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Abstract: In this work the problem of remote calibration and trajectory replanning for a
subsea robotic manipulator is considered. Because the trajectory planning is normally done in
a structured environment, several uncertainties arise when the robot is placed on the seabed
and these need to be compensated for to guarantee that the task specifications are fulfilled.
We address the particular problem of configuration errors in the robot base with respect to the
configuration used during the off-line trajectory planning. A calibration method based on both
internal and external sensors is presented in order to estimate the uncertainty in the location of
the robot. Moreover, a trajectory replanning strategy in the Cartesian velocity space is proposed
to guarantee that the originally planned trajectory is followed. Simulation and experiments
performed with a 6-DoF robot manipulator and a real calibration grid show the viability of the
proposed planning and control schemes.
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1. INTRODUCTION

Calibration and task planning of robotic systems in remote
and unstructured environments is of vital importance for
accurate and robust operation of subsea fields (Augustson
and Meggiolaro, 2010). In such scenarios, the planning of
a reference trajectory is usually performed on the surface
or in a structured place on-shore, or even in a simula-
tion environment (Bellingham and Rajan, 2007; Trevelyan
et al., 2008). However, once the robotic cell is inserted into
its workplace, uncertainties will arise, for example in the
robot’s actual location with respect to the location used
during planning. The difference between the actual robot
base location and the location adopted during the planning
characterizes the trajectory replanning problem discussed
in this paper.

Several calibration schemes for kinematic and dynamic
calibration are described in literature (Mooring et al.,
1991; Beyer and Wulfsberg, 2004), but to the authors
best knowledge, the specific problem of robot base con-
figuration errors has not previously been addressed in this
setting. Due to the nature of the problem the approach
presented can be used not only for calibration of fixed-
base underwater manipulators, but also to estimate the
vehicle pose in underwater vehicle-manipulator systems.

Robot calibration refers to a set of procedures for de-
termining the real values of the geometric dimensions
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and mechanical characteristics of the robot structure. A
taxonomy for robot kinematics calibration methods based
on a calibration index which represents the number of
independent equations available for calibration was pro-
posed in Hollerbach and Wampler (1996). A well known
methodology used to calibrate the robot with respect to
a known geometric structure is to endow the robot end-
effector with a probe. Upon touching the structure sur-
face in appropriate points it is possible to estimate the
transformation which relates the robot coordinates with
the structure coordinates of interest (Ikits and Hollerbach,
1997). Also, open-loop and closed-loop calibration meth-
ods have been proposed using different sensors such as
cameras, laser beams, and triaxial accelerometers (Canepa
et al., 1994; Motta et al., 2001; Lei et al., 2004). However,
for all the approaches above, it is assumed and required
that the location of the robot base is known in advance.
This is not always the case, for example when the robot
is operating in an unstructured environment, such as on
subsea installations.

In this work, a calibration method for estimating the
uncertainties in the robot base configuration using a cal-
ibration grid is proposed. We present solutions based on
both internal and external sensors to solve the calibration
problem. A calibration and trajectory replanning strategy
in the Cartesian velocity space is presented to solve the
problem of trajectory planning in the presence of uncer-
tainties. Empirical studies obtained with a 6-DoF robot
manipulator show the viability of the proposed scheme.
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2. PROBLEM FORMULATION

Consider the tracking problem of a reference trajectory
r(t) using a robot manipulator mounted on a fixed base.
Fig. 1a illustrates the case where the robot base frame
Ēb coincides with the world frame Ēw and a trajectory
planner generates the appropriate reference inputs to the
motion control system. Now, consider a situation in Fig. 1b
in which the robot base is dislocated with respect to
the original location used during the planning phase.
Denote by Ēb the planned base location and by Ēb1 the
actual base position. Then, in order to ensure that the
manipulator follows the reference trajectory r(t) specified
in the world frame Ēw, we have to execute a replanning
of this trajectory considering the misplacement of the
robot base. The trajectory replanning is based on the
ideal trajectory r(t) as well as the estimation of the
configuration error between unknown actual base location
and the location used during the planning phase.

(a) (b)Planned Location Actual Location

TrajectoryTrajectory

Configuration
Error

RobotRobot

r(t)r(t)

ĒbĒb= Ēw Ēb1

Fig. 1. Formulation of the trajectory replanning problem.

Remark 1. In this work, we assume that the reference
trajectory r(t) is known and previously calculated using
a trajectory planning algorithm defined either in the joint
space or in the operational space.

3. CALIBRATION OF ROBOTIC SYSTEMS

In this section, we discuss the problem of remote calibra-
tion of a robotic system. Two calibration methods based on
measurements obtained from internal and external sensors
are presented to estimate the configuration error between
the actual and planned base locations. During the planning
phase the base location is known and assumed to coincide
with the world frame. We denote this location the planned
base location and associate it with frame Ēb. When the
robot is inserted into the remote workspace it will be
placed at a location that in general differs from the planned
base location. We will call this location the actual base
location, denoted Ēb1 . Using a calibration grid and a set of
endpoint positions on this grid, we estimate the actual base
configuration by (i) measuring the joint positions using
encoders and (ii) using a fixed camera. The configura-
tion error is determined by an appropriate optimization
technique based on the least squares method. It is worth
mentioning that in both methods, the endpoints’ positions
can be obtained either by using guided teleoperation or
autonomously by using a combination of force control and
a visual servoing approach. In this paper, we assume that
the calibration grid is available, but we can just as well
use known reference points on the seabed, for example on
a subsea installation.

In this context, consider the configuration error between
the actual location Ēb1 and the planned location Ēb
represented by the homogeneous transformation matrix as

Tbb1 =

[
Rbb1 pbb1
0T 1

]
, (1)

or in terms of vectorial notation

xbb1 = [ pTbb1 ΦT

bb1
]T. (2)

Here pbb1 =[xbb1 ybb1 zbb1 ]
T denotes the relative position

of the origin of frame Ēb1 expressed in Ēb, Rbb1 ∈SO(3),
and Φbb1 =[φ ϑ ψ ]T denotes the orientation of Ēb1 with
respect to Ēb in the ZYX Euler angles parameterization,
also called Roll-Pitch-Yaw angles (Murray et al., 1994).

3.1 Error estimation with internal sensors

The estimation of the configuration error using internal
sensors can be achieved from angular sensors (e.g., encoder
or resolvers) located in the manipulator joints. To this end,
we use a set of endpoints λ1, λ2, . . . , λN on the calibration
grid where the position of each calibration point λi is
known with respect to Ēb and estimated with respect to
Ēb1 . The configuration error is calculated by solving the
following system of equations for pbb1 and Rbb1 :

pbλ1
= pbb1 +Rbb1 pb1λ1

,

...

pbλN
= pbb1 +Rbb1 pb1λN

.

Here, pbλi
∈R

3 and pb1λi
∈R

3 for i= 1, 2, . . . , N denote
the position of the calibration points with respect to the
frames Ēb and Ēb1 respectively, obtained by the forward
kinematics map.

Note that the homogeneous transformation Tbb1 can be
expressed in terms of the configuration of the calibration
points, that is,

Tbb1 = Tbλi
T−1
b1λi

, i = 1, 2, · · ·N . (3)

Then, to determine the configuration error xbb1 using an
estimation algorithm based on least squares method, such
as Newton’s method, we have to define an appropriate
objective function f which describes the system in terms
of its position and orientation parameters, in our case

f(pbb1 , Rbb1)=



pbλ1

− pbb1 −Rbb1pb1λ1

...
pbλN

− pbb1 −Rbb1pb1λN


 ∈ R

3N . (4)

Note that each equation has three position coordinates
and six constraints for orientation, and thus the minimum
number of necessary endpoints to perform the calibration
procedure is three. However, since the measurements are
contaminated with noise we need to measure several end-
points to improve the accuracy of the configuration error
parameters.

To minimize the objective function (4) we can use the
Jacobian of the function f , denoted by Jf , given by

Jf = ∇f =

[
∂Tf

∂pbb1

∂Tf

∂Φbb1

]T
. (5)

Note that Jf has a particular form which simplifies the

calculations since ∂f
∂pbb1

= −[ I · · · I ]T ∈ R
3N×3. Then, to

obtain (5) it is necessary only to calculate ∂f
∂Φbb1

as follows
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∂f

∂Φbb1
= −




∂Rbb1
∂φ

pb1λ1

∂Rbb1
∂ϑ

pb1λ1

∂Rbb1
∂ψ

pb1λ1

...
...

...
∂Rbb1
∂φ

pb1λN

∂Rbb1
∂ϑ

pb1λN

∂Rbb1
∂ψ

pb1λN



,

where
∂Rbb1

∂φ
,
∂Rbb1

∂ϑ
,
∂Rbb1

∂ψ
∈R

3×3 and ∂f
∂Φbb1

∈R
3N×3.

Newton’s method finds the correction in the estimated
configuration error xbb1 at each iteration k by

xbb1(k + 1) = xbb1(k)− β J†
f (k) f(pbb1(k), Rbb1(k)) , (6)

where β > 0 and J†
f (k) = ( JT

f (k) Jf (k) )
−1 Jf (k)

T denotes
the left pseudo-inverse of Jf . Note that the dimension of
the Jacobian matrix Jf is 3N×6, so it may grow very large
if several endpoints are chosen. Thus, in order to avoid nu-
merical ill-conditioning, matrix inversion strategies such as
the Levenberg-Marquardt algorithm (Motta et al., 2001)
should be adopted. Furthermore, it cannot be guaranteed
that this approach converges to a global minimum.

3.2 Error estimation with external sensors

In this section, we propose a calibration method where
the configuration error is estimated using a fixed and
calibrated CCD camera mounted in a known position
relative to the robot, for example on the robot base (see
Fig. 2). In addition to calibration purposes, cameras are
also useful sensors since they allow the robots to inspect
and locate objects without contact, and to share the
workspace with human operators or even other robots
(Hutchinson et al., 1996). In this work, the following
assumptions are made: (A1) the z-axis of the camera and
robot base frames are aligned; (A2) the optical axis of
the camera is perpendicular to the task plane. We note
that the camera configuration can easily be chosen so that
conditions (A1) and (A2) hold.

Image
Plane

Camera

Calibration
Grid

pvλi

λi

fc

z0Ēv

xv

yv

Ēb

xb

yb

zb

Ēc

xc

yc

zc

φc

φc

Fig. 2. Camera and robot base frames.

Let pbc, pbλi
∈ R

3 be the relative positions of the origins
of the camera frame Ēc and the calibration points λi,
respectively, and the robot base frame Ēb. Rbc ∈ SO(3)
is the rotation matrix of the camera frame with respect to
the base frame. Then, the position of the calibration point
λi with respect to the camera frame Ēc is given by

pcλi
= RT

bc ( pbλi
− pbc ) , (7)

or in terms of the its Cartesian coordinates[
xcλi

ycλi

zcλi

]
= RT

bc

([
xbλi

ybλi

zbλi

]
−

[
xbc
ybc
zbc

])
. (8)

From the perspective projection model of a pin-hole cam-
era (Hutchinson et al., 1996), the calibration point λi is
projected to the 2-dimensional image plane with coordi-
nates pvλi

=[xvλi
yvλi

]T given by[
xvλi

yvλi

]
=

fc
zcλi

[
α1 0
0 α2

] [
0 −1
1 0

] [
xcλi

ycλi

]
, (9)

where fc is the camera focal length (mm) and α1, α2

are the camera scaling factors (pixel mm−1). Based on
assumptions (A1) and (A2), and substituting (8) into (9)
yields

pvλi
= Kvi(p̄bλi

− p̄bc). (10)

Here p̄bλi
= [xbλi

ybλi ]
T
and p̄bc = [xbc ybc]

T
are the 2-

dimensional projection of pbλi
and pbc, respectively, and

Kvi =
fc
zcλi

[
0 −α1

α2 0

] [
cos(φc) − sin(φc)
sin(φc) cos(φc)

]
, (11)

zcλi
= zbλi

+ zbc = fc + z0, (12)

where z0 is the relative depth (constant) of the calibration
points with respect to the image frame Ēv, and φc is the
misalignment angle between the camera and the robot
frame (see Fig. 2).

In the general case, the coordinate transformation (10)
is non-homogeneous. However, since we consider that the
camera is fixed to the base frame, we can assume that the
origins of the camera frame and the base frame coincide
and p̄bc = 0. Then, (10) can be rewritten as

pvλi
= Kvi p̄bλi

, (13)

which are all known quantities. Analogously, performing
the same procedure for the current location Ēb1 we obtain

p′vλi
= K ′

vi
p̄b1λi

, (14)

which is unknown. Note that from (13) and (14) it is
possible to obtain only a 2-dimensional representation of
the position of the calibration point λi with respect to
the frame Ēb and Ēb1 , respectively. Then, to represent the
position of the calibration point λi using a tridimensional
vector we have to augment p̄bλi

with the coordinate zbλi

and, similarly, augment p̄b1λi
with the coordinate zb1λi

.
Thus, the position of the calibration point λi with respect
to the frames Ēb and Ēb1 is given by

pbλi
=
[
p̄Tbλi

zbλi

]T
, pb1λi

=
[
p̄Tb1λi

zb1λi

]T
. (15)

Therefore, using (15), and choosing an initial solution x0

and a finishing criterion, we can use the algorithm pro-
posed in the previous section to estimate the parameters
of the homogeneous transformation Tbb1 .

It now only remains to find the depth coordinates zbλi

and zb1λi
. One way to obtain these is to use encoder

measurements in combination with the forward kinematics
map. However, to keep the approach based on external
sensors separated from the one with internal sensors, we
will adopt a framework to measure the projected area
of a target object fixed on the end-effector tip by using
a camera. The change in the projected area Av ∈ R

+,
expressed in the image frame Ēv, is described by (Flandin
et al., 2000)

Ȧv = −

(
2Av
zc

)
żc . (16)
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Let Av0 ∈R
+ denote the known projected area of the target

object at time t0, such that Av0 =Av(t0) corresponds to
a distance zc0 = zc(t0). Here zc is the distance between
the camera and the area to be measured. Eliminating the
time-dependence, we can integrate both sides of (16) over
the intervals [Av0 Av] and [zc0 zc] to obtain the following
relation:

zc = zc0

(
Av0
Av

) 1

2

, (17)

where Av is continuously captured by the camera and the
coordinates zbλi

and zb1λi
are obtained from (12), where

zcλi
= zc at the calibration point.

We have now presented two approaches for estimating the
configuration error of the robot base. The two approaches
can be used independently or we can apply multi-sensor
data fusion (e.g., by using encoders, cameras and laser
trackers) in order to obtain an improved configuration
error estimate. The Kalman Filter approach allows for
state estimation using the statistical characteristics of
the process, minimizing the error produced by the noise
presented in the process and can be used to estimate the
configuration error between the planned and actual robot
base locations (Sorenson, 1985; Gao and Harris, 2002).

4. TRAJECTORY REPLANNING

We will first illustrate the general idea of trajectory replan-
ning through a simple example considering the end-effector
position only. In this section we assume that Tbb1 is either
known or estimated using one of the calibration methods
presented in the previous section. The purpose of the
replanning is to define a new desired trajectory – specified
either in the joint space or in the operational space – using
the configuration error obtained in the calibration phase.

Then, considering the robot positioned in the original
location Ēb and a goal frame Ēd suitably attached in the
reference trajectory, the ideal desired trajectory is given
by the forward kinematic map as

pbd = k(θbd) , (18)

where θbd∈R
n is the desired trajectory in the joint space.

From the differential kinematics equation, the velocity of
the ideal trajectory can be written as

ṗbd = Jp(θbd) θ̇bd . (19)

where Jp is the Jacobian matrix of the end-effector posi-
tion. Assume that the actual base location Ēb1 is different
from the location Ēb used during the planning phase.
Then, the new desired trajectory is given by

pb1d = RT

bb1
(pbd − pbb1) . (20)

From (19) and differentiating (20) with respect to time,
we obtain the velocity of the new desired trajectory as

ṗb1d = RT

bb1
Jp(θbd) θ̇bd . (21)

The joint velocity for the new desired trajectory is then
given by an open-loop scheme as

θ̇b1d = J−1
p (θb1d)R

T

bb1
Jp(θbd) θ̇bd . (22)

We can now design a closed-loop kinematic control scheme
by using

θ̇b1d = J−1
p (θb1d) [ ṗb1d +Kp ( pb1d − pb1e ) ] , (23)

where Kp is the position gain matrix, ṗb1d is taken from
(21) and pb1e is the (measured) end-effector position,

expressed in the current location Ēb1 . This closed-loop
scheme guarantees the tracking of a trajectory planned in
the original location Ēb, also when the robot is positioned
in the current location Ēb1 .

5. CALIBRATION AND REPLANNING IN THE
VELOCITY SPACE

In this section, we consider the problem of calibration
and trajectory replanning for a robot manipulator in the
Cartesian velocity space. The presented solution consists
of determining the uncertainty in the absolute location of
the robotic cell from knowledge of the linear and angular
robot velocities.

5.1 Path planning

A different approach to solve the problem of trajectory
planning is to use the differential kinematics of the robot
manipulator (Seereeram and Wen, 1995):

ẋ(t) = Jk(θ(t)) θ̇(t) , (24)

where Jk(θ(t)) :R
n 7→R

m is the Jacobian matrix. In this
context, the problem is to obtain solutions to (24) subject
to equality constraints (e.g., desired trajectory) and in-
equality constraints (e.g., joint space limit, singularities
in the task space and presence of obstacles). Consider
the problem of finding a continuous path in the joint
space which satisfies a reference trajectory specified in the
task space. Then, under assumption of kinematic control
(u= θ̇), the problem can be formulated as follows:

For the nonlinear system described by ẋ = Jk(θ)u, with
initial and final configurations, x0 and xd, and finite time
horizon T >0, the goal is to determine ū={u(t), t∈ [0 T )}
such that the solution of (24) satisfies x(T )=xd.

Here, x ∈ R
m·nd denotes a stacked vector representation

for a subset of space task coordinates over the entire path,
xd is the corresponding desired task vector and nd is the
number of points at which the task specification must
be fulfilled. Note that (24) can be rewritten as a non-
linear algebraic equation given by x=F (x0, ū(τ)). Then,
by writing the final state error between the nominal and
desired paths as

ǫ = F (x0, ū(τ))− xd = 0 , (25)

the path planning problem can be considered a non-linear
least squares problem (Lizarralde and Wen, 1996). The
solution can be obtained from the differentiation of (25)
with respect to the iteration variable τ , that is,

dǫ

dτ
= ∇ū F (x0, ū(τ))

dū

dτ
, (26)

where the mapping ∇ū F is the Frechet’s derivative of
F (x0, ·) with respect to ū. Assuming that ∇ū F is surjec-
tive, a proper choice of update law ū is given by (Lizarralde
and Wen, 1996)

dū

dτ
= −β [∇ū F (x0, ū(τ))]

†
ǫ(τ) , (27)

where β>0 and [ · ]† denotes the Moore-Penrose pseudoin-
verse. Note that the differential equation (27) is continuous
version of the Newton’s method and it defines an initial
condition problem in ū for a given ū(0). Then, the solution
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ū(τ) can be obtained by solving (27) through a numeric
integration method.

A sufficiency condition for algorithm convergence is that
∇ū F is surjective or full rank for all τ (Lizarralde and
Wen, 1996). Hence, under this condition and substituting
(27) into (26) we have that dǫ

dτ
=−β ǫ , which implies that

the norm of the error ||ǫ|| decreases monotonically in τ ,
such that, ||ǫ(τ)|| ≤ ||ǫ(0)|| e−βτ . The derivative ∇ū F can
be obtained from the system (24) linearized around the
trajectory (x, u)

∂ẋ = A(t) ∂x+B(t) ∂u , ∂x(0)=0 ,

where A(t) =
[
∂Jk
∂θ1

u(t) · · · ∂Jk
∂θn

u(t)
]
and B(t) = Jk(θ).

The discrete version of the linearized system is given by

δx(k + 1)=Ψ(k) δx(k) + Γ(k) δu(k) , δx(0)=0 , (28)

where Ψ(k)= eA(kh)h, Γ(k)=
∫ (k+1)h

kh
eA(kh)sdsB(kh) and

h is the sampling time period. Then, solving (28) for a
horizon M we have

δx(M) = DM δu , (29)

where DM =[
∏M−1
j=1 Ψ(j) Γ(0),

∏M−1
j=2 Ψ(j) Γ(1), · · · ,

Ψ(M−1) Γ(M−2), Γ(M−1) ] . Therefore, ∇ūF =DM since
DM relates infinitesimal variations in ū with infinitesimal
variations in x(M). The update law (27) can be imple-
mented in iterative form according to

ū(k + 1) = ū(k)− γk [∇ū F (x0, ū(k)) ]
†
ǫ(k) , (30)

where the scalar γk can be found by using a line search
technique (Lizarralde and Wen, 1996). It is worth mention-
ing that the presented approach can be extended to also
include additional constraints in both task and operational
space. Constraints such as the joint limits and collision
avoidance can then be added to the path planning, as
presented in Seereeram and Wen (1995).

5.2 Replanning in the velocity space

The proposed replanning method consists of using the
robot velocities in the Cartesian space to estimate the
homogeneous transformation Tbb1 implicitly, rather than
explicitly representing this transformation. In this context,
the estimation of Tbb1 is equivalent to the estimation of the
linear velocity υc(t) and angular velocity ωc(t), which solve
the following differential equations:

ṗ(t)=υc(t) , p(0)=0; p(T )=pbb1 , (31)

Ṙ(t)=ωc(t)×R(t) , R(0)=I; R(T )=Rbb1 . (32)

In order to avoid singularities we can rewrite (31)-(32) in
terms of the unit quaternion qbb1 obtained from Rbb1 as

ṗ(t)=υc(t) , p(0)=0; p(T )=pbb1 , (33)

q̇(t)=
1

2
JT

q (q)ωc(t) , q(0)=[1 01×3]
T; q(T )=qbb1 .(34)

Now, we consider that the configuration of calibration
points λ1, λ2, . . . , λN with respect to the frames Ēb and
Ēb1 can be represented by

x0,grid=[ xT

bλ1
x
T

bλ2
· · · x

T

bλN
]T ,

xd,grid=[ xT

b1λ1
x
T

b1λ2
· · · x

T

b1λN
]T ,

where xbλi
= [ pTbλi

qTbλi
]T and xb1λi

= [ pTb1λi
qTb1λi

]T, for
i = 1, · · · , N . Then, rewriting (33) and (34) in vectorial
notation we have

ẋ = J̄ vc , (35)

where

J̄ =




I3×3 03×3

04×3
1

2
JT

q (qλ1
)

I3×3 (pλ1
− pλ2

)×

04×3
1

2
JT

q (qλ2
)

...
...

I3×3 (pλ1
− pλN

)×

04×3
1

2
JT

q (qλN
)




,

vc = [ υTc ωT

c ]T and xλi
=
[
pTλi

qTλi

]T
is the end-effector

posture at the calibration point λi with respect to the base
frame for i = 1, · · · , N . Similarly to (25), we can write the
final state error as

ǫ = F (x0, v̄c(τ))− xd = 0 , (36)

where x0 = x0,grid and xd = xd,grid. The gradient of F
can be obtained from the system (35) linearized around a
trajectory (x,vc) by

∂ẋ = Ā(t) ∂x+ B̄(t) ∂vc , ∂x(0)=0 ,

where Ā(t) =
[
∂J̄
∂xλ1

vc(t) · · ·
∂J̄

∂xλN

vc(t)
]
and B̄(t) = J̄(x).

According to (30), the update law for v̄c is given by

v̄c(k + 1) = v̄c(k)− γk [∇v̄c
F (x0, v̄c(k)) ]

†
ǫ(k) . (37)

5.3 Kinematic control

Here, we present the design of the kinematic control strat-
egy that guarantees the tracking of a trajectory planned in
the original location Ēb, when the robot base is positioned
in the current location Ēb1 . First, we suppose that the
homogeneous transformations Tbb1 is known and Tbe is
provided, where Tbe=Tbb1 Tb1e. If the frames Ēb and Ēb1
are fixed relative to each other, the spatial velocity of the
end-effector frame Ēe satisfies:

vbe = Ad
Tbb1

vb1e , (38)

where the term Ad
T

denotes the adjoint mapping used
to transform the velocities appropriately (Murray et al.,
1994). The relationship between the joint velocity and
the end-effector velocity can be used to drive a robot
manipulator from one end-effector configuration to an-
other without calculating the inverse kinematics for the
manipulator. Then, if Jk is invertible, we can write the
kinematic control problem as

θ̇b1e = J−1
k (θb1e)vb1e . (39)

Substituting (38) into (39) yields:

θ̇b1e = J−1
k (θb1e)Ad

−1
Tbb1

vbe , (40)

where vbe = [ vTbe ω
T

be ]
T and the position and orientation

control signals can be given respectively by

vbe = ṗbd +Kp ( pbd −Rbb1 pb1e − pbb1 ), (41)

ωbe = ωbd +Ko eqv, eq = qbb1 ∗ qb1e ∗ q
−1
bd , (42)

where ωbd ∈ R
3 is the desired angular velocity, Ko is the

orientation gain matrix, eqv ∈ R
3 is the vectorial part of

the error quaternion eq and the symbol “∗” denotes the
operator of the quaternion product. The block diagram of
the closed-loop kinematic control scheme is shown in Fig. 3
and the stability analysis for the kinematic control scheme
given by (41)-(42) is similar to the one presented in (Leite
et al., 2009).
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Fig. 3. Kinematic control scheme for the robot posture.

Now, we suppose that the homogeneous transformations
Tbb1 is unknown and Tbe is provided, where Tbe = Tc Tb1e
and Tc = T̃bb1 . From the definition of spatial velocity
(Murray et al., 1994) and by using the chain rule we have:

vbe = vc +Ad
Tc

vb1e , Ad
Tc

=

[
Rc pc×Rc
0 Rc

]
. (43)

Then, if Jk is invertible, the kinematic control problem in
the joint space becomes

θ̇b1e = J−1
k (θb1e)Ad

−1
Tc

[vbe − vc] , (44)

where vc is obtained by using the proposed calibration
method in the velocity space.

6. SIMULATIONS AND EXPERIMENTS

In this section, simulation and experimental results ob-
tained with a 6-DoF robot manipulator are presented to
illustrate the performance and viability of the proposed
scheme. The robot used is the Zebra Zero (Integrated
Motions, Inc.) with link lengths l1 = 279.4 mm and l2 =
228.6 mm, for links 1 and 2 respectively. The control pa-
rameters are Kp=20I mms−1, Ko=10I rad s−1, β=0.75,
and u(0) = 0. The task consists of following a reference
trajectory in the xz-plane described by

pbd(t)=[ ro sin(ωo t) 0 ro cos(ωo t) ]
T ,

where ro = 75 mm and ωo =
π
5 rad s

−1 are the ratio and
the angular velocity of the trajectory respectively.

6.1 Experimental Results

A calibration grid with N =50 endpoints, experimentally
measured by using the robotic manipulator was employed
to estimate the configuration error of the robot base. The
actual base location of the robot was dislocated with
respect to the planned location and the algorithm of
Section 3.1 was applied to estimate the location of the
base. Figures 4(a) and 4(b) show the estimated values of
the base location for the first τ = 16 iterations, where it
is possible to verify that the estimated location converges

to the values pbb1 = [−11.8 −57.7 2.6]
T
mm and Φbb1 =

[0.38 0 0]
T
rad respectively. The base location estimated

by the calibration method is to be compared to the location
of the base measured during the experiments, that is,

p̄bb1 ≈ [−10 −60 0]
T
mm and Φ̄bb1 ≈ [π9 0 0]

T
rad.

It must be noted that during the experiments it was
not possible to dislocate the robot base by exactly pbb1 ,
Φbb1 , so these only give a rough estimate of the actual
location of the robot base. Due to the rather large error
involved with moving the robot from one location to

another, we therefore can not expect very accurate results.
What is clear from the experiments, however, is that the
algorithm converges relatively quickly as approximately
τ=5 iterations are needed. We also see that the estimated
values pbb1 and Φbb1 are fairly close to the expected values
given by p̄bb1 and Φ̄bb1 respectively.
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Fig. 4. Estimated base location: (a) position, (b) orienta-
tion.

6.2 Simulation Results

Here we present simulation results to show the feasibility
of the calibration and replanning method presented in
Section 5. A virtual calibration grid with N=18 endpoints
was used in the calibration phase. The configuration er-

ror T̃bb1 between the planned and actual base locations,
estimated from the experimental results in the previous
section, was employed to generate the new configuration
of the endpoints when the robot is positioned in the actual
location.

Figures 5(a) and 5(b) depict the calibration control signal,
composed by the linear velocity vc(t) and the angular
velocity ωc(t), that guarantee the successful execution of
the planned trajectory. The figure shows the control signal
for the first 5 s only, that is, for the time it takes for
the end-effector to catch up with the planned trajectory.
The time history of the tracking error e(t), obtained from
the difference between the end-effector position expressed
in the actual location pb1e and the reference trajectory
planned in the original location pbd, is ilustrated in Fig-
ure 5(c) where we see that the error converges to zero.

Figure 6 illustrates the tracking of a reference trajectory
pbd(t) (dashdot line) replanned with respect to the actual
location Ēb1 using the trajectory replanning method in the
velocity space. From this simulation, it is observed that
good performance was achieved for the trajectory tracking
(solid line) also when the robot base is misplaced with
respect to the location used during the planning phase.

7. CONCLUSIONS AND FUTURE WORKS

This work addresses the remote calibration and trajectory
replanning for robot manipulators. A trajectory replan-
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ning strategy in the Cartesian velocity space is proposed
to solve the path planning problem in the presence of
uncertainties in the absolute location of the robotic cell
with respect to the location used during planning. Further-
more, a calibration method is presented to estimate the
uncertainty in the robot configuration from a calibration
grid using internal and external sensors. Simulation and
experimental results obtained with a 6-DoF robot manip-
ulator and a real calibration grid illustrate the viability of
the proposed planning and control scheme.

Future research topics following the ideas developed here
are to implement the calibration method using sensorial
fusion based on the Extended Kalman Filter approach,
consider the orientation problem in the calibration method
using internal sensors and investigate other optimization
algorithms to deal with the ill-conditioning problem of the
Jacobian matrix.
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