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Abstract: In this paper we present an implementation of a partly Derivative-Free Optimization
(DFO) algorithm for production optimization of a simulated multi-phase flow network. The
network consists of well and pipeline simulators, considered to be black-box models without
available gradients. The algorithm utilizes local approximations as surrogate models for the
complex simulators. A Mixed Integer Nonlinear Programming (MINLP) problem is built from
the surrogate models and the known structure of the flow network. The core of the algorithm
is IBM’s MINLP solver Bonmin, which is run iteratively to solve optimization problems cast in
terms of surrogate models. At each iteration the surrogate models are updated to fit local data
points from the simulators. The algorithm is tested on an artificial subsea network modeled
in FlowManagerTM, a multi-phase flow simulator from FMC Technologies. The results for this
special case show that the algorithm converges to a point where the surrogate models fit the
simulator, and they both share the optimum.

Keywords: Derivative-Free Optimization, Non-linear Optimization, Non-convex Optimization,
Mixed Integer Programming, Process Simulators, Interpolation Algorithm, Numerical
Algorithm.

1. INTRODUCTION

Modern multi-phase flow simulators have been used in
both online and off-line applications in the oil industry
the last two decades [1, 2]. They have been under contin-
uous development and are today able to solve large flow
networks with high accuracy and speed. These attributes
motivates a coupling with optimization for production
advice and planning. However, the complex nature of such
simulators is unfortunate from an optimization point-of-
view and complicates implementation. A considerable re-
search effort within the area of non-convex and large-scale
optimization during the last years brings new belief in
robust implementations of simulator-based optimization.
This has motivated the authors to look at how a state
of the art optimization solver handles the complexity of
a commercial multi-phase flow simulator. Especially, we
want to look at a derivative-free approach that utilizes
surrogate models and the known structure of the flow
network. The high complexity of simulators is often ab-
stracted by regarding it as one black-box model, i.e. one
input-output map without available gradients [7]. We want

? The work presented in this paper was supported by FMC Tech-
nologies who supplied FlowManagerTM licences and technical assis-
tance.

to divide it into several smaller black-box models and ex-
plicitly express the network structure in the optimization
problem.

In an oil and gas production system, where wells are
connected to manifolds with multiple pipelines, a complex
optimization problem arises. The objective is to maximize
the oil production while respecting constraints on the sys-
tem, such as limited capacity of processing facilities. The
production is dependent on advanced flow dynamics and
closing/routing of the wells, which result in nonlinearities
and integer variables respectively. The problem thus be-
longs to the class of Mixed Integer Nonlinear Programming
(MINLP) problems. Furthermore, the problem is generally
non-convex where global convergence is a major challenge.
For oil and gas production a considerable amount of un-
certainty is associated with reservoir and well models.
It is therefore desirable to find a solution close to the
operation/starting point to ensure model accuracy.

The preferred MINLP solver for this work was Bonmin
from the COIN-OR project of IBM [3]. It has been tested
on large scale MINLP problems with good results. It has
also several features that makes it easier to solve and
analyse non-convex problems, such as different integer
handling methods.
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The simulator of choice was FlowManagerTM from FMC
Technologies. It is an advanced, multi-purpose, multi-
phase flow simulator for off-line and on-line application
[8]. It is widely used by the oil industry to monitor subsea
oil and gas production. 1

2. PROBLEM DESCRIPTION

The well cluster in Fig. 1 is designed to test the algo-
rithm presented in this paper. The cluster is modeled in
FlowManagerTM with model parameters comparable to a
real oil field. A simple Black-oil model is used for the fluid.
To simplify analysis and verification the cluster is made
symmetric; with two identical pipelines and two pairs of
identical wells.
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Fig. 1. Cluster with four wells, one manifold, and two
pipelines connected to a topside processing facility
(first-stage separator). The wells can be routed to
either pipeline.

2.1 Simulator model

A commercial multi-phase flow simulator model for the
problem in Fig. 1 engulfs complex, non-linear relations
between phases and their fluid characteristics, flow rates,
pressures, and temperatures. The flow path from downhole
to separator is typically split into segments, connected
at their boundaries, in which the above relations are
calculated and propagated through.

In this paper we consider steady-state models for the
wells and pipelines, neglecting near-well reservoir and
pipeline flow transients, respectively. We model the wells
by assuming that the well performance 2 is given by a
static function

p̄Well
j = f̄j(q

Well
j,oil , q

Well
j,gas, q

Well
j,water), (1)

1 At the time of writing, FlowManagerTM monitors oil and gas
production equivalent to 60% of the production on the Norwegian
continental shelf.
2 In this context the well performance function is a map that gives
the Well Performance Curve (WPC) of a well.

where fj gives the relation between the flow rates and
wellhead pressure in well j. With a constant Water Cut
(WC) and Gas-Oil Ratio (GOR), the above relation can
be simplified to

p̄Well
j = f̄j(q

Well
j,oil ), (2)

where we only have oil rate as input. This assumption will
be used for all wells, with two wells having a GOR equal to
100, two with a GOR of 200, and a common WC of 50%.
The well performance curves are given by Figs. 3 and 4.

In a similar manner we describe the pipelines with a static
map between flow rates and pressure

∆p̄Pipe
l = ḡl(q

Pipe
l,oil , q

Pipe
l,gas, q

Pipe
l,water), (3)

where ∆p̄Pipe
l is the pressure drop in pipeline l, from

manifold to separator.
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Fig. 2. Pipeline pressure loss for different GORs.

Wells with different GORs and WCs can be routed to
the same pipeline. Thus, we cannot reduce the number
of inputs to (3) as we did with the well pressure map in
(1), resulting in (2). However, a special case appears when
all wells have equal WC; the WC of all pipelines will then
match the WC of the wells and we can write:

∆p̄Pipe
l = ḡl(q

Pipe
l,oil , q

Pipe
l,gas). (4)

Since all the simulated wells have a GOR between 100
and 200, the interval of possible GORs for the pipelines is
[100, 200]. Table 1 gives the GOR and WC for all wells and
pipelines. Fig. 2 shows the pressure loss in the pipelines for
different flow rates.

Table 1. GOR and WC for wells and pipelines

Wells 1 & 2 Wells 3 & 4 Pipelines

GOR [-] 100 200 [100, 200]
WC [%] 50 50 50

Note that (1) and (3) are independent of temperature
and absolute pressure. For (1), these simplifications imply
a constant temperature profile through the well and a
constant reservoir pressure. While for (3), a constant
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Fig. 3. Well performance curve for wells 1 and 2 (GOR of
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Fig. 4. Well performance curve for wells 3 and 4 (GOR of
200).

temperature profile and a constant separator pressure
must be assumed.

The nomenclature used in this paper is given by tables 2,
3, and 4. We will continue to denote the simulator models
and their variables with the bar in superscript, to distin-
guish them from the surrogate models and optimization
variables.

Table 2. Index sets

Index and Set Description

j ∈ J = {1, 2, 3, 4} Wells
l ∈ L = {1, 2} Pipelines
p ∈ P = {oil, gas,water} Phases

Table 3. Variables

Variable Description Unit

bj,l Binary routing variable for flow [-]
from well j to pipeline l

qWell
j,p Flow rate of phase p from well j [m3/h]

qPipe
l,p

Flow rate of phase p in pipeline l [m3/h]

pWell
j Wellhead pressure in well j [bar]

pMan
l Pressure in pipeline l at manifold [bar]

∆pPipe
l

Pressure drop over pipeline l [bar]

Table 4. Parameters

Parameters Description Unit

pSep Pressure at first-stage separator [bar]
CTot

gas Gas capacity of first-stage separator [m3/h]

rGOR,j Gas-Oil Ratio (GOR) for well j [-]
rWC,j Water Cut (WC) for well j [%]

2.2 Surrogate models

Assuming a constant GOR and WC, we approximate the
wellhead pressure in (2) by a second degree polynomial:

pWell
j = fj(q

Well
j,oil )

= α0,j + α1,j · qWell
j,oil + α2,j · (qWell

j,oil )2,
(5)

where α0,j is the zero degree coefficient of well j, and so
on. In order to make the approximation good we want
eWell
j = pWell

j − p̄Well
j = fj(q

Well
j )− f̄j(qWell

j ) to be small.

The pipeline pressure drop in (4) is also approximated
using a second degree polynomial, that is

∆pPipe
l = gl(q

Pipe
l,oil , q

Pipe
l,gas)

= β0,l + β1,l · qPipe
l,oil + β2,l · qPipe

l,gas

+ β3,l ·
(
qPipe
l,oil

)2
+ β4,l ·

(
qPipe
l,gas

)2

+ β5,l · qPipe
l,oil · q

Pipe
l,gas,

(6)

where we have assumed that the WC is equal for all wells.
This enables us to express the pressure drop over the
pipeline as a function dependent of only oil and gas rate for
a given WC. Again, we want the approximation error to be

small, i.e. ePipe
l = ∆pPipe

l −∆p̄Pipe
l = gl(q

Pipe
l )− ḡl(qPipe

l ).

2.3 Optimization problem

We adopt the following statement of the production opti-
mization problem from [4, 6].

The objective of the optimization is to maximize oil
production, that is

minimize
x

J(x) = −
∑

l∈L

qPipe
l,oil , (7)

where the vector x represents the decision variables. I.e.

x =
[
qWell
j,p , qPipe

l,p , bj,l, p
Well
j , pMan

l

]T
, with the variables

stacked according to their indices.

The above objective is subject to several constraints that
can be categorized into: physical limitations (production
capacity), structural constraints (e.g. mass balances), and
surrogate model constraints. The structural constraints
can be thought of as the links between the surrogate
models.

Production capacity constraints. The total production
is constrained by the topside processing equipment’s (gas
and water handling) capacity. In example, we can express
the gas handling capacity constraint as

∑

l∈L

qPipe
l,gas ≤ C

Tot, (8)

where CTot is the maximum gas flow rate the processing
equipment can handle. In this paper we are interested in
pressure constrained solutions 3 , where the gas capacity
constraint is inactive.

Routing, mass balance, and pressure constraints. A well
can be routed to zero or one pipelines (consider it closed
when routed to zero pipelines). This routing condition is
expressed as

3 In many subsea production optimization problems the solution is
bounded either by pressure or processing capacity constraints.
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∑

l∈L

bj,l ≤ 1, for j ∈ J . (9)

For all phases the mass balance between a well and pipeline
can be expressed by

qPipe
l,p =

∑

j∈J
bj,l · qWell

j,p , for l ∈ L, p ∈ P. (10)

To ensure a positive pressure drop over the production
choke of each producing well we include

bj,l · pMan
l ≤ pWell

j , for j ∈ J , l ∈ L. (11)

Model constraints. For the wells we assume a non-
negative flow rate and a constant GOR and WC, i.e.

qWell
j,oil ≥ 0, (12)

qWell
j,gas = rGOR,j · qWell

j,oil , (13)

qWell
j,water =

rWC,j

1− rWC,j
· qWell

j,oil , (14)

which holds for all j ∈ J . The relation between flow rate
and pressure in a well is brought into the optimization
problem as an equality constraint:

pWell
j = fj(q

Well
j,oil ), for j ∈ J , (15)

where we have assumed a constant GOR and WC, and
fj(·) is given by (5). Similar for the pipelines, we have
that:

pMan
l − pSep = gl(q

Pipe
l,oil , q

Pipe
l,gas, q

Pipe
l,water), for l ∈ L, (16)

where the pressure drop is written as ∆pPipe
l = pMan

l −
pSep to avoid unnecessary decision variables in the formu-
lation. The right hand side is given by (6).

Summary. The complete optimization problem, when
posed in terms of surrogate models, becomes: Minimize
the objective function in (7), subject to the constraints
(8) - (16). The problem has 32 decision variables and 33
constraints.

2.4 Data fitting

The surrogate models for the wells are second degree
polynomials with three coefficients; αj,0, αj,1, and αj,2.
With three data points from the simulator the parameters
are selected (uniquely) to make the polynomial go through
all points, giving a perfect match.

For the pipelines, cross-terms are assumed to be zero (i.e.
βl,5 = 0), simplifying the polynomials to paraboloids with
five coefficients; βl,0 to βl,4. Each paraboloid is then fitted
to the simulator using five data points.

3. ALGORITHM

The algorithm presented in this paper is inspired by a
recent work on simulation-based optimization, presented

in [5]. It is a derivative-free approach, that is, the algorithm
does not have access to any derivatives of the simulator
model. The simulators are treated as black-box models
and the algorithm can only query the simulators for data
points. In this case it can ask for wellhead pressure or
pipeline pressure drop by supplying well or pipeline flow
rates, respectively.

The algorithm gathers data points to generate local ap-
proximations (surrogate models) of the black-box models.
A MINLP optimization problem is then established by
combining these models with known structural constraints
such as mass and pressure balances. The MINLP is solved
by Bonmin, which handles the integer variables directly in
the optimization using Branch&Bound. The nonlinear part
of the problem is solved by Ipopt, an interior point method
within the COIN-OR framework. Ipopt is an integral part
of Bonmin.

At the optimum the algorithm compares the surrogate
models with the simulator. If they are close, the optimum
is also an optimum for the simulator. If not, the surrogate
models are updated, and the procedure is rerun. The algo-
rithm is illustrated by Fig. 5 and described by pseudocode
in Algorithm 1.

Starting point

Run simulator

Establish MINLP
optimization problem

Surrogate models fit simulator
Optimal solution found

Surrogate models
mismatch simulator

Update initial point
Find worst model

Solve with Bonmin

update surrogate models

Fig. 5. Algorithmic approach.

Comments on Algorithm 1. Notice the implicit under-
standing that when the surrogate model is updated at step
8, a new optimization problem arises. In the next iteration,
the updated problem is solved by Bonmin; written as the
function call xopt ← Bonmin(x0).

The algorithm works sequentially by updating one surro-
gate model at each iteration, making it less suitable to par-
allelization. A computational speed-up may be introduced
by updating several models at each iteration, required that
the computational cost of the optimization dominates that
of the simulators.

Please note that the pseudocode does not include imple-
mentation specific details such as initialization handling
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Algorithm 1. Algorithm steps

1: x0 ← 0 . Set starting point for Bonmin
2: Fit surrogate model to simulator around x0

3: repeat
4: xopt ← Bonmin(x0) . Solve opt. problem

5: eWell ← max
{
|fj(xopt)− f̄j(xopt)|2

∣∣ j ∈ J
}

6: ePipe ← max
{
|gl(xopt)− ḡl(xopt)|2

∣∣ l ∈ L
}

7: e← max
(
eWell, ePipe

)
. Largest error

8: Fit surrogate model associated with e to simulator
data points around xopt

9: x0 ← xopt . Next starting point for Bonmin
10: until e ≤ ε . End loop when largest error is small
11: return xopt . Optimal point found

and feasibility checks. Furthermore, the authors have taken
the liberty to simplify the pseudocode by writing f(xopt)
and g(xopt), although f and g are functions of only some
flow rates in x.

4. RESULTS

Applying Algorithm 1 on the test case gave us the follow-
ing results. The convergence of the algorithm is presented
in Fig. 6. The algorithm converges rapidly towards the
point of “global” optimal production 4 . After six iterations
the optimum is found, and after only three iterations the
solution is close to the optimum. This was achieved even
with an infeasible starting point with all decision variables
equal to zero, due to the infeasibility check implemented
in Bonmin (consult [3] for details).
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Fig. 6. Convergence of algorithm when x0 = 0.

Bonmin changes routing variables three times without
deteriorating the solution (internally, Bonmin tests many
more routing combinations for each MINLP problem it
solves). This behaviour is due to the updating of the

4 The optimal production was found by running a brute-force
Sequential Quadratic Programming (SQP) algorithm that, given a
starting point, solved the NLP problems resulting from locking the
routing variables at every possible combination. The best solution
found is regarded as globally optimal in the sense of routing variables.
The solutions were validated in FlowManagerTM.

surrogate models and the fact that Bonmin solves different
MINLP problems at each iteration. Also, remark that
some of the solutions are above the optimal production we
compare with. This is simply a result of mismatch between
the surrogate models and simulators.

At each iteration a surrogate model is updated. In this case
the pipeline models had the largest error in all iterations
and were thus the only models that were updated. This
proves that the polynomial surrogate models are good
approximations of the well performance curves. As shown
in Figs. 7 and 8, the approximations are good around the
optimal point.

0 10 20 30 40 50 60 70 80 90
0

50

100

Oil flow (Sm3/h)

W
el

l h
ea

d 
pr

es
su

re
 (

ba
r)

GOR=100

 

 

Simulator model
Surrogate model
Optimal point

0 10 20 30 40 50 60 70 80 90
0

50

100

Oil flow (Sm3/h)

W
el

l h
ea

d 
pr

es
su

re
 (

ba
r)

GOR=200

 

 

Simulator model
Surrogate model
Optimal point

Fig. 7. Final surrogate model and optimal point for wells
1 and 2 with a GOR of 100.0 10 20 30 40 50 60 70 80 90

0

50

100

Oil flow (Sm3/h)

W
el

l h
ea

d 
pr

es
su

re
 (

ba
r)

GOR=100

 

 

Simulator model
Surrogate model
Optimal point

0 10 20 30 40 50 60 70 80 90
0

50

100

Oil flow (Sm3/h)

W
el

l h
ea

d 
pr

es
su

re
 (

ba
r)

GOR=200

 

 

Simulator model
Surrogate model
Optimal point

Fig. 8. Final surrogate model and optimal point for wells
3 and 4 with a GOR of 200.
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Fig. 9. Final surrogate model and optimal point for
pipeline 1. GOR is 100.
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Fig. 10. Final surrogate model and optimal point for
pipeline 2. GOR is 200.

Copyright held by the International Federation of
Automatic Control

279



Figs. 9 and 10 show the final surrogate models of the
pipelines together with the optimum. Wells with equal
GOR are routed to the same pipeline at the optimum,
and we thus plot pipeline 1 for a GOR of 100 and pipeline
2 for a GOR of 200. Unlike the surrogate models of the
wells, the pipeline surrogate models only approximate the
simulator locally, as seen from the high curvature.

5. CONCLUSION

The results from the previous chapter displays that for
this specific case, Algorithm 1 converges to an optimal
point, without using gradient information on the wells and
pipelines. The algorithm was able to reject many of the
integer combinations and converged with few iterations.

The algorithm needed 7 iterations to converge, and consid-
ered three different routing alternatives. However, the na-
ture of a MINLP solver is to implicitly consider all routing
alternatives by relaxing the integer variables. Comparing
it to a brute force approach regarding number of routing
alternatives tested, is therefore not completely fair. The
proposed algorithm solves a MINLP problem in each itera-
tions, while the brute force approach solves a NLP problem
for each routing combination. However, as the number
of wells increases, so does the number of NLP problems
that needs to be solved in the brute force approach, and
testing all alternatives fast becomes intractable. For the
algorithm proposed in this paper, we do not expect the
number of iterations to increase in the same way, due to
the implicitly handling of the routing variables. And hence,
the advantage should increase with the complexity of the
subsea production networks.

The core of the algorithm is the MINLP solver Bon-
min. The solver showed great robustness to solve non-
convex problems of class MINLP using Branch&Bound.
The surrogate models gave good local approximations of
the simulators, especially in the friction dominated (high
rate) flow region of the wells.

The authors encourage further development of the algo-
rithm in the directions outlined below.

5.1 Further research

It is of great interest to improve the accuracy and robust-
ness of the algorithm for more involved applications. The
authors identify the following areas of interest for further
research.

Surrogate models. In this paper all surrogate models
are second degree polynomials. It would be interesting to
investigate other model classes. The choice of surrogate
model class is entirely dependent on the simulator model
that is to be approximated.

Also, for simulators with discontinuities due to internal
model switching (e.g. changing flow regime i multi-phase
flow simulators) it could be of interest to switch surrogate
model. This can be done by including binary switching
variables to the problem.

Model fitting. Two questions that naturally occur when
performing model fitting are: one, how many data points
to use, and two, how to pick those points.

In this work we selected the minimum number of points
and fit the surrogate models exactly to these. If the simu-
lator model is prone to some sort of noise, discontinuities,
or severe non-linearities, the bare minimum of points may
result in a fit that is bad, even locally. It would then
be better to perform a weighted least-square fit on more
points.

The second question leads to a trade-off situation where
the distribution of points balances between a locally or
globally good fit. For the algorithm treated in this paper
it could be a good approach to start out with a global
approach and move towards a local approach as the
algorithm seeks to the optimum.

Trust region. Convergence and feasibility problems can
occur when the model is updated at each time step. The
authors believe that by incorporating a trust region to
the surrogate models, keeping them close to the simulator
model and within the feasibility region, one can avoid some
of these problems.
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