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Abstract: This paper considers downhole directional drilling systems in the presence of
unexpected variations in steering force, input delays, measurement noise and measurement
delays, and explores the application of L1 adaptive controller for the trajectory control problem.
The Explicit Force, Finitely Sharp, Zero Mass (EFFSZM) model is used for the steering
system, in which spatial delays, modeling inaccuracies, parametric uncertainties, and noise are
considered. The L1 adaptive controller ensures that the centerline of the borehole follows a well
path planned according to a priori available geologic conditions and local residential information.
Path tracking results are demonstrated by simulations.
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1. INTRODUCTION

This paper extends the results in Sun et al. (2011),
where L1 adaptive controller was presented for directional
drilling systems. Specifically, an L1 adaptive controller
was designed to address the tracking problem of a linear
system with internal delays, which was representative
of a rotary steerable system. In this paper, in addition
to internal spatial delay and steering force saturation,
we consider scenarios with actuator delays, measurement
noise, measurement delays and unexpected variations in
the steering force. The L1 adaptive controller is shown
to have reliable performance in the presence of these
uncertainties as well. With sufficiently fast adaptation, the
output of the directional drilling system can follow the
desired reference path sufficiently closely.

The control of the drilling direction is of great importance
to the oil and gas industry. The directional control fa-
cilitates drilling into the reservoir where vertical access
is difficult or not possible, and allows more wellheads to
be grouped together on the surface. With the directional
control technique more of the oil and gas can be drained
than purely vertical wells. Because of the formations of
oil-bearing and gas-bearing layers, wells that intersect a
producing formation at an angle or horizontally can often
drain more of the oil and gas. There are numerous studies
showing that directionally drilled wells have been able
to extract 2 to 25 times more oil or gas than vertical
wells drilled in the same oil or gas field (Molvar (2003);
Aalund and Rappold (1993); Deskins et al. (1995)). From
an environmental perspective, it provides the ability to
access oil or gas by drilling a well that is miles away from
specific property or site, residences or other areas that
should not be disturbed. Locating the well sites this way

helps to avoid or minimize surface disturbance in sensitive
or special areas.

In directional drilling systems, the dynamic vibration re-
sponse of the drillstring to the steering force is captured in
different models in previous works (Millheim et al. (1978);
Downton (2007); Dareing and Livesay (1968); Dunsyevsky
et al. (1993); Aldred and Sheppard (1992); Downton and
Ignova (2011)). Due to the imprecision in modeling and
measurement, the controller design that is robust and han-
dles large uncertainties becomes an important factor in the
directional drilling technology. The L1 adaptive controller
has guaranteed transient and steady-state performance
bounds without introducing persistency of excitation or
gain-scheduling in the controller parameters. The archi-
tecture of L1 adaptive controller introduces separation
between estimation and control loops, which allows for
arbitrary increase of the rate of adaptation (Cao and
Hovakimyan (2008); Hovakimyan and Cao (2010)) without
hurting robustness. It is guaranteed to have a time-delay
margin bounded away from zero (Cao and Hovakimyan
(2010); Hovakimyan and Cao (2010)). This paper applies
the L1 adaptive controller to directional drilling systems.
The uniform performance bounds guarantee that the cen-
terline of the drilling hole follows the previously designed
well path in the presence of internal delays, steering force
saturation and variation, measurement noise, etc.

The paper is organized as follows. Section 2 introduces
Directional Drilling System, and Section 3 formulates the
control problem. Section 4 presents the design of the
controller, followed by the performance bounds in Section
5. The closed-loop performance is illustrated by a test case
in Section 6. Finally, Section 7 concludes the paper.
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Throughout the paper, ‖·‖1 denotes the 1-norm of a vector
and ‖·‖2 denotes the 2-norm of a vector. Notations ‖ξt‖L∞
and ‖ξ‖L∞ denote, respectively, the truncated (to [0, t])
L∞-norm and the (untruncated) L∞-norm of the time-
varying signal ξ(t). For a stable proper transfer matrix
G(s), ‖G(s)‖L1

denotes its L1-norm.

2. DIRECTIONAL DRILLING SYSTEM

The directionally steered drilling system models the rela-
tionship between the centerline of the drilling hole and the
actuator stimuli. From the geometry and the action of the
actuators, the bit force can be computed and approximate
models can be derived. In this paper, we use the EFFSZM
(Explicit Force, Finitely Sharp, Zero Mass) model given in
Downton (2007), where the directional drilling system is
assumed to have a force actuator on the lower collar; the
bit is assumed to be finitely sharp; and the pipe work is
assumed to be infinitely stiff with zero mass.

2.1 EFFSZM Model

The system dynamics of the EFFSZM model is given by

dH(m)

dm
=

(
1 + Cf
b

− Cf
d

)
H(m)

+
1 + Cf
b

(V (m)−H(m− b)) +
Cf
d
H(m− d)

+
b− a

b WOB Kanis
Fpad(m) , (1)

Ψ(m) =
dH(m)

dm
,

where Cf =
(

c−b
Kanis

− d−b
d−c

Kflex

WOB

)
d

b(d−c) ; m is the distance

drilled along the direction of drilling; H(m) is the lateral
displacement of the borehole; a is the distance between
the force actuator and the bit; b is the distance between
the lower stabilizer and the bit; c is the relative position
of the flex-joint to the bit; d is the position of the upper
stabilizer to the bit; V (m) is the actuator displacement at
the lower stabilizer; WOB (Weight on Bit) is the applied
drilling load;Kanis is the ratio of rates of penetration along
and across the bit; Kflex is the angular spring rate of the
flex joint; Fpad(m) is the force actuator output; and Ψ(m)
is the angle of borehole-propagation with respect to the
m-axis. The structure of the drilling system is shown in
Figure 1.

Note that in the system described in (1), the independent
variable is the drilled distance m instead of time t. The
model can also be written in transfer function form as

H(s) =

1+Cf

b V (s) + b−a
bWOBKanis

Fpad(s)

s+
Cf

d (1− e−sd)− 1+Cf

b (1− e−sb)
, (2)

Ψ(s) =sH(s).

2.2 Open-loop Performance

For different parameter settings, the response of the afore-
mentioned system to the same input varies. In the drilling
process in different rock layers, some parameters deter-
mined by the actuator and stabilizer positions and spring
rates are known, such as a, b, c, d, Kflex, while some

Fig. 1. Flex-hinge directional drilling system (Downton
(2007)).
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Fig. 2. Open-loop performance for different parameter
values

others such as WOB and Kanis are unknown, and may
take different values in a compact set.

Note that s = 0 is one of the infinitely many poles of
the transfer function (2). The system can be at most
marginally stable. Fig. 2 shows the response H(m) of the
open-loop system to a constant force Fpad(m) ≡ 8.896 ×
103 N. The applied drilling load, and the rate ratio are
WOB = 8.8964× 104 N, Kanis = 10 and WOB = 1× 104

N, Kanis = 1 for Figs. 2a and 2b, respectively, and detailed
settings for other parameters are introduced in Section
6. In the first case, the system is marginally stable. The
response is like the step response of a double integrator.
In the second case, the output diverges, and the system is
unstable.

3. PROBLEM FORMULATION

From the dynamics in (1), the system can be rewritten in
the form

ẋ(m) = Amx(m) + b0
(
ωu(m) + θ0(m)>x(m)

+ θ1(m)>x(m− τ1) + θ2(m)>x(m− τ2) + σ(m)
)
,

x(m) = 0 ∀m ∈ [−τ2, 0] , (3)

y(m) = c>0 x(m) ,

where Am is a n × n Hurwitz matrix by choice, b0, c0 ∈
Rn are known constant vectors, (Am, b0) is control-
lable, ω is an unknown constant with known sign,
θ0(m), θ1(m), θ2(m) ∈ Rn are unknown vectors, τ1, τ2 ∈
R+(τ1 < τ2) are known internal delays, σ(m) ∈ R models
the input disturbance, x(m) ∈ Rn is the system state
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vector (measured), u(m) ∈ Rl is the control input, and
y(m) ∈ R is the regulated output.

Assumption 1. The unknown parameters θ0(m), θ1(m),
θ2(m) belong to given compact convex sets Θ0, Θ1, Θ2,
respectively,

θ0(m) ∈ Θ0, θ1(m) ∈ Θ1, θ2(m) ∈ Θ2, ∀m ≥ 0.

Let θmax 0 , maxθ∈Θ0
‖θ‖1, θmax 1 , maxθ∈Θ1

‖θ‖1,

θmax 2 , maxθ∈Θ2
‖θ‖1.

The input disturbance σ(m) is upper bounded by

|σ(m)| ≤ ∆ , ∀m ≥ 0 ,

where ∆ ∈ R+ is a known conservative bound.

Assumption 2. Let θ0(m), θ1(m), θ2(m) and σ(m) be con-
tinuously differentiable with uniformly bounded deriva-
tives

‖θ̇0(m)‖ ≤ dθ0 , ‖θ̇1(m)‖ ≤ dθ1 ,
‖θ̇2(m)‖ ≤ dθ2 , |σ̇(m)| ≤ dσ .

Assumption 3. Let ω ∈ Ω0 = [ωl, ωu], where 0 < ωl < ωu
are given lower and upper bounds on ω.

The objective is to design a feedback controller that en-
sures that H(m) follows a pre-determined wellhole curve.
Note that as introduced in Section 2, the EFFSZM model
uses the drilled distance m instead of time t as the in-
dependent variable. The spacial curvature response of the
directional drilling system is characterized by the lateral
displacement H(m). The wellhole curve is given by a refer-
ence signal r(m) describing the commanded displacement
at the drilling distance m. This reference signal serves
as input to a stable reference system which defines the
desired curvature response. The L1 adaptive controller
presented in the following section compensates for the
uncertainties and disturbances in the system and ensures
that the system output H(m) follows the response of the
desired reference system to the given signal r(m).

4. L1 ADAPTIVE CONTROLLER

In this section we present the L1 adaptive controller for
the system in (3). The L1 adaptive controller consists of a
state predictor, an estimation law and a control law.

We consider the following state predictor

˙̂x(m) =Amx̂(m) + b0
(
ω̂(m)u(m) + θ̂0(m)>x(m)

+ θ̂1(m)>x(m− τ1) + θ̂2(m)>x(m− τ2) + σ̂(m)
)
,

x̂(m) = 0 ∀m ∈ [−τ2, 0] , (4)

ŷ(m) =c>0 x̂(m) ,

where x̂(m) ∈ Rn, ŷ(m) ∈ R are the state and the output

of the state predictor, ω̂ ∈ R, θ̂0(m), θ̂1(m), θ̂2(m) ∈ Rn,
σ̂(m) ∈ R are estimates of the unknown parameters
ω, θ0(m), θ1(m), θ2(m), and σ(m), respectively. The
projection-type adaptive laws for the estimates are given
by

˙̂
θ0(m) =ΓProj(θ̂0(m),−x̃>(m)Pb0x(m)), θ̂0(0) = θ̂00,

˙̂
θ1(m) =ΓProj(θ̂1(m),−x̃>(m)Pb0x(m− τ1)),

˙̂
θ2(m) =ΓProj(θ̂2(m),−x̃>(m)Pb0x(m− τ2)),

θ̂1(0) = θ̂10, θ̂2(0) = θ̂20,

˙̂σ(m) =ΓProj(σ̂(m),−x̃>(m)Pb0), σ̂(0) = σ̂0,

˙̂ω(m) =ΓProj(ω̂(m),−x̃>(m)Pb0u(m)), ω̂(0) = ω̂0, (5)

where x̃(m) , x̂(m)− x(m), Γ > 0 is the adaptation rate,
P = P> > 0 solves the algebraic Lyapunov equation
A>mP + PAm = −Q for some symmetric Q > 0, and
Proj(·, ·) denotes the projection operator (Pomet and
Praly (1992)). In the implementation of the projection
operator, we use the compact sets Ω, Θ0, Θ1, Θ2, and
[−∆,∆].

The control signal is defined by

u(s) = −kD(s) (η̂(s)− kgr(s)) , (6)

where kg , − 1
c>0 A

−1
m b0

, r(s) and η̂(s) are the Laplace

transforms of r(m) and η̂(m) , ω̂(m)u(m)+ θ̂>0 (m)x(m)+

θ̂>1 (m)x(m − τ1) + θ̂>2 (m)x(m − τ2) + σ̂(m), k > 0 is
the feedback gain, and D(s) is a strictly proper transfer
function leading to a strictly proper stable

C(s) ,
ωkD(s)

1 + ωkD(s)
(7)

with DC gain C(0) = 1. One simple choice is D(s) = 1
s ,

which yields a first order strictly proper C(s) of the
following form

C(s) =
ωk

s+ ωk
.

The L1 adaptive controller consists of (4), (5) and (6),
subject to the following L1 norm condition

‖G(s)‖L1
(θmax 0 + θmax 1 + θmax 2) < 1 , (8)

where

H(s) , (sI−Am)−1b0 , G(s) , H(s)(C(s)− 1) . (9)

5. ANALYSIS OF L1 ADAPTIVE CONTROLLER

5.1 Stability of The Reference System

Consider the reference system

ẋref(m) =Amxref(m) + b0
(
ωuref(m) + θ0(m)>xref(m)

+ θ1(m)>xref(m− τ1) + θ2(m)>xref(m− τ2)

+ σ(m)
)
, xref(m) = 0 ∀m ∈ [−τ2, 0] ,

yref(m) =c>0 xref(m) , (10)

and the following reference control

uref(s) =
C(s)

ω

(
− ηref(s) + kgr(s)

)
, (11)

where ηref(s) is the Laplace transform of ηref(m) ,
θ>0 (m)xref(m) + θ>1 (m)xref(m− τ1) + θ>2 (m)xref(m− τ2) +
σ(m).

Lemma 1. (Sun et al. (2011)). If the condition in (8) holds,
then the reference system in (10) and (11) is BIBO stable
with respect to r(m).
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5.2 Prediction Error

As defined in (5), x̃(t) = x̂(t) − x(t) is the error between
the state of the system and the state of the predictor. From
(3) and (4), we have the prediction error dynamics

˙̃x(m) =Amx̃(m) + b0
(
ω̃(m)u(m) + θ̃0(m)>x(m)

+ θ̃1(m)>x(m− τ1) + θ̃2(m)>x(m− τ2) + σ̃(m)
)
,

x̃(m) = 0 ∀m ∈ [−τ2, 0] , (12)

where θ̃0(m) , θ̂0(m) − θ0(m), θ̃1(m) , θ̂1(m) − θ1(m),

θ̃2(m) , θ̂2(m) − θ2(m), σ̃(m) , σ̂(m) − σ(m), and

ω̃(m) , ω̂(m)− ω. Let

η̃(m) ,ω̃(m)u(m) + θ̃0(m)>x(m) + θ̃1(m)>x(m− τ1)

+ θ̃2(m)>x(m− τ2) + σ̃(m) . (13)

Then the prediction error dynamics in (12) can be written
as

x̃(s) = H(s)η̃(s) . (14)

Lemma 2. (Hovakimyan and Cao (2010)). For the system
in (3) and the controller defined by (6), we have the
following bound

‖x̃‖L∞ ≤

√
θm

λmin(P )Γ
, (15)

where

θm ,4

2∑
i=0

max
θi∈Θi

‖θi‖22 + 4∆2 + (ωu − ωl)2

+ 4
λmax(P )

λmin(Q)
(

2∑
i=0

dθi max
θi∈Θi

‖θi‖2 + dσ∆) ,

and λmin(·) is the smallest eigenvalue of a matrix.

The proof is similar to the one in Hovakimyan and Cao
(2010) and is thus omitted.

5.3 Performance Bounds

Theorem 3. (Sun et al. (2011)). Consider the system in
(3) and the controller in (4), (5) and (6). If the L1-norm
condition in (8) holds, then the errors are upper bounded
by

‖x− xref‖L∞ ≤ γx , ‖u− uref‖L∞ ≤ γu , (16)

where γx and γu are given by

γx ,
‖C(s)‖L1

1− ‖G(s)‖L1

(
θmax 0 + θmax 1 + θmax 2

)√ θm
λmin(P )Γ

,

γu ,

∥∥∥∥C(s)

ω

∥∥∥∥
L1

(
θmax 0 + θmax 1 + θmax 2

)
γx

+

∥∥∥∥ C(s)

ωc>o H(s)
c>o

∥∥∥∥
L1

√
θm

λmin(P )Γ
.

6. TEST CASE

This section shows the simulation results of a test case of
directional drilling systems. The test case is representative
of controlling the path at which a directional steering sys-
tem drills with respect to the hole propagation direction.
As introduced in Section 2, the EFFSZM model is used for

the directional drilling system. In the system, the steering
control commands produce the actuator force Fpad(m)
that pushes against the borehole wall. The magnitude of
Fpad(m) is limited, which cannot exceed 8.896 × 103N in
either the positive or the negative direction. The unex-
pected variations in Fpad(m) and collisions of the tools
with the borehole (which can happen for severe up or down
displacement of the hole) are captured by a sinusoidal
disturbance signal.

The geometrical and structural parameters used in the
EFFSZM model are fixed. The values are given by

a = 0.305m, b = 0.953m, c = 1.407m, d = 2m,

Kflex = 8.577× 105N ·m/rad.

The uncertain parameters WOB and Kanis have the
following range of variation WOB ∈ [104, 1.6 × 105]N,
Kanis ∈ [1, 100].

First we show the scenario where the lateral displacement
H(m) can be measured. The desired smooth centerline
of the borehole is given in the dashed line in Figure
3. The control objective is to drive H(m) to follow the
desired borehole center path predetermined by geologists
and engineers.

We use the L1 adaptive controller with the following
parameters

Am = −0.5 , Γ = 108 , k = 104 ,

Cf ∈ [−252.8380,−11.1425] , Θ0 = [−49.7445,−1.8306] ,

Θ1 = [3.0249, 75.1083] , Θ2 = [−25.2838,−1.1142] ,

Ω ∈ [5.6815× 10−8, 9.0904× 10−5] .

Figure 3 demonstrates the performance of the closed-
loop system. The closeness of the dashed line and the
solid line shows that the L1 adaptive controller drives
the system output close to the desired well path in the
presence of uncertain parameters, internal delays, and
control saturation in the system.

Next we show that the L1 adaptive controller is robust to
delays and disturbances. Figure 4 shows the case with un-
expected variations of the actuator force Fpad(m) charac-
terized by a sinusoidal signal with an amplitude of 5×102N
(about 20% of the average steering force value); Figure
5 presents the control and the output in the presence of
an input delay of 3 ft; Figure 6 plots the control and
the output in the presence of a measurement delay of 2
ft; Figure 7 has the measurement noise which is white
Gaussian noise with a variance of 6 × 104rad2 (about 2%
of the average value of the designed lateral displacement
Hdes(m)).

We then simulate the case when the lateral displacement
H(m) cannot be measured and only Ψ(m) (the angle
of borehole-propagation with respect to the m-axis) is
available. The model can be transformed to a suitable
form by setting x(m) , Ψ(m), u(m) , Ḟpad(m). Now
the control objective is to servo Ψ(m) to a user defined
angle (assume that the system starts from 0 degrees). We
assume that the driller wants to change inclination in 1
degree steps of random sign every 90 ft drilled.

We show the angle of drilling direction Ψ(m) and the
actuator force Fpad(m) for three different sets of param-
eters. The parameters are Kanis = 5 and WOB = 1.5 ×
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Fig. 3. Closed-loop performance with Kanis = 10 and
WOB = 8.8964× 104
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Fig. 4. The lateral displacement H and steering force Fpad
in the presence of unexpected variations
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Fig. 5. The lateral displacement H and steering force Fpad
in the presence of input delay
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Fig. 6. The lateral displacement H and steering force Fpad
in the presence of measurement delay
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Fig. 7. The lateral displacement H and steering force Fpad
in the presence of measurement noise

104; Kanis = 1 and WOB = 104; and Kanis = 5 and
WOB = 8.8964× 104 in Figures 8, 9, and 10, respectively.
The inclination angle Ψ and the control input Fpad are
presented. In all cases, as shown in Figs 8, 9, and 10, the
closed-loop system responds to a step command uniformly.
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Fig. 8. Closed-loop system with Kanis = 5 and WOB =
1.5× 104
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Fig. 9. Closed-loop system with Kanis = 1 and WOB = 1×
104
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Fig. 10. Closed-loop system with Kanis = 5 and WOB =
8.8964× 104

Further, we present results for the case where the two
uncertain parameters Kanis and WOB are “distance”-
varying, representing the condition changes when the bit
penetrates different rock layers, as in Figure 11. Note that
in all cases the design of the adaptive controller is fixed
(there is no retuning), and the controller adjusts to the
new parameter settings and ensures that the closed-loop
system maintains the desired output response.
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Fig. 11. Closed-loop system with Kanis varies every 80
ft between 1 and 100 and WOB varies every 50 ft
between 104 and 1.6× 105 N.

7. CONCLUSION

In this paper, we presented the L1 adaptive controller
for a class of uncertain systems with disturbances and
internal delays, and studied the application of it to direc-
tional drilling systems described by the EFFSZM model.

Future work will include applications to other models of
drilling systems for different specifications and control of
distributed drilling systems where multiple boreholes are
drilled from one site.
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