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Abstract: In this paper we propose a new discrete slug-flow control to stabilize severe slugging
oscillations in submarine oil-risers. Since the practical objetive is to stabilize the flow keeping the
surface choke with a minimum pressure drop, the idea of pressure set-point looses significance.
One could say that the control problem is well solved if the pressures and flow-rates do not
oscillate while the surface choke is kept opened well above the opening which characterizes the
beginning of the limit cycle. The idea is to develop a control strategy which supres the oscillation
while keeping the choke opening operating around a desired opening value. If the oscillations
are suppressed the resultant pressures will be a consequence of the input mass flow-rate, fluid
characteristics and the system geometry. Simulation results were obtained for a case study using
a comercial software in order to validate the proposed control system.
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1. INTRODUCTION

Severe slugging is a well-known dynamic phenomenon
which occurs in offshore pipeline production oil-risers. This
dynamic behavior is characterized by intermittent axial
distribution of gas and liquid. The pressure and flow-rate
oscillations induced by the slug-flow can provoke several
undesired effects on the surface equipments. Indeed these
types of disturbances can cause serious problems in the
input of the multiphase flow separator, deteriorating the
separation quality and causing level overflow (Godhavn
et al. (2005)).

The suppression of this type of oscillations can be achieved
by means of feedback automatic control methods. Two
main objectives should be achieved acting on the surface
production valve: (i) to stabilize the flow in risers mini-
mizing the problems on the separator; (ii) to increase oil
production with valve openings larger than in open-loop.
At the same time, two other benefits can be obtained: (i)
in cases where the oil is pumped from sea bottom, energy
consumption is minimized; (ii) in cases of risers connected
to wells with natural or artificial lift flows, higher produc-
tion is obtained by minimizing the back pressure in front
of the well perforated zones.

Several control methods to prevent slug-flow oscillations
in pipeline risers have been proposed in different works
(see for instance Storkaas and Skogestad (2007), Storkaas
(2005), Godhavn et al. (2005), Pagano et al. (2009),
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Di Meglio et al. (2009, 2010), Ogazi et al. (2009, 2010),
Sivertsen et al. (2009)).

Most of these control approaches have been derived from a
model of the system operating at an equilibrium point on
the unstable manifold of the pressure-valve opening curve.
In this way, pressure controller set-points are defined
according to this operating point. Since the practical
objective is to stabilize the flow keeping the surface choke
with a minimum pressure drop, the idea of pressure set-
point looses significance. Moreover, these approaches have
not been efficient in the presence of flow-rate disturbances
entering the riser. On the one hand, it is very difficult
to estimate the steady state value of the pressure at
the bottom of the riser. On the other hand, using an
infeasible set-point for the riser bottom pressure does not
help stabilization.

One could say that the control problem is well solved
if the pressures and flow-rates do not oscillate while the
surface choke is kept opened well above the opening which
characterizes the beginning of the limit cycle. Our idea is
to develop a control strategy based on an oscillatory model
behavior of the process and without fixing any operational
set-point. This approach allows to suppress system oscilla-
tions while keeping the valve opening operating around a
desired opening value. If the oscillations are suppressed the
resultant pressures will be a consequence of the input mass
flow-rate, fluid characteristics and the system geometry.

The paper is organized as follows. In Section 2, our control
strategy to suppress oscillations in non-linear systems is
presented. An illustrative example applying the proposed
control technique to eliminate oscillations on the classical
Van der Pol system is shown in Section 3. In Section 4,
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a case study simulated with OLGA 1 software allow us to
evaluate the proposed controller performance in order to
stabilize slugging oscillations in risers.

2. PROPOSED CONTROL LAW

The main idea is to design a control law based on a
simple model which represents a generic oscillatory process
behavior. The basic idea was first presented in Ganzaroli
(2011). During an oscillatory phenomena we can observe
the existence of a periodic behavior with a fundamental
frequency ωn. The proposed discrete model that represents
this behavior is given by

x (k) = a1x (k − 1)− a2x (k − 2) + b u (k − 1) , (1)

y(k) = x(k) + C.

where x is the state of the system, y is the output’s system,
a1, a2 are parameters, u is the input’s system and C is a
constant. For an oscillatory signal, can be easily proven
(see Appendix A) that a1 = 2 − b, a2 = 1 and b = ω2

nT
2
s .

From (1), we have

x (k + 1) = a1x (k)− a2x (k − 1) + b u (k) , (2)

y(k + 1) = x(k + 1) + C.

The control purpose is to suppress oscillations ensuring
stable system operation and, at the same time, to keep
the control at a desired value. We propose stabilize output
system oscillations by making ∂y

∂t
= 0. In the discrete

time, this objective can be rewriting as ∆y = e (k + 1) =
y (k + 1)− y (k) = 0. From (1) and (2) we can be express
the error between two output samples as

e (k + 1) = y (k + 1)− y (k)
e (k + 1) = a1e (k)− a2e (k − 1) + b∆u (k)

(3)

where
∆u (k) = u (k)− u (k − 1) . (4)

The controller design relies on the Lyapunov theory. We
propose the following candidate Lyapunov function

L (t) =
1

2
e (t)

2
(5)

which is positive definite since L(0) = 0 and L(e(t)) > 0,
∀e(t) 6= 0. For the closed loop to be stable,

dL (e (t))

dt
≤ 0. (6)

Using the discrete form to represent the equation (6) , we
have

∆L (e (k)) ≤ 0, (7)

whereas

∆L (e (k)) = e (k) (e (k)− e (k − 1)) . (8)

1 Multiphase flow software simulation commercialized from Scand-
power.

The control application must ensure that ∆L (e (k)) ≤ 0
or e (k) (e (k)− e (k − 1)) ≤ 0. Thus, if we apply a control
action that ensures e (k + 1) = Ge (k) with 0 < G < 1,then

∆L (e (k)) = Ge (k − 1) (Ge (k − 1)− e (k − 1))

∆L (e (k)) = e (k − 1)
2 (

G2 −G
) (9)

with e (k − 1)2 > 0 and
(

G2 −G
)

< 0. Replacing
e (k + 1) = Ge (k) in equation (3) we achieve

Ge (k) = a1 e (k)− a2 e (k − 1) + b∆u (k) . (10)

From (10) it is possible to obtain the following equivalent
discrete PI controller

∆u (k) =

(

G− a1

b

)

e (k) +
(a2

b

)

e (k − 1)

u (k) = u (k − 1) +
1

b
(G− a1) e (k) +

(a2

b

)

e (k − 1) .

(11)

The equation for a standard PI controller, discretized using
backward difference method, is given by

u (k) = u (k − 1) + γ0e (k) + γ1e (k − 1)

γ0 = Kc(1 +
Ts

Ti

)

γ1 = −Kc

(12)

Now, comparing the similar terms in equations (11) and
(12), the gains of the new controller are

Kc = −
1

b

Ti =
Ts

1−G− b

(13)

where b = ω2
nT

2
s and, as previously mentioned, Ts is

the sampling time; G is the only design parameter, with
0 < G < 1. The control law presented in (11) is modified
in order to lead the control for the desired operating point.
Then, the new control law is given by

u (k) = u (k − 1) +Kc

(

1 +
Ts

Ti

)

e (k)−Kce (k − 1)+

β (ud − u (k − 1)) (14)

where ud is the desired operating point and β is a param-
eter that adjusts how fast the control action reaches the
desired operating point.

3. A DEMONSTRATIVE EXAMPLE

In this Section, we present an example to illustrate our
proposed control technique to suppress oscillations. Let the
system that represents the controlled Van der Pol oscillator
given by

{

ẋ1 = x2

ẋ2 = −ω2
nx1 − µ

(

x2
1 − 1

)

x2 + ω2
nu(t)

(15)

where u(t) is the control action and y(t) = x1(t).
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The equilibrium points of the system (15) are (x̄1, x̄2) =
(u, 0) where the equilibrium x̄1 depends on control u. For
µ > 0 this equilibrium point is an unstable focus and
around it there exists a stable limit cycle.

The control purpose is to reduce or suppress the amplitude
of limit cycles of the system (15) stabilizing the oscilla-
tions. We assume that µ = 1 and the oscillation frequency
is approximately ωn = 2π

T
= 0.91. The oscillatory state-

responses x1 and x2 are shown in Figure(1).
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Fig. 1. Van der Pol system state-responses without control
for µ = 1.

In figure (2), it can be seen the system’s state-responses
when the proposed control law given by (14) is applied
to system (15). At t = 47s automatic control is turned
ON and at t = 250s the control is again turned OFF and
the system comes back to the oscillatory behavior. The
parameter values used for tuning the controller are shown
in Table (1).

Table 1. Control law parameters

Parameter Value

ωn 0.91
Ts 0.01
G 0.9
Kc −12076
Ti 0.1001
β 0.3
ud 2
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Fig. 2. Controlled Van der Pol system. At t = 47s
automatic control is turned ON and at t = 250s the
control is again turned OFF.

As shown in figure (2), the proposed control law stabilizes
the system at one feasible equilibrium point and also
achieve the desired operating point at ud = 2.

4. SEVERE SLUGGING CONTROL IN
PRODUCTION RISERS

A schematic diagram of a riser used in an oil production
off-shore system is shown in Fig. 3 with parameters shown
in Table 2. This system was simulated in OLGA.

In figure 3, bottom and top riser pressures P1 and P2,
respectively, are measured in [Pa] units and the control
action is applied on the production choke. Modeling this
system is quite complex since it involves partial differential
equations. In Storkaas (2005), a simplified third order
dynamical model developed in ordinary differential equa-
tions. Other attempts to capture the slug-flow behavior in
a model can be found in Di Meglio et al. (2009).
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Geometry Data of Pipelines:

Pipes 1, 2 and 3:
- diameter: 0.12m
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Pipes 4 and 5:
- diameter: 0.10m
- roughness: 2.8e-5m

Choke Data:
- diameter: 0.06m
- CD: 1

Fig. 3. Oil-riser system setup simulated in OLGA.

Table 2. Parameter values for OLGA simula-
tion

Parameter Value Unit

Mass flow-rate in riser input 5 Kg.s−1

Separator pressure 5.106 Pa
Temperature in riser output 22 oC

Temperature in well 62 oC

The bifurcation diagram considering the choke opening as
a bifurcation parameter (see figure 4), was obtained based
on OLGA data simulations for a mass flow-rate entering
the riser equal to 5Kg.s−1 and a separator pressure of
5.106Pa. The bifurcation diagram of figure 4 is qualita-
tively similar to the diagram shown in Storkaas (2005).
The stable and unstable equilibria manifold are depicted
in figure 5 where the curves corresponding to maximal and
minimum values of the limit cycle can be observed. As can
be seen in figure 5, a supercritical Hopf Bifurcation takes
place, at the point HBsup in the diagram, giving rise to
a stable limit cycle. Thus, without active feedback control
it is necessary to operate the system with choke opening
below 10% in order to avoid output system oscillations.
Hence, the control objective is to stabilize the oscillations
caused by severe slugging phenomena and to keep the
choke with a maximum aperture. For it, we choose the
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Fig. 5. Bifurcation diagram in (φ, P2)-plane.

production choke opening as the manipulated variable and
∂P1

∂t
as the controlled variable. Using the theory proposed

in Section 2, we obtained the simplified discrete model to
represent the oscillatory system behavior. This model is
given by

P1 = P̄1 + P̃1 (16)

P̃1 (k + 1)= a1P̃1 (k)− a2P̃1 (k − 1) + b uP2
(k)

where P1 is the bottom pressure, P̄1 is the offset value of
the pressure signal which includes the separator pressure
Ps, P̃1 represents its zero average oscillatory component,
uP2

stands for the pressure drop in the production choke.

The dynamics behavior of P̃1 is captured by means of a
discrete model given by (16), with the sampling time Ts

and where a1 = (2− ω2
nT

2
s ), a2 = 1 and b = ω2

nT
2
s . In this

way, P̃1 is approximated by a sinusoidal signal with the
frequency ωn = 2π

T
, where T is the oscillation period of

P̃1. Now defining

e (k + 1) = P̃1 (k + 1)− P̃1 (k) , (17)

the following equation is obtained

e (k + 1) = a1e (k) + a2e (k − 1) + b∆uP2
(k) . (18)

One approximate model to represents the pressure drop in
the production choke uP2

is given by

uP2
=

B

f2 (φ)
,

B =
q2

C2
vnρm

,

(19)

where q is the mass flow-rate through the production
choke, Cvn is the Cv for valve operating at 100%, ρm is
the average fluid density and f2 (φ) is the function which
represents the valve opening characteristic. Since q and
ρm are not usually measured, a simplified expression is
adopted to uP2

where B is obtained from the characteristic
(φ, P2) curve, see figure 5. More precisely, this value is
defined as B = Pu

2 − Ps, where Pu
2 is the pressure

value estimated on the unstable equilibria manifold at
the maximum choke opening, i.e. φ = 100%. Considering
a linear characteristic valve, f (φ) = φ, equation (19) is
rewriting as

uP2
=

B

φ2
, (20)

Substituting (20) in (16) we obtain

P̃1 (k + 1) = a1P̃1 (k)− a2P̃1 (k − 1) + b

(

B

φ2

)

, (21)

Note that, in the former equation, the actual control
variable is the valve opening φ that indirectly controls the
pressure drop uP2

.

The proposed control law is given as follows

uP2
(k) = uP2

(k − 1) +Kc

(

1 +
Ts

Ti

)

e (k)−Kce (k − 1) +

β
(

ud
P2

− uP2
(k − 1)

)

,

with ud
P2

= B
φ2

d

, where φd represents the desired choke

opening and β is a parameter that determines the choke
opening velocity. Since the control action uP2

is a function
of the valve opening, its saturation limits are computed
according to the valve opening lower and upper bounds,

if uP2
(k) ≤ uP2min

=
B

φ2
max

then uP2
(k) = uP2min

,

if uP2
(k) ≥ uP2max

=
B

φ2
min

then uP2
(k) = uP2max

,

(22)
being φmin = 0.01 and φmax = 1. In practice, the actual
control variable is the choke opening (φ), then, the pressure
drop in the production choke (uP2

) is converted in choke
opening by

φ (k) =

√

B

uP2
(k)

. (23)

4.1 Simulation results

Table (3) shows the parameter values used to adjust the
controller described in equation (22). Simulation results of
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the proposed slug-flow control law operating with φd = 0.7
are shown in figure (6). At t = 4h the control was switched
ON and a disturbance in the input riser flow-rate from
5Kgs−1 to 4Kgs−1 is applied between t = 24h and
t = 25h. Between t = 40h and t = 41h, another input
flow disturbance from 5Kgs−1 to 6Kgs−1 is applied and
at t = 56h the control was switched OFF and the system
comes back to the oscillatory regime.

Table 3. Control law parameters

Parameter Value

ωn 0.0024[rad/s]
Ts 15[s]
G 0.5
Kc −771.60
Ti 20.03
B 0.5 106[Pa]
β 0.03
φd 0.7
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Fig. 6. Control and output system responses with the
proposed control law and φd = 0.7. At t = 4h the
control was switched ON. A disturbance in the input
riser flow-rate from 5Kgs−1 to 4Kgs−1 is applied at
t = 24h and from 5Kgs−1 to 6Kgs−1 at t = 40h .
Again at t = 56h the control was switched OFF.

After several simulations, it was verified that the proposed
control kills the oscillations and maintain the choke open-
ings up to φd = 0.95. Simulation results obtained with
choke openings of φd = 0.9 are shown in Fig. (7).

5. CONCLUSION

In this paper we propose a new slug-flow control to
stabilize severe slugging oscillations in production risers.
This control action reveals itself as a robust way of
suppressing limit cycles when the mathematical model of
the process is not available in practice and the operating
point is unknown. This situation is manifested in the
presence of mass flow-rate input riser disturbances. It is
important to mention that the control algorithm proposed
in this paper does not compute the choke opening but
the pressure needed across the choke to stabilize the riser.
The choke opening is updated using the control action and
equation (20).
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Fig. 7. Control and output system responses with the
proposed control law and φd = 0.9. At t = 4h the
control was switched ON and at t = 56h the control
was switched OFF.

Besides, the proposed control algorithm works suppressing
process oscillations without forcing an operational bottom-
pressure set-point. One drawback of the proposed oscil-
lations control technique is the use of the output signal
derivative (bottom pressure derivative for the slug control
case, presented in equation (17)) since noise measurement
is always present and it may create difficulties. The same
technique has been applied with success in the control of
heading and density wave in gas-lift wells and the results
are presented in another publication. Finally, we believe
that the control strategy here presented to suppress system
oscillations can be applied to a more general class of non-
linear systems.
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Appendix A

The controller design is based on an oscillatory model
behavior. We use a modified Van der Pol system as a model
that exhibits an oscillatory behavior. We adapt this model
in order to include an input control variable as follows

{

ẋ1 = x2

ẋ2 = −ω2
nx1 − µ

(

x2
1 − 1

)

x2 + ω2
nu (t)

(A.1)

with ωn being the oscillation frequency of the output
variable y(t) = x1(t). The equilibrium point of the system
is (x̄1, x̄2) = (0, 0), for u (t) = 0. Applying the standard
local stability analysis to the system A.1, we obtain

J (x1, x2) =

(

0 1
−ω2

n − 2µx2 −µ
(

x2
1 − 1

)

)

(A.2)

Solving the Jacobian matrix for the equilibrium point
(0, 0), we get

J (0, 0) =

(

0 1
−ω2

n µ

)

(A.3)

being the determinant D (J) = ω2
n and the trace T (J) =

µ. Hence, since D (J) > 0, (0, 0) is a stable equilibrium
point if µ < 0 and it is an unstable equilibrium point
if µ > 0. At µ = 0, we have a focus-center-limit-cycle
bifurcation (F-C-L)) (see Freire et al. (1999)). The limit
cycle corresponds with the outermost linear periodic orbit
of the center configuration that exists for µ = 0. Note also
that at µ = 0, the amplitude behavior evolves having a
jump, different from the one in the case of the classical
Hopf bifurcation. The corresponding bifurcation diagram
is shown in figure A.1. The changes in the dynamical
behavior of the system for different values of the parameter
µ can be observed in figure A.2. As can be seen, for µ = 0,
we have a center but for µ > 0, appears a stable limit
cycle.

For enough small values of the parameter µ, for instance
µ = 0.01, the system’s behavior can be approximated by
the behavior of its linear part (A.4) given by

{

ẋ1 = x2

ẋ2 = −ω2
nx1 + ω2

nu (t)
(A.4)

|| ||x

mm=0

unstable equilibriastable equilibria

F-C-L

Fig. A.1. Bifurcation diagram for the µ parameter showing
a Focus-Center-Limit cycle bifurcation that appears
in µ = 0. The vertical line stands for the existence of
a center. (–) stable equilibria, (- -) unstable equilibria,
(••) stable limit cycle, (◦◦) unstable limit cycle.
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Fig. A.2. System dynamical behavior for different values
of the bifurcation parameter µ showing the abrupt
appearing of a stable limit cycle due to F-C-L bifur-
cation.

with y (t) = x1 (t). This linear model can be also repre-
sented by the following model

ÿ (t) + w2
0y (t) = w2

0u (t) . (A.5)

Using backward approximation in (A.5), where ẏ (t) ∼=
y(k)−y(k−1)

Ts

and ÿ (t) ∼=
y(k+1)−2y(k)+y(k−1)

T 2
s

, we get the

following discrete model

y (k + 1)− 2y (k) + y (k − 1) + ω2
nT

2
s y (k) = ω2

nT
2
s u (k) .

(A.6)
Rearranging the terms of the equation (A.6), we have

y (k + 1) = a1y (k)− a2y (k − 1) + bu (k) (A.7)

where a1 = (2− ω2
nT

2
s ), a2 = 1 and b = ω2

nT
2
s .
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