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Abstract: This paper designs an integrated estimator and L1 adaptive control scheme to address the two
main challenges involved in the Managed Pressure Drilling (MPD) system: first, the bottomhole states
are updated at a low rate, which can be viewed as unmeasured and thus need to be estimated in real
time; and second, the drilling process is subject to uncertainties including unknown parameters (e.g.,
frictions, densities), unmodeled actuator dynamics and noise, which require a robust adaptive controller
for control of the bottomhole pressure. The estimator provides fast estimation of the bottomhole pressure
and flow rate, based on the available measurements from the top-side. The L1 adaptive controller drives
the bottomhole pressure to the desired value following a reference model. We also provide a solution to
handle the input delay. The design is based on a recently developed nonlinear drilling model. The results
demonstrate that the L1 adaptive controller has guaranteed performance bounds for both the input and
the output signals of the system while using the estimation of the regulated outputs. Simulations that
include different operational conditions verify the theoretical findings.

1. INTRODUCTION

During well drilling, a fluid circulation system is used to
maintain the pressure profile along the well. The drill fluid
(usually called mud) is pumped into the drill string, which is
a structure of a series of connected pipes. The fluid then flows
down to the drill bit, sprays out through the bit, circulates back
up the annulus, and finally exits through a choke valve.

The pressure balance between the well bottom hole and the
reservoir is critical to the well drilling system (Stamnes, 2007).
It is desired to keep the bottomhole pressure in some safety
margin: if the bottomhole pressure is too low (under-balanced),
a kick incident could happen, which can lead to an influx oil/gas
while drilling; on the other hand, if the pressure is too high
(over-balanced), the well could be fractured and the mud will be
lost. The safety margin is narrow especially in deep water and
some matured well. The managed pressure drilling (MPD) is
a technology to control the bottom hole pressure precisely, the
advantage of which includes the capability to drill the otherwise
undrillable well, reduced non-productive-time (NPT), fluid loss
and influx, more productivity of the well, and reduced drilling
hazards, etc. The basic principle of MPD is to seal the annulus
top and use the chock opening and an additional back-pressure
to control the bottom hole pressure and compensate for annular
pressure fluctuations. A simplified schematic diagram of an
automated MPD system is shown in Fig.1. A description of the
standard setup of an automated MPD system can be found e.g.
in (Riet et al., 2003).

One of the main challenges of MPD control is that the mea-
surements from the bottom hole (flow rate and pressure, etc.),
if possible, are transmitted by telemetry and updated at a low
rate. For the purpose of control, these bottom hole states need to
be estimated in real-time. Another challenge is the uncertainty

Fig. 1. MPD drilling process

in the model for the bottomhole, due to uncertainties in the
friction, density and mud compressibility parameters, as well as
the unmodeled dynamics in the actuator. Moreover, the model
parameters are subject to significant changes during the drilling
process.
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These challenges motivate the design of an integrated estimator
and adaptive controller scheme. We first design an estimator
based on the idea proposed in (Ma et al., 2010). Then we apply
the L1 adaptive controller to regulate the bottomhole pressure
to some desired value specified by an operator. The guaranteed
performance bounds and robustness of L1 adaptive controller
make it an ideal candidate for pressure control under uncertain
parameters and unmodeled dynamics. The model is taken from
(Kaasa, 2007), which is a simplified hydraulic model given by
a set of nonlinear ODEs that capture the dominating hydraulics
of the MPD system.

The main contribution of our work is that we address both the
estimation of unmeasured states and the control in the presence
of uncertainty, and show the stability and performance of the
whole integrated estimator/controller, while the work by some
other authors (Stamnes et al., 2008) consider only estimation
of the bottomhole pressure, assuming that it is well regulated
by some controller. Compared to our previous work on this
problem (Li et al., 2011), this paper proposes a solution to
handle an input delay, which is demonstrated by simulations.

The paper is organized as follows. Section 2 introduces the
problem formulation and the available measurements. Section
3 designs an estimator for the bottomhole pressure and flow
rate based on the top-side measurements. Section 4 designs an
L1 adaptive controller to control the bottomhole pressure in the
presence of uncertainties, which use the estimated bottomhole
pressure and flow rate as feedback. Section 5 presents extensive
simulations to test the performance of the integrated estimator
and controller. Section 6 concludes the paper.

We use ‖·‖L∞ to denote the L∞-norm of a signal, and ‖·‖L1 to
denote the L1 norm of a transfer function matrix (Khalil, 2002).

2. PROBLEM FORMULATION

We consider a recently developed simplified nonlinear model
from (Kaasa, 2007) and (Kaasa et al., 2011) for the dynamics
of the well drilling system. The model has been shown by
experiments to have acceptable fidelity level for calculating
the non-measured states and for parameter estimation (Stamnes
et al., 2008). The model is given by the following set of
nonlinear ODEs:

Vd
βd
ṗpump(t) = qpump − qbit(t) , (1a)

Va
βa
ṗchoke(t) = − qchoke(t)− V̇a + qbit(t) + qres + qback ,

(1b)
Maq̇bit(t) = pbit(t)− pchoke(t)− Fa(qbit(t) + qres)

2

− ρaghbit , (1c)
Mdq̇bit(t) = ppump(t)− pbit(t)− Fdq2bit(t) + ρdghbit ,

(1d)
qchoke(t) = Kczc(t) , (1e)

zc(s) =F (s)uc(s) , (1f)
ppump(0) = pp0 , qpump(0) = qp0 , qbit(0) = qb0 , (1g)

where ppump and pchock are the pressures at the pump and
the chock, respectively; pbit is the bottomhole pressure; qpump,
qchock, qback, qbit and qres are the flow rates through the pump,
chock, back pipe, drilling bit and from the reservoir, respec-
tively. The control signal is the chock opening command uc; zc

is the actual chock opening; F (s) is an unknown stable transfer
function representing the unmodeled actuator dynamics of the
chock valve. Note that (1c) and (1d) are two independent equa-
tions of the dynamics of qbit, derived with respect to the drilling
string and the annulus, respectively.

The topside pressures ppump and pchock, and flow rates qpump,
qchock and qback, are measured continuously and reliably, where
qpump and qback are constants. Due to the measurement con-
straints, qbit(t) and pbit(t) are updated at a low rate, so they are
viewed as unmeasured signals and need to be estimated. Other
variables are described as follows:

• Vd, βd: volume and the bulk modulus of the drill string;
• Va, βa: volume and the bulk modulus of the annulus;
• ρa, ρd: density in the annulus and the drill string;
• Ma,Md: the density per meter of the annulus and the drill

string;
• Fa, Fd: friction factor of the drill string and the annulus;
• Kc: valve flow constant;
• hbit: vertical depth of the bit;
• V̇a: rate of change of the annulus volume.

In the above parameters, the parameters related to the drill
string, Vd, βd,Md, ρd, Fd and hbit, are measured reliably. Other
parameters, especially those related to the annulus have some
uncertainties and are considered as unknown constants with
some known conservative bounds.

The objective is to regulate the bottomhole pressure pbit to
some desired value r set by an operator and provide estimation
of pbit and qbit, based on the measurements from the top-side.

3. BOTTOMHOLE PRESSURE AND FLOW ESTIMATION

To estimate qbit and pbit, we rewrite equations (1a) and (1d) as
Vd
βd
ṗpump(t) = − qbit(t) + qpump ,

Mdq̇bit(t) = − ζ(t) + ppump(t) + ρdghbit ,

where ζ , pbit + Fdq
2
bit. We design the following estimator

based on the fast estimation scheme proposed in (Ma et al.,
2010), which consists of 3 components: the state predictor, the
estimation update laws, and the low-pass filtering.

• State Predictor:
Vd
βd

˙̂
ξ1(t) =− k1(ξ̂1(t)− ppump)− q̂bit(t) + qpump , (2a)

Md
˙̂
ξ2(t) =− k2(ξ̂2(t)− q̂bit(t))− ζ̂(t)

+ ppump(t) + ρdghbit, (2b)

wherek1, k2 > 0. Note that (2a) and (2b) have the same
structure as (1a) and (1d), respectively, except that qbit and
ζ are replaced by their estimations, q̂bit and ζ̂, respectively.

• Estimation Update Laws:
The estimations q̂bit and ζ̂ are updated by

˙̂qbit =Γ1Proj(q̂bit(t), ξ̃1(t)) , (3a)
˙̂
ζ =Γ2Proj(ζ̂(t), ξ̂2 − q̂bit) , (3b)

where Γi, i = 1, 2 are the updating gains, and Proj(·, ·)
is the projection operator that keeps q̂bit and ζ̂ in their pre-
specified bounds (Pomet and Praly, 1992).

• Low-Pass Filtering:
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q̄bit =C1(s)q̂bit(s) , (4a)

ζ̄ =C2(s)ζ̂(s) , (4b)
where Ci(s) = ci

s+ci
, ci > 0 , i = 1, 2 are low-pass filters.

• The final estimation of qbit and pbit are given by q̄bit and
p̄bit , ζ̄ − Fdq̄2bit , (5)

respectively.

3.1 Estimation Performance

It can be shown that if the signals to be estimated, pbit and qbit,
are bounded and with bounded derivatives, then the estimation
errors ‖q̄bit − qbit‖L∞ and ‖p̄bit − pbit‖L∞ can be rendered
arbitrarily small by increasing the updating gains Γi and the
bandwidth of the low-pass filters Ci(s), i = 1, 2, upon an
exponentially decaying transient phase due to the initialization
errors. Refer to (Li et al., 2010; Ma et al., 2010) for detailed
proof.
Remark 1. The reason we estimate pbit based on the dynamics
(1d) instead of (1c) is that in practice the drill string parameters
Md, ρd and Fd are accurately measured, while the annulus
parameters Ma, ρa and Fa are subject to uncertainties.

4. L1 ADAPTIVE CONTROLLER DESIGN

Equations (1c) and (1d) provide an algebraic representation of
pbit:

pbit =
1

M
(Mdpchoke − (FdMa − FaMd)q

2
bit

(Mdρa +Maρd)ghbit +Mappump) . (6)
From this we can obtain the dynamics of pbit by taking the time
derivative of (6) and plugging in (1a)-(1d), which yields

ṗbit(t) =
1

M

(
Mdṗchoke(t) +Maṗpump

− 2(FdMa − FaMd)qbit(t)q̇bit(t)
)

=
Ma

M

βd
Vd

(
qpump − qbit(t)

)
+
Md

M

βa
Va

(
qbit(t)

− V̇a + qres + qback − qchoke(t)
)

+
2

MMd
(MdFa −MaFd)qbit(t)(ppump(t)

− pbit(t)− Fdq2bit + ρdghbit) . (7)

Rewriting the resulting dynamics of pbit in a concise form, we
have

ṗbit(t) = ampbit(t) + φqchoke(t) + θpbit(t) + σ(t) , (8a)
qchoke(s) = KcF (s)uc(s) , (8b)

where am < 0 is a design parameter that defines the con-
trol specification, i.e., the time constant of the desired system
behavior, φ = −Mdβa

MVa
, θ = −2(MdFa−MaFd)

MMd
− am, and σ

presents all the rest of the terms on the right hand side of (7).

Although most of the parameters are unknown, we always have
some conservative knowledge of the physical parameters and
variables, summarized in the following assumption.
Assumption 1. In (8), the unknown parameters θ, σ(t) are
subject to the following conservative bounds: |θ| < Θ, |σ| < ∆,
|σ̇(t)| ≤ dσ , where Θ, ∆ and dσ are known. There exists
LF > 0 verifying ‖φKcF (s)‖L1

< LF and 0 < ωl <

φKcF (0) ≤ ωu.

The design of the L1 adaptive controller involves a strictly
proper stable transfer function D(s) and a gain k > 0, satis-
fying the following L1-norm condition:

‖G(s)‖L1
L < 1 , (9)

where G(s) = (1 − C(s))(sI − am)−1, L = θ and C(s) =
kF (s)D(s)/(1+kF (s)D(s)) is a strictly proper transfer func-
tion with DC gain C(0) = 1.

The L1 adaptive controller consists of three components: the
state predictor, the adaptive laws, and the control law.

• State Predictor:
˙̂pbit(t) =amx̂(t)+ω̂(t)uc(t)+θ̂

>(t)p̄bit(t)+σ̂(t) , (10)
p̂bit(0) =pbit(0) .

• Adaptive Law:
The parameter estimations ω̂, θ̂ and σ̂ in the state predictor

are updated by the following adaptive laws:

˙̂ω(t) = ΓcProj(ω̂(t),−(p̂bit(t)− p̄bit(t))uc(t)) , (11a)
˙̂
θ(t) = ΓcProj(θ̂(t),−(p̂bit(t)− p̄bit(t))pbit(t)) , (11b)
˙̂σ(t) = ΓcProj(σ̂(t),−(p̂bit(t)− p̄bit(t))). (11c)

• Control Law:
The choke opening command u is generated as the output

of the following system
uc(s) = −kD(s)(η̂(s)− kgr(s)) , (12)

where r(s) and η̂(s) are the Laplace transforms of r(t) and
η̂(t) , ω̂(t)uc(t) + θ̂>(t)p̄bit(t) + σ̂(t).

The L1 adaptive controller is defined via (10)–(12), subject to
the L1-norm condition in (9).
Remark 2. When the plant input is subject to time delay τ , i.e.,
(8b) is replaced by zc(s) = F (s)e−τsuc(s), we can easily
incorporate this delay information in the state-predictor by
replacing (10) with

˙̂pbit(t) = amx̂(t) + ω̂(t)uc(t− τ0) + θ̂>(t)p̄bit(t) + σ̂(t) .

where τ0 represents our knowledge of the delay. This highlights
the structural benefit of the L1 adaptive controller to acco-
modate more realistic systems. The results is demonstrated in
Section 5.

4.1 Performance of L1 Adaptive Controller

The key feature of the L1 adaptive controller is that both the
state and the control signal of the closed-loop system can be
rendered arbitrarily close to the corresponding signals of a
closed-loop reference system in the sense of L∞-norm. For the
system in (8), the closed-loop reference system is defined by

ṗref (t) =ampref (t) + µref (t) + θ>pref (t)

+ σ0(t) , pref (0) = pbit0 (13a)
µref (s) =F (s)uref (s) (13b)
uref (s) =Cu(s)(kgr(s)− ηref (s)) , (13c)

where pref (t) is the reference system state, ηref (s) is the
Laplace transform of ηref (t) , θ>pref (t)+σ0(t) andCu(s) =
C(s)/F (s). The reference system assumes compensation of
uncertainties within the bandwidth of the controller, and thus it
is used only for analysis purposes. The following theorem from
(Hovakimyan and Cao, 2010) states the performance bounds of
the L1 adaptive controller.
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Theorem 3. For the system in (8), subject to Assumption 1, if
the real value pbit is available for feedback, and the adaptive
gain in (10)–(12) is selected according to

Γ ≥ θm(ρu, ρu̇)

γ20
, (14)

where γ0 > 0 is an arbitrary constant, then we have

‖p̂bit − pbit‖L∞
≤γ0 , (15a)

‖pref − pbit‖L∞
≤γ1 , (15b)

‖uref − zc‖L∞
≤γ2 , (15c)

where θm = (ωu − ωl)2 + 4Θ2 + 4∆2 + (Θdθ + ∆dσ), γ1 =
‖C(s)‖L1

γ0/(1 − ‖G(s)‖L1
L) + β, γ2 = ‖Cu(s)‖L1

Lγ1 +

‖Cu(s)(sI−Am)‖L1
γ0, and β > 0 is arbitrarily small.

4.2 Integration of the Estimator and Adaptive Controller

Note that the analysis above assumes decoupled estimation and
controller structure. In the performance of the estimator, it is
assumed that pbit and qbit are bounded, an assumption that
needs to be ensured by the controller design; in the performance
of the controller, it is assumed that the real value of pbit is used
for feedback, which, in our case is not available. When the
estimator and the controller are integrated, i.e., the estimated
value p̄bit is fed to the controller, neither of the assumptions
hold any more.

Since the “certainty equivalence” argument does not apply to
nonlinear systems, one needs to show the performance based on
the whole closed-loop system involving the plant, the estimator
and the controller. The analysis of the stability and performance
of the integrated system can be done following the same steps
as in (Li et al., 2009).
Remark 4. Reference (Li et al., 2009) considers the problem
with less known parameters, i.e., the case in which only Vd and
βd are known, and does not consider the unmodeled actuator
dynamics. In that case, equations (2b), (3b) and (4b) cannot be
implemented to estimate pbit. Thus (Li et al., 2009) applies the
standard RLS algorithm to estimate pbit using (6).

5. SIMULATION RESULTS

In this section, we apply the proposed estimation and adaptive
control scheme to the nonlinear ODE model (1) under different
conditions. In Section 5.1, we feed the real value of pbit to the
L1 adaptive controller, and thus we can see the performances of
the decoupled estimator and controller. In Section 5.2, we inte-
grate the estimator and the controller by feeding the estimated
value p̄bit to the controller, and test the system for different
reference signals and parameter variations.

The parameters of the plant are given by: βa = βd = 14000,
Vd = 28.3, Va = 96.1, Ma = 1700, Md = 5700, Fa = 20800,
Fd = 165000, ρa = ρd = 1250× 10−5, hbit = 2000, g = 9.8,
p0 = 1, Kc = 4.63 × 10−3, qres = 0.001, V̇a = 0, qpump =
0.01, qback = 0.003. The simulation starts from steady state,
with pbit(0) = 320 barg, and qbit(0) = 0.01m3/s. The un-
modeled actuator dynamics are given by F (s) = 1

s2+1.4s+1 ,
which is a stable and slightly underdamped system. The states
ppump(t) and pchoke(t) are measured in real-time.
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Fig. 2. pbit, p̄bit, r for decoupled estimator and controller
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Fig. 3. qbit, q̄bit for decoupled estimator and controller
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Fig. 4. uc for decoupled estimator and controller

5.1 Testing the Decoupled Estimator and the L1 Adaptive
Controller

To test the decoupled estimator and the L1 adaptive controller,
we set the reference pressure r = 340 barg, and use the real
value of pbit in the controller.

Figure 2 shows the time history of pbit and its estimation p̄bit
together with the desired value r. Figure 3 shows the estimated
value q̄bit compared to the real value qbit. Figure 4 shows the
control signal uc.
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Fig. 5. pbit, p̄bit, r for integrated estimator and controller
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Fig. 6. qbit, q̄bit for integrated estimator and controller
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Fig. 7. uc for integrated estimator and controller

We can see that the L1 adaptive controller regulates the bot-
tomhole pressure pbit to the desired value in the presence
of unknown parameters and unmodeled dynamics. Note that
although the signal σ depends on ppump, pchoke and some
unknown parameters, the L1 adaptive controller does not try
to estimate these parameters individually, but estimate it as a
whole by σ̂. The speed of response can be adjusted by the
parameter am.

From Figure 4 we see that although the adaptive rate Γ is set to
be very large, the control signal does not have high frequency
components due to the low-pass filter.
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Fig. 8. With input delay and state predictor modification
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Fig. 9. Scaled response for pbit
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The estimated signals p̄bit and q̄bit track the real values, even
though pbit is rising very fast. The convergence rates are ad-
justed by Γ1 and Γ2.

5.2 Integrating the Estimator with the L1 Adaptive Controller

In this section we integrate the estimator and the L1 adaptive
controller by feeding the estimated value p̄bit instead of the real
value to the controller.

First we present the simulation results for r = 340 barg in
Figures 5–7. We can see that the integration only slightly affects
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the transient performance of the controller 1 , due to the initial
estimation error of p̄bit, the control signal is still smooth and
the estimation performance is not affected.

Second, we inject an input delay of 1s, for which the controller
(10)–(12) fails to stabilize the system. However, by applying the
modification to the state predictor in Remark 2, with τ0 = 0.9
we regain the closed-loop stability and performance, as shown
in Figure 8.

Next we set the reference signal to be a series of steps, from
340 barg to 380 barg, with an increment of 20 barg for every 50
seconds. The resulting signals are shown in Figures 9-10. Note
that pbit has scaled response to scaled reference signals, which
is the typical behavior of an LTI system, despite the fact that the
plant, the controller and the estimator are all nonlinear.

Finally, in Figure 11, we test the integrated estimation and
control scheme in the case of a sudden drop of qpump from
1000 l/min to 250 l/min, which simulates the extreme case of
a power loss during drilling. We command a step reference
r = 340 barg for the bottomhole pressure, and then inject a
sudden drop of qpump; as shown in Figure 11, the integrated
estimator and controller drive pbit to the commanded value in
15 seconds and then successfully hold this value when the drop
of qpump happens at 40s, with good transient and steady state
performance.
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Fig. 11. pbit during large parameter variation

6. CONCLUSION

This paper designs an L1 adaptive controller integrated with
an estimator for an automated MPD system in the presence
of unmeasured bottom hole variables, unmodeled dynamics,
uncertain system parameters and input time delay. With the
estimated parameters used in the feedback path, theL1 adaptive
controller achieves uniform performance bounds for system’s
input and output signals.
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