-based control and a passive non-linear wave filter. The reported
simulations show that the proposed solution produces better performances and it is robust in
the presence of input disturbances and model uncertainties.
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Fig. 1. Closed-loop DP system

1. INTRODUCTION

The number of vessels equipped with dynamic position-
ing (DP) systems has rosen in the recent years due to
increasing oil and gas exploration at sea. The DP is an
autonomous control system that acts as to maintain the
vessel position and the angle of direction at a reference
point by means of the vessel propulsion and manoeu-
vring thrusters. Knowledge of thruster allocation, com-
bined with information from the sensors (GPS, gyroscopes,
etc), is used to calculate the steering angle and the thrust
for each thruster. The control action maintains the desired
position and orientation according to a navigation path
or a specific task (absolute or relative DP). The dynamic
positioning system can be decisive in those situations in
which the position of the unit is bound to a specific point
on the seabed (absolute DP), or it is related to a moving
unit, like when the ship is operating with other vessels or
for remotely operated underwater vehicles.

Up to now, most dynamic positioning systems have been
used for positioning drill ships in deep water, and other
offshore operations, such as diving support and anchor
handling. Furthermore, DP systems have been applied
increasingly to shuttle tankers during offloading opera-
tion with a floating production storage and offloading
(see Fossen (2011) and Sorensen (2011)). The first DP
systems were designed using conventional PID controllers

in cascade with low pass and/or notch filters to suppress
the wave induced motion components. From 1980, a new
model-based control concept, which is based on stochastic
optimal control theory and Kalman filtering techniques,
was employed to address the DP problem by Balchen
et al. (1980). Later extensions and modifications of the
latter work have been proposed by numerous authors, see
Sorensen (2011) Fossen (2000), Strand and Fossen (1999)
and Fang et al. (2011) and references therein. In Xia et al.
(2005) and in Tannuri and Agostinho (2010) the sliding
mode control is used with a Passive Nonlinear Observer
for the DP problem.

This paper presents an innovative solution for the DP
control system of a vessel which is based on the Discrete-
Time Variable Structure Controller (DTVSC) and Wave
Filtering using an (Multi-rate) Extended Kalman Filter.
The block diagram of the control loop is shown in Figure
1. .The introduction of DTVSC allows to take into account
the issue of control law digitalization directly. Moreover it
ensures robustness with respect to model uncertainties and
input disturbances acting on the actuators. An Extended
Kalman filter (EKF) is designed in order to estimate the
disturbances induced by the first order wave forces on the
thruster. This is done to minimize the thruster efforts. The
estimation is improved by means of a Multi-Rate Extended
Kalman Filter (MREKF) which allows to take into account
differences in working frequency of the sensors.

The paper is organized as follows. The kinematic and dy-
namic equations, the thruster allocation, the wave model
and the measurement system are presented in Section 2.
The control system, in particular the DTVS controller, is
reported in Section 3. The filter techniques are discussed
in Section 4. Simulation results are presented in Section 5.
The paper ends with conclusions and comments.
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Fig. 2. Thrusters configuration for the offshore supply
vessel

2. SHIP MODEL

2.1 Kinematic and Kinetics equations

Following Fossen (2011), the dynamics of marine vessels
can be described using the following general model:

η̇ = J(η)ν

MRBν + CRB(ν)ν = τh + τc + τenv
(1)

where the vector variables η and ν represent the gen-
eralized displacement and body-fixed velocities, and τh,
τc and τw represent the hydrodynamic, control and wave
disturbance forces respectively. The term ν is defined with
respect to a body reference frame b, fixed to the vessel.
The term η is defined with respect to a local geographical
frame n, fixed to the mean water level. Only movements
of the vessel on the surface of the water are considered for
DP systems. Therefore, movements on the vertical axis as
well as pitch and roll movements can be neglected. Then,
the horizontal motion of a ship is described by the mo-
tion components in surge, sway and yaw. The generalised
position and velocity vectors are given by:

η = [n, e, ψ]
T

ν = [u, v, r]T
(2)

The DP operations are low-speed applications, therefore
the quadratic terms of the velocities can be neglected.
Given the previous hypothesis and (1), the kinematics of
the vessel can be characterised by the following rotation:

η̇ = R(ψ)ν (3)

where J(η) = R(ψ) is the rotation matrix from body-
fixed velocities to linear generalized displacement. The
low-frequency dynamic equation from (1) is:

Mν̇ +Dν = τc (4)

where M3×3 is the inertia matrix, D3×3 is the damping
matrix. The quadratic velocity terms are negligible in DP.
Details about kinematic and dynamic equations can be
found in Fossen (2011).

2.2 Thruster Allocation

For marine vessels with n DOF, the generalized control
forces τc ∈ ℜn are distributed among the actuators in
terms of control inputs uc ∈ ℜr (where r is the number of
thrusters). A graphical representation is visible in Figure
2. The command forces and moments can be written as:

τc = T (α)Kuc (5)

where f = Kuc ∈ ℜr is the thrust force vector. The thrust
coefficient matrix K is a diagonal matrix of thrust coef-
ficients. The actuator configuration matrix T (α) depends

only on the location and orientation α of the actuators
on the ship hull. The offshore supply vessel, which is used
for testing the DP, has two main propellers, two tunnel
thrusters and two azimuth thrusters, as shown in Figure
2. Hence we have 6 control variables for 3 DOF. Due to
the symmetric disposition of the thrusters and propellers
we can assume:

uci = uci+1
for i = 1, 3, 5 (6)

In case of input torque disturbances ud on the actuators
(5) becomes:

τc+d = τc + τd = T (α)K(uc + ud) (7)

2.3 Enviromental disturbances

The environmental disturbances are due to both, slowly
varying and high-frequency forces. Generally, the slowly
varying environmental forces include the 2nd-order wave
drift forces, the ocean current forces and the wind forces.
These forces can be modelled as a bias:

ḃ = w (8)

where w is a zero-mean Gaussian white noise, see Fossen
(2011). The motion of an offshore supply vessel in a seaway
is also affected by high-frequency disturbances caused by
the 1-st order waves, which are random both in time
and space. Therefore, the mathematical models for these
wave components and their effects on the ship motion
are depicted in a stochastic framework, Perez and Blanke
(2002). Following Fossen (2011), it is possible to derive a
linear approximation of the ship motion response to the 1-
st order wave forces. Indeed the latter can be represented
by a 1-st order transfer function driven by white noise:

hw(s) =
Kws

s2 + 2λwω0s+ ω2
0

(9)

where Kw = 2λω0σw is the gain constant, σw is a constant
describing the wave intensity, λw is a damping coefficient
and ω0 is the dominating wave frequency. A linear state-
space model can be obtained from (9) by defining ξ̇1 = ξ2
and ξ2 = yω:

ξ̇ = Aωξ + Eωw1

yω = Cωξ
(10)

2.4 Measurement Systems

For conventional ships, only positioning and heading mea-
surements are available. The position measurement is ob-
tained by a GPS sensor and the heading measurement is
obtained by a gyroscope sensor. In general, sensors work
at different frequencies.

3. CONTROL SYSTEM

The DP control system, proposed in this paper, is
based on the Discrete-Time Variable Structure Controller
(DTVSC). The DTVSC is a state-feedback technique.
Each state component can be equal to one of two state
functions: the switching determines the discontinuity. For
more details, see Utkin (1992), Furuta (1990), Corradini
and Orlando (1997), Ciabattoni et al. (2010) and refer-
ences therein. The introduction of DTVSC allows to take
into account the issue of control law digitalization directly
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and to ensure robustness with respect to model uncertain-
ties and input disturbances acting on the actuators. The
control system scheme is shown in Figure 1.

We can discretize (4) using standard techniques consider-
ing a sampling time Tc as:

ν(k + 1) = e−M−1DTc︸ ︷︷ ︸
F

ν(k) +

∫ Tc

0

e−M−1DTcM−1T (α)K dσ

︸ ︷︷ ︸
G

uc(k)

(11)

We can define the generalised force vector in the body-
fixed frame to be imposed by the control law as:

τ∗(k) = [τ∗u(k)τ
∗

v (k)τ
∗

r (k)]
T = G · uc(k). (12)

As a consequence, the following discrete dynamic model
can be obtained:

ν(k + 1) = Fν(k) + τ∗(k) (13)

In order to take into account model uncertainties, we
assume that the model parameters may differ from their
nominal values for some unknown but bounded quantities:

F = F +∆F G = G+∆G. (14)

Defining ν(k) = [u(k), v(k), r(k)]
T

and the velocity ref-

erence ν∗(k) = [u∗(k), v(k)∗, r∗(k)]
T
, obtained using the

inverse kinematic equation from (3) and a reference tra-
jectory, we can define a reference error as:

∆ν(k) = ν(k)− ν∗(k). (15)

The control objective of the DTVSC is to let the state
reach the intersection of two switching surfaces and to
remain at their intersection, see Furuta (1990), Corradini
and Orlando (1997). Using (15) we can define the two-steps
sliding surfaces as:

s(k) = ∆ν(k) + λ1∆ν(k − 1) + λ2∆ν(k − 2) = 0 (16)

where λ1, λ2 are tuning parameters which ensure that the
zeros of (16) are inside the unit circle. The condition
limk→∞ s(k) = 0 must be verified in order to reach the
control objective, Furuta (1990). This requires

|s(k + 1)| < |s(k)|, ∀k. (17)

From (17), defining ∆s(k + 1) = s(k + 1) − s(k), we can
obtain the discrete sliding mode existence condition as:

s(k)T∆s(k + 1) < −
1

2
(∆s(k + 1))T (∆s(k + 1)). (18)

Let us consider the following control law:

τ∗(k) = τ∗eq(k) + τ∗n(k) (19)

. Using (13), (14) and (16), we can define:

τ∗eq(k) = ν(k) − Fν − s(k)

τ∗n(k) =

{
ϑ · (|s(k)| − ρ) if |s(k)| > ρ

−s(k) + τ∗n(k − 1) if |s(k)| ≤ ρ

(20)

where the parameter |ϑ| ≤ 1 and

ρ =∆Fνmax + ρ∗

ρ∗ ≥ | ν∗(k + 1)− ν∗(k)|
(21)

Following Corradini and Orlando (1997), it can be demon-
strated that (19) satisfies the condition in (18) outside a
given sector defined by |s(k)| > ρ, where ρ is defined in
(21). ρ depends on the model uncertainties defined in (14).
Inside the sector defined by ρ, the sliding condition (18)
can be imposed only approximately, using the approach of
Time Delay Control. In order to obtain zero steady-state
errors in surge, sway and yaw, it is possible to sum an

integral action τI , appropriately discretized, to the control
law of th DTVSC, see Fossen (2011):

τI(k) = τI(k − 1) +KITce(k − 1) (22)

where e(·) is the error in surge, sway and yaw. The final
control law uc is given by resolving the set of equations
which are obtained combining (6) and (12) with the
DTVSC and integral actions.

τ∗(k) + τI(k) = Guc(k)

uci(k) = uci+1
(k) for i = 1, 3, 5

(23)

4. WAVE FILTERING

Wave filtering is one of the most important aspects to
take into account when designing ship control system.
Only the slowly-varying disturbances are counteracted
by the steering and propulsion systems. The oscillatory
motion, due to the 1-st order waves, should be prevented
from entering the feedback loop. This allows to prevent
larger chattering phenomena in the control system. This
objective can be reached by using a wave filter, which is
usually a model-based observer, in the feedback loop.

4.1 Extended Kalman Filter

A commonly used technique, which enables the use of
the Kalman Filter for non-linear systems, involves the
linearisation of the system equations. This leads to the
Extended Kalman Filter. In the case of the DP , 4) can be
rewritten as

Mν̇ +Dν = T (α)K (uc + ud), (24)

where ud is the vector of actuator disturbances. Also,
considering (3) and (10), the resulting DP observer model
is:

ξ̇ = Awξ + Eww1

η̇ = R(ψ)ν

ḃ = w2

u̇d = w3

Mν̇ = −Dν + T (α)K(uc + ud) +R(ψ)T b+ w4

y = η + Cwξ + v.

(25)

The latter can be written in the following form:

ẋ = f(x) +Buc + Ew

y = Hx̂+ v
(26)

that is

ẋ =




Awξ

R(ψ)ν
03×3

06×3

M−1(−Dν + T (α)Kud + R(ψ)T b)


+

+




06×3

03×3

03×3

06×3

M−1T (α)K


uc +




Eω

03×3

I3×3

I6×6

M−1


w

y =
[
Cω I3×3 03×3 03×6 03×3

]
x̂+ wm

(27)

where x = [ξT , ηT , bT , uTd , ν
T ] is the state vector and w =

[wT
1 w

T
2 w

T
3 w

T
4 ] is the vector of the process white noise. The

term R(ψ) is non-linear, as a consequence it is necessary
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to linearise and discretize the system equation. In case of
constant input disturbances acting on the actuators, the
Kalman filter state ud is reinitialized using an estimated
disturbance value provided by an on-line detector module.
See Fossen (2011) and Fu et al. (2010) for more details.
The Extended Kalman filter equations are:

Pk+1/k = ÂdPk/kÂ
T
d + EdQE

T
d

Kk+1 = Pk+1/kH
T (HPk+1/kH

T +R)−1

x̂k+1/k+1 = x̂k+1/k +Kk+1(y −Hx̂k+1/k)

Pk+1/k+1 = (I −Kk+1H)

x̂k+2/k+1 = Âdx̂k+1/k+1 + f(x)− Âdx̂k/k+1 + B̂duc(k).
(28)

4.2 Multi-rate Kalman Filter

Usually, sensors do not work at the same frequency, so
not all measures are present at any instant of time.
This can be modelled with different multi-rate techniques
for time-varying model, such as the delta-functions. The
introduction of the delta functions modifies the expression
of the Kalman gain indicating the presence or the absence
of measurements in every estimation instant. When there
are no measurements available, matrices are zero and it is
only necessary to run the prediction equations. When new
measurements are available, matrices are unitary and all
the Kalman filter equations can be run. This formulation
changes the Kalman filter gain as follows:

Kk+1 = Pk+1/kH
T (HPk+1/kH

T + R)−1
·∆k (29)

The Kalman filter gain is composed by a prediction and a
correction, made through the sensor measurements. When
measurements are not available, the multirate Kalman
filter only predicts, placing a zero in the ∆k matrix. For
more details see Mora and Tornero (2008).

5. SIMULATION RESULTS

In this section we present the results of the simulations.
The DTVSC is compared with a PID controller from
Fossen and Perez (2010). Kalman filters based observers
are tested against a Passive Nonlinear Observer from
Strand and Fossen (1999). The MSS tollbox from Fossen
and Perez (2010) has been used for the simulations. This
toolbox provides a PID controller, whose parameters are
chosen using an LQR algorythm (see Fossen (2011)) and
a Passive Nonlinear Observer, whose notch frequency is
tuned by Strand and Fossen (1999) to correspond to the
wave peak frequency.

We use the dynamic model of the CyberShip 2 (CS2)
for simulations. This is a 1:70 scale model of an offshore
supply vessel with a mass of 15 kg and a length of
1.255 m. The maximum surge force is approx. 2.0 N,
the maximum sway force is approx. 1.5 N, while the
maximum yaw moment is about 1.5 Nm. This ship is
located in the Marine Cybernetics Laboratory (MCLab)
at the Norwegian University of Science and Technology.
For more details about the CS2 see Skjetne et al. (2004).

Simulations are run for a total period of 2000 s and
separated in two successive stages. In the first stage the
dynamic positioning system must maintain the vessel
fixed to the initial position (ηref = {0m, 0m, 0deg}),
despite environmental disturbances from wave, wind and

currents. In the second stage the dynamic positioning
system must take the ship to a different position (ηref =
{20m, 20m, 50deg}). To avoid abrupt acceleration, due
to the reference position change, we impose a smooth
reference position change. The reference path and the two
stage in the simulations are shown as black solid line in
Figure 4. We refer to the first and second stages as Costant
References and Varying References condition respectively.

We use the mean Integral of Squared Error (ISE ), a
commonly used performance index in control and esti-
mation theory (see Grensted and Fuller (1965), to get
a quantitative comparison between the results obtained
in different simulations. For the DP system the indices
depend on the error between the reference position and
orientation and the position and orientation measured
by the sensors, namely e(t) = ηref (t) − η(t). The mean
ISE index expression, normalized with respect to the time
follows:

ISE :
1

T

∫ tf

t0

e(t)
2
dt. (30)

Then we use the following expression as the percentage
variation when comparing PID and DTVSC performances:

%ISE :
ISEDTV SC − ISEPID

ISEPID
· 100. (31)

5.1 CASE A: Filters comparison

In this case, the Extended Kalman filter, the multi-rate
Kalman filter and the Passive Nonlinear Observer are
compared, using the DTVS controller. The peak frequency
of the wave disturbances is ω0 = 0.8rad/s and the Pas-
sive Nonlinear Observer is tuned up using 0.8 rad/s as
the notch frequency. Results are shown in Figure 3. We
compare the variances of control inputs in order to quan-
titatively evaluate the performance of the three filters , see
Table 1.

The Passive Nonlinear Observer shows worse performance
with respect to the other filters. Furthermore, the control
efforts amplitudes, when using the Passive Nonlinear Ob-
server are much larger (up to 55%) than the ones generated
when using the EKF or MREKF filters, as is evident com-
paring the variances. Considering that the Kalman filters
have comparable performances, but that the Multi-rate
Kalman Filter can take into account differences among
sensors sampling frequency, the latter is chosen as the
reference filter for evaluating the controller performances
in the next Section 5.2.

5.2 CASE B: Controllers comparison

In this second case, the PID and DTVS controllers are
compared using the Multi-Rate Extended Kalman filter.
Performances are compared both in the first and second

Table 1. Variances of generalized forces using
different filtering techniques, Passive Nonlin-
ear Observer (PNLO) used as reference value

for percentage variation

τu τv τr

PNLO 0.0071 0.0371 3.3797 · 10−5

EKF 0.0061 -14% 0.0249 -32% 1.8808 · 10−5 -55%
MREKF 0.0061 -14% 0.0251 -32% 1.8658 · 10−5 -44%

Copyright held by the International Federation of
Automatic Control

174



Table 2. ISE performance comparison between
DTVSC and PID controller. In CASE C we
consider a 20% increase of the inertia param-
eters of the vessel. In case D we consider a
torque input disturbance affecting uc1 with
a magnitude equal to the 30% of the maxi-
mum value. Both the Costant References and
Varying References conditions are considered.
We use % ISE defined in (31) as percentage

variation in the performance index.

Constant References Varying References

CASE B: Controllers comparison in nominal conditions

DTVSC PID % ISE DTVSC PID % ISE
n 0.0291 0.0291 0% 0.0580 0.3570 -84%
e 0.0291 0.0291 0% 0.0582 0.7293 -92%
ψ 6 · 10−5 6 · 10−5 0% 0.0001 0.0623 -99%

CASE C: Robustness to Parametric Variations

DTVSC PID % ISE DTVSC PID % ISE
n 0.032 0.13 -75% 0.072 0.38 -81%
e 0.031 0.19 -83% 0.07 0.72 -90%
ψ 7 · 10−5 0.0007 -90% 0.0001 0.06 -99%

CASE D: Robustness to toque input disturbance

DTVSC PID % ISE DTVSC PID % ISE
n 0.0874 0.1285 -34% 0.1187 0.4771 -75%
e 0.0354 0.1841 -80% 0.0666 0.8056 -92%
ψ 0.0023 0.0028 -17% 0.0036 0.1226 -97%
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Fig. 3. (Upward) Zoomed plot showing the comparison
between reference surge displacement (blue solid line)
and measured surge displacement when using different
observers: the Extended Kalman filter (red dotted
line), the multi-rate Kalman filter (black dotted line)
and the Passive Nonlinear Observer (purple dash-
dotted line). (Downward) Zoomed plot showing the
comparison of the first control input uc1 when using
different observers: the Extended Kalman filter (blue
line), the multi-rate Kalman filter (red line) and the
Passive Nonlinear Observer (purple line)

stage, when the references are constants and when the
references are varying, respectively. The results are shown
in Figure 4 and the performances index are reported in
Table 2.

Simulations show that the DTVSC and the PID controller
have the same performances when the dynamic positioning
system is being used to maintain a fixed reference position.
Still the DTVSC performs better than the PID control
when the position reference changes, showing significantly
smaller overshoots during the transition. This is reflected
by a smaller ISE performance index, at least 50% less

than PID, considering the second part of simulations with
Varying References. Therefore lower tracking errors are
obtained using the DTVSC for the DP system. Although
the DTVS controller is usually more complex and com-
putationally expensive than the PID controller, the latter
suggest that more complex solutions for PID tuning, using
more complex dynamical model can be used, see Linde-
gaard (2003).

5.3 CASE C: Robustness to Parametric Variations

In order to test the DTVSC robustness, we consider
variations in the model parameters. An increase of the
20% of the parameters of the inertia matrix M in (4) is
considered, which can be the result of a change in the load
condition of the ship (e.g. moving cranes). The results are
shown in Table 2. We can see that the DTVSC perform
better than the PID controller, when the DP must hold
the ship to the initial position. Results are even better
when there is a position change in the references. Therefore
the DTVSC has shown to be quite robust with respect to
severe parametric variations, as a result of the inclusion of
model uncertainties in (21).

Results suggest that PID tuning could be improved using
gain scheduling approaches or acceleration feedback, see
Lindegaard (2003).

5.4 CASE D: Robustness to toque input disturbance

In order to test the DTVSC robustness, we suppose to
have a torque input disturbance affecting one actuator
(uc1) with a magnitude equal to the 30% of the maximum
value. In this case the Kalman filter state ud is reinitialized
using an estimated disturbance value provided by an on-
line detector module. The results are reported in Table 2
and shown in Fig. 5.4. In this case, the DTVS controller
performances are better then PID controller performances
both when the references are constant and when the refer-
ences are varying. Therefore DTVS controller has shown
to be quite robust with respect to input disturbances.
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Fig. 4. Plot of the reference (black solid line) and estimated
positions in the local geographical n frame using
DTVSC controller (red dotted line) and the PID
controller (blue dash-dotted line).
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Fig. 5. Plot of the reference (black solid line) and estimated
positions using the Multi-rate Kalman filter and the
DTVSC (red dotted line) and the PID controller
(blue dash-dotted line) in case of disturbances on the
actuators

6. CONCLUSION

The problem of dynamic positioning plays a key role in all
those cases in which it is not possible to anchor the ship
at the seabed, or in which the ship position is bound to a
specific point on the bottom. In this paper, an architecture
for the autonomous dynamic positioning of an offshore
supply vessel is identified using non-linear discrete control
and wave filtering techniques for the resolution of the DP
problem.

From a control perspective, it was shown that the DTVSC
controller satisfies the sliding mode existence condition in
a sector depending on the maximum uncertainties of the
system. Simulations confirm the robustness of the control
scheme in the presence of disturbances or parametric varia-
tions and show that DTVSC can show better performances
than classic PID controllers especially when there is a
change in the reference position for the DP system and
in the case of uncertainties/actuator disturbances. From
the point of view of filtering, we introduced two different
techniques for filtering the 1-st order wave effects based on
Kalman filtering techniques in the feedback loop. Simula-
tions performed for the CS2 offshore supply vessel scaled-
model showed that the Extended Kalman filter and the
Multi-Rate Kalman filter have comparable performances.
But they outperform standard Passive Nonlinear Observer
in terms of variances of the controller efforts and drifts.
The MREKF has been chosen because it is designed for
GPS and gyrotrack signals which are acquired with differ-
ent frequencies, maintaining comparable performances.
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