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Abstract: In the oilfield industry, data collected from well sensors plays an important role in
performance and security applications. The quality of the measurements is directly related to
the accuracy of the control actions and the optimisation of the production. On-line calibration
monitoring systems can determine drifts in the sensors measurements and provide more reliable
information to the user. In this paper, a robust on-line calibration monitoring system for drift
correction/detection in well sensors is presented and evaluated for simulated and real data
sets. Comparisons with a state-of-art monitoring system is also showed. The results indicate a
promising applicability of the calibration monitoring system for the oilfield industry data.

Keywords: Performance monitoring, Sensor failures, Drift, Calibration, Prediction methods,
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1. INTRODUCTION

In many industry sectors, the maintenance strategy is
based on traditional approaches to sensor validation, which
involves periodic instrument calibration. Various periodic
sensor calibration techniques require the process be shut
down and the instrument taken out of service, loaded and
calibrated. In some cases, the costs to repair a sensor are
so high that it is left faulty and its data is just ignored,
and wrong decisions could be made because of the lack of
information.

In the oilfield industry, permanent downhole sensors and
subsea sensors, for offshore platforms, have a great impor-
tance for control actions, production optimisation and well
monitoring. Due to the harsh environmental conditions
in which these sensors are deployed, their reliability is
degraded throughout the well life. However, as Aggrey and
Davies (2007) stated, “replacement of a failed sensor rarely
occurs in practice even when data is known to be incorrect
(or completely missing) due to the cost implication of a
workover”. In addition, Eck et al. (1999) point out about
permanent downhole gauges, “once in place, the devices
are not routinely repaired, replaced or recovered”.

For these reasons, less invasive and more efficient main-
tenance strategies are desirable. Condition based mainte-
nance techniques can lead to optimal maintenance, once
the steady state performance of instruments are monitored
during plant operation and physical recalibrations are per-
formed only when their performance is degraded.

On-line calibration monitoring consists essentially in esti-
mating the correct measurements that the sensors should
have read and monitoring continuously the difference be-
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tween estimate values and values of the sensors. Hardware
redundancy can be much expensive, and it may be not
so useful to detect faulty sensors that drift in the same di-
rection. Moreover, for downhole gauges, redundant compo-
nents occupy valuable, limited space and consume precious
power. Analytical redundancy by models based on physical
equations can generates accurate results, but it is always
hard or impossible to obtain in practice. Empirical models
developed with historical data also rely on relationships
between correlated measurements within a system, but
these relationships are formulated in a implicitly way by
training the model through analysis of fault-free training
data obtained during normal operations.

Success of empirical model applications has already been
reported in industry, like nuclear power industries, as re-
ported in Gribok et al. (2000) and Ma and Jiang (2011).
There are some works where artificial neural networks
were applied (Aggrey and Davies (2007)), but kernel based
techniques are among the most used techniques. The main
techniques are based on Auto-Associative Kernel Regres-
sion (Hines et al. (2008) and An et al. (2011)),Multivariate
State Estimation Technique (Gribok et al. (2000)) and
Support Vector Machine for Regression (Gribok et al.
(2000), and Takruri et al. (2008)).

In this paper is presented a robust on-line calibration
monitoring system for oil and gas well sensors. The system
is composed of an auto-associative empirical model, a
Kalman filter and a statistical decision module, based
on the main ideas of Hines et al. (2008) and Takruri
et al. (2008). It is proposed that the association of these
ideas could improve the results of a state-of-art monitoring
system when applied to oil well sensors. The goals are
correcting the readings of sensors and detecting drift
occurrences. The system is evaluated for simulated and
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real data sets, and the results are compared to those
presented by the state-of-art system.

In Section 2, details of the system architectures are de-
scribed; in Section 3, the simulated and real data sets
used to evaluate the monitoring systems are described; in
Section 4, the evaluation results are shown; and finally, the
conclusions are presented in Section 5.

2. MONITORING SYSTEM ARCHITECTURES

In the monitoring systems based on data-driven techniques
correlated measurements within a system, fault free train-
ing data obtained during normal operations, are used to
develop a empirical model. This data-driven model is used
to predict future measurements, which are compared with
the real measurements, generating residuals. Any faults in
the system may cause statistically abnormal changes in
these residuals and could be detected by performing sta-
tistical tests. If a sensor is working properly, the residuals
normally has a zero mean and a variance related to the
amount of noise in the signal of the sensor.

The state-of-art architecture is illustrated in Fig. 1. In
this paper, this architecture is referenced as AAKR-SPRT,
which is composed of two components: a Auto-Associative
Kernel Regression model (AAKR) and a statistical de-
cision logic module. The empirical model is developed
using a fault free data set Xn×p, where n is the number
of observations of p different process variables. When a
new measurements vector r1×p is available, the prediction
of its correct values, x̂1×p, is calculated. The difference
between the sensors readings r1×p and the predictions
x̂1×p is called residual d1×p. Finally, d1×p is analysed by
a statistical module where the sequential probability ratio
test (SPRT) is implemented, indicating a possible drift
occurrence, D ∈ [0, 1].

The architecture of the robust system, AAKR-KF-SPRT,
include a Kalman filter (KF) for drift estimation, as
in Takruri et al. (2008). The KF is used to track the
amplitude of the drift over time, allowing a correction of
the sensor readings used by the AAKR model. The idea
is to reduce the drift effects on the AAKR predictions.

Fig. 1. Process diagrams of the monitoring system archi-
tectures: the AAKR-SPRT on left, the AAKR-KF-
SPRT on right.

Like the AAKR-SPRT, a AAKR model is developed using
a fault free data set Xn×p. A new measurements vector
r1×p is corrected using a estimation of the drift at the

previous stage d̂k−1

1×p. The corrected measurements x1×p

are inputted into the AAKR model. The estimation of the
corrected measurements, x̂1×p, and r1×p are used by the

KF to calculate a new estimation of the drift, d̂k
1×p, which

will be used to correct the next sensor measurements.
Then, d̂k

1×p is analysed by the SPRT algorithm, indicating
a possible drift occurrence, D ∈ [0, 1]. The architecture is
illustrated in Fig. 1.

The following subsections give more details about each
component of the architectures and some performance
metrics.

2.1 AAKR Model

Auto-Associative Kernel Regression (AAKR) is a type
of similarity based model, a nonparametric modelling
technique that uses the similarity of a query vector to
memory or exemplar vectors to infer the response of the
model, as described in Hines et al. (2008). The derivation
of the AAKR model architecture used in this work is
based on multivariate, inferential kernel regression, that
uses historical, fault free observations to correct drifts in
the current observations. These fault free observations are
stored in a matrix Xn×p, where Xi,j is the ith observation
of the jth variable, n is the number of observations of the p
variables. A query vector x is a 1× p vector of the sensors
measurements, which is the input of the model.

The prediction of the corrected input is calculated as a
weighted average of the memory vectors stored in Xn×p,
following some basic steps. First, the distance between a
query vector x and each of the memory vectors Xi,j is
calculated. The most common measure is the Euclidean
distance. This calculation results in a vector un×1:

u =







u1(X1,x)
...

un(Xn,x)






, (1)

ui(Xi,x) =
√

(Xi,1 − x1)2 + · · ·+ (Xi,p − xp)2

These distances are converted into similarity measures

wn×1 = [w1 · · · wn]
T
by using a kernel function, like the

Gaussian kernel

w =
1√
2πh2

exp

(

−u2

h2

)

(2)

where h is called kernel bandwidth. Finally, the prediction
of the corrected input is calculated by using this similari-
ties, or weights, to form a weighted average of the memory
vectors:

x̂j =

n
∑

i=1

(wi ·Xi,j)

n
∑

i=1

wi

, x̂ =
wT X
n
∑

i=1

wi

(3)

where x̂ = [x̂1 · · · x̂p] is the prediction vector.
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It is import to note that the memory vectors must include
all the condition operations that are expected to be in-
cluded into the future query vectors. As discussed by Hines
et al. (2008), “several circumstances, including equipment
repair or failure, seasonal variations and system-operating
changes, can cause a change in operating conditions”. If
these operating conditions are not included in the memory
vectors, no confidence can be given to predictions of the
model and the memory matrix must either be appended or
replaced with new data. The distance between the query
vector and the most similar memory vector could indicate
if the operating condition is inside of the training region.

In this work, the memory vectors were selected from a
training set by a combination of min-max and vector
ordering methods, as described in Hines et al. (2008). The
bandwidth were chosen using grid-search and k-fold cross-
validation, as in An et al. (2011). Large bandwidths pro-
duce smoother model predictions, as many memory vectors
are used to infer a parameters value. Conversely, small
bandwidths produce rough and/or inconsistent predictions
because a limited number, if any, of the memory vectors
are used to infer a parameters value.

2.2 Kalman Filter Model

As illustrated in Fig. 1, the objective of the Kalman
filter is to estimate or to track the drift embedded in the
measurements. The mathematical model used to estimate
the drift dk

p×1 is

dk = I dk−1 + vk, vk ∼ N (0,V) (4)

where vk is assumed to be Gaussian noise and V is the
state noise covariance. In target tracking, equation (4)
is known as the mathematical model of the dynamics
behaviour of the target. In this work, the sensor drift is
the target, and the objective is to track the amplitude of
the drift over time. Like Takruri et al. (2008), assuming
the sensor drifts in a smooth, slowly increasing, linear
or exponential fashion, the model of equation (4) is a
reasonable approximation. Another assumption is that
the drifts are not correlated with each other, despite the
correlation between the process variables.

The available observations of the drifts, z, is given by

z = r− x̂ (5)

The vector z is not the true values of the drifts, since the
true values of the process variables are unavailable. So, the
measurement equation is

z = I dk + qk, qk ∼ N (0,Q) (6)

where qk is Gaussian noise and Q is the measurement
noise covariance.

When a reading vector r and the estimation of its correct
value, x̂, are available, the following steps are executed to

obtain a new estimation of the drifts, d̂k:

(1) prediction, d̂k|k−1 = I d̂k−1

(2) minimum prediction MSE (mean squared error) ma-
trix, Mk|k−1 = Mk−1 +V

(3) Kalman gain, Kk = Mk|k−1 (Q+Mk|k−1)−1

(4) correction, d̂k = d̂k|k−1 +K (z− d̂k|k−1)

(5) minimum MSE matrix, Mk = (I−K)Mk|k−1

In Section 4, the Kalman Filter parameters,Q andV, were
chosen using trial and error. If Q is set to a high value,
the estimated drift takes longer to follow the real drift,
whereas if Q is set to a small values, the estimated drift
follows any little difference between the AAKR estimation
and the sensor readings. TheV values have a inverse effect:
high values yield unstable drift estimates that follow any
little difference between the AAKR estimation and the
sensor readings; for small values, the estimated drift takes
longer to follow the real drift.

2.3 Statistical Decision Logic Module

The statistical decision logic module is responsible for
evaluating the residuals and then making a decision about
the operating condition of the sensor. In this work, the
SPRT algorithm is applied to the residual analysis, de-
tecting statistical changes in the residuals between the
measurements and the predict values.

The SPRT is a statistical technique for system anomaly
detection (Hines et al. (2008)), which consists of testing
two possible hypotheses: the system is more likely to be
in a normal mode H0 or in a degraded mode H1. For each
new residual dip of the process variable p (i is the instant
time), the following procedure is executed to accept one of
the two hypotheses:

(1) calculation of the log-likelihood ratio

Λi
p = ln

P (dip|H1)

P (dip|H0)
(7)

(2) calculation of the cumulative sum of Λp

Si
p = Si−1 + Λi

p (8)

(3) application of the stopping rule, a simple thresholding
scheme
• lnA < Si

p < lnB, continue monitoring and

calculating Si+1
p = Si

p + Λi+1
p

• Si
p ≤ lnA, H0 is accepted

• Si
p ≥ lnB, H1 is accepted and a alarm is emitted

where A and B are the lower and upper bound, and
P (dip|H1) is the probability of observing dip given H1

is true. A and B could be defined by the false alarm
probability α and missed alarm probability β as

A =
β

1− α
, B =

1− β

α
(9)

If Si
p ≤ lnA, it is determined to belong to the normal mode

H0 of the system and D = 0. Conversely, if Si
p ≥ lnB, it

is determined to belong to the degraded mode H1 of the
system and D = 1, indicating a drift occurrence.

Here the residuals are assumed to be normally distributed
with zero mean and variance of σ2, which is an estimate
of the sensor noise. Therefore, the probability distribution
function for the normal mode of the residuals is given by

P (dip|H0) =
1

2πσ2
exp

(

−di 2p
2σ2

)

(10)

Supposing the degraded mode represented as a mean shift
up (+M) or a mean shift down (−M), where M is the
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amplitude of the change, the log-likelihood ratio is given
by

Λi
p =

{

M/σ2(dip −M/2), for a positive change
M/σ2(−dip −M/2), for a negative change

(11)

As suggested in Hines et al. (2008), the optimal M value
can be determined numerically by applying the SPRT to
unfaulted, test data and locating the M value that results
in a false-alarm probability that is nearest the theoretical
false alarm probability α.

2.4 Performance Metrics

As stated in Hines et al. (2008), the performance of auto-
associative on-line monitoring systems has traditionally
been measured in terms of three metrics: accuracy, auto
sensitivity, and cross sensitivity.

The ability of a model to correctly and accurately predict
sensor values is measured by the accuracy, and it is is
normally presented as the MSE between sensor predictions
and the measured sensor values. It is important to note
that this metric compares the unfaulted, or error corrected,
predictions with the target, or error free, data. The equa-
tion for a single variable is given by

MSE =
1

N

N
∑

i=1

(x̂i − xi)
2 (12)

where N is the number of test observations.

Auto sensitivity (SA) measures the ability of a model to
make correct sensor predictions when the respective sensor
value is incorrect due to some sort of fault. The auto
sensitivity for a sensor k is given by

SAk =
1

N

N
∑

i=1

|x̂drift
ik − x̂ik|

|xdrift
ik − xik|

(13)

where x̂drift
i is the drifted prediction, x̂i is the unfaulted

prediction, and xdrift
i and xi are the drifted and unfaulted

input, respectively.

The effect a faulty sensor input has on other sensor
predictions is measured by the cross sensitivity (SC). For
a unfaulted sensor j and a drifted sensor k, the cross
sensitivity is calculated as

SCk =
1

N

N
∑

i=1

|x̂drift
ij − x̂ij |

|xdrift
ik − xik|

(14)

Good monitoring systems have lower MSE, SA and SC

values.

3. DATA SETS FOR SYSTEMS EVALUATION

The two monitoring systems were evaluated using simu-
lated and real data sets. Following, major details are given
about each data set.

3.1 Simulated Data Set

Simulated data were generated by a model developed using
OLGA 1 . The model represent a well operated by gas-lift
1 http://www.sptgroup.com/en/Products/olga/Multiphase-Flow-
Simulator/

with a 2500 meters deep pipe production. The pressure at
the separator was keep at 1000 kPa and the reservoir was
set to 18000 kPa.

The simulated data were collected during 225 hours of
well production, while the injected gas flow rate was
set to different values, representing different operating
conditions. The data set is composed of the pressure at
the bottom hole (PTf ), at the top of the production pipe
(PTt), at the top of the annular space (PTg) and at the
upstream of the injection choke (PTm). The sample rate
was 1 sample per minute. White noise of NSR (noise to
signal ratio) equal to 0.3 was added to the measurements.

The data set was divided into two parts: the first 90 hours
for AAKR training and the rest of data for test. All the
data set is presented in Fig. 2.

3.2 Real Data Set

The real data set is composed of pressure measurements
at the bottom hole (PDG), at the Christmas tree (TPT)
and at the upstream of the injection choke (PTm). The
data was collected during 955 hours at the sample rate of
1 sample per minute. The first 500 hours were used for
training and the rest of the data for test.

It is not known if the data set includes some faulty data,
except the visible outliers equal to zero.
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Fig. 2. Simulated data set.
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Fig. 3. Real data set.
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4. RESULTS

4.1 Simulated Data

In both architectures, the AAKR model and the SPRT
module were the same, using the following configurations:
an AAKR model with h = 0.2 and 25% × 5400 = 1350
memory vectors (almost the most accurate configuration);
and a SPRT module with false alarm probability set to
5%, missed alarm probability set to 10% andM = 3 (hypo-
thetical values) for all process variables. In the AAKR-KF-
SPRT architecture, the Kalman Filter covariance matrices
Q and V were set to 0.3 and 0.0001, respectively.

In order to evaluate the ability to correct/detect sensors
faulty data, an artificial linearly increasing sensor drift
ending at a magnitude of 5σ (five times the standard
deviation of the sensor signal) was introduced in the
testing data set at the time approximately equal to 12
hours. The results are presented in Fig. 4, 5, 6 and Table
1.

It can be seen in Fig. 4 that the AAKR-KF-SPRT results
follow the true values with just a small bias, even at the
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Fig. 4. Predictions of PTf and PTm for three drifting
sensors, PTf , PTt and PTg, in simulated data set.
AKS means AAKR-KF-SPRT and AS means AAKR-
SPRT.
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Fig. 5. Drift estimates and SPRT decision of PTf and PTm

for the AAKR-KF-SPRT on simulated data set.
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Fig. 6. Residual and SPRT decision of PTf and PTm for
the AAKR-SPRT on simulated data set.

Table 1. Performance metrics for the system
monitoring architectures.

AAKR-KF-SPRT AAKR-SPRT

MSE 9.1293× 10−3 2.8491× 10−3

SA 1.9431× 10−5 5.0840× 10−5

SC 8.1022× 10−5 11.8895× 10−5

maximum drift amplitude. The AAKR-SPRT can not gen-
erate good predictions for severe drift in its inputs, mainly
for small bandwidth values. The SA and SC values in Table
1 confirm the higher sensitivity of the AAKR-SPRT for
drifting inputs. From the MSE values, the AAKR-SPRT
is more accurate for unfaulted data, but the AAKR-KF-
SPRT can generate better predictions using faulty data.
Larger bandwidths could improve the performance of the
AAKR-SPRT, but its predictions tend to be biased, with
values always near a mean value of the memory vectors.

A comparison of the drift detection performance is showed
in the Fig. 5 and 6 2 . The AAKR-SPRT correctly detected
a drift occurrence in PTf at the 56th hours, but it
emitted a false alarm about PTm. In addition, the variance
assumed for the sensor noise appear to be in discordance
with the real variance, as it can be seen in the decision
results of PTf at the time instances around 100 hours, a
large interval between two decisions D = 1. The AKKR-
KF-SPRT detected correctly the drift occurrence without
any false alarms, and its residuals are cleaner, allowing
stable drift detection. Since its predictions kept near the
true values, the residuals reach the limit early.

The better generalisation performance of the AAKR-KF-
SPRT allows a greater extension of the useful life sensor,
once its predictions are very near the true values even on
a severe drift occurrence. However, it has a cost, biased
predictions even on normal sensor readings. Since the KF
can not discern between bias and drift, incorrect drift
predictions can cause false SPRT alarms.

4.2 Real Data

The following configurations were used for the AAKR
model and the SPRT module: an AAKR model with
h = 0.6 and 5% × 30000 = 1500 memory vectors (almost
the most accurate configuration); and a SPRT module
with false alarm probability set to 5%, missed alarm
probability set to 10% and M = 3 for all process variables.
In the AAKR-KF-SPRT architecture, the Kalman Filter
covariance matrices Q and V was set to 10 and 0.0001,
respectively.

Again, an artificial linearly increasing sensor drift ending
at a magnitude of 5σ (five times the standard deviation of
the sensor signal) was introduced in the testing data set
at the time approximately equal to 42 hours. The results
are presented in Fig. 7, 8, 9 and Table 2.

The predictions for two drifting sensors, TPT e PTm,
are illustrated in Fig. 7. It can be seen that a similar
behaviour of the monitoring systems when compared to
Fig. 4. The AAKR-KF-SPRT present better performance

2 The shaded area means the occurrence of many close high and low
values. High values indicate D = 1 (degraded mode), whereas low
values indicate D = 0 (normal mode).
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Fig. 7. Predictions of PDG and PTm for two drifting
sensors, TPT and PTm in real data set. AKS means
AAKR-KF-SPRT and AS means AAKR-SPRT.
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Fig. 8. Drift estimates and SPRT decision of PDG and
PTm for the AAKR-KF-SPRT on real data set.
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Fig. 9. Residual and SPRT decision of PDG and PTm for
the AAKR-SPRT on real data set.

Table 2. Performance metrics for the system
monitoring architectures on real data set.

AAKR-KF-SPRT AAKR-SPRT

MSE 2.7013 1.4061
SA 0.0747 0.6956
SC 0.0466 0.1208

for drift correction/detection. The SA and SC values in
Table 2 indicate the lower sensitivity for faulty inputs
presented by the AAKR-KF-SPRT, whereas the AAKR-
SPRT predictions presented some inconsistent peaks, even
for the PDG data. However, as indicated by the MSE
values, for unfaulted data, the AAKR-SPRT is more
accurate, considering the original data as error free. For
the visible outliers equal to zero, both systems generated
reasonable predictions.

As it can be noted in the Fig. 8 and 9, the residual
generated by the AAKR-SPRT is affected by outliers in

the test data; its SPRT module gave false alarms for the
PDG and missed some alarms for the other sensor. The
drift estimates of the AAKR-KF-SPRT are much more
clean, resulting in correct SPRT decisions.

Although the performance of the systems have some differ-
ences, both systems show promising results for the oilfield
industry data.

5. CONCLUSION

In this work, a robust on-line calibration monitoring sys-
tem for drift correction/detection in oil and gas well sen-
sors is presented. The system is based on an empirical
model for prediction, a Kalman filter for drift tracking
and a statistical decision module for drift detection. The
evaluation for simulated and real data sets demonstrated
promising results for the oilfield industry. With a slight loss
of accuracy, the predictions of the corrected readings of the
sensors showed to be much less sensitive for drifts than a
state-of-art monitoring system. This characteristic allows
a greater extension of the useful life of the sensors, playing
an important role on the production optimisation of the
well and planning. For future work, the use of the empirical
model uncertainty in the drift detection and improvements
in Kalman filter will be analysed.
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