
Problems of Identification of Hydrodynamic
Models in Reservoir Engineering ?

Atlas V. Akhmetzyanov ∗ Anton M. Salnikov ∗∗

∗ Institute of Control Sciences, Russian Academy of Sciences
Moscow,Russia (e-mail: awa@ipu.ru).

∗∗ Institute of Control Sciences, Russian Academy of Sciences
Moscow,Russia (e-mail: salnikov@ipu.ru).

Abstract: The need for solving the problem of identification of basic parameters (perme-
ability coefficients, initial and boundary conditions) for hydrodynamic models of reservoirs on
retrospective data arises from incompleteness and observational errors in source and current
information about controlled object at all stages of reservoir engineering. Iterative methods for
simultaneous solving of direct and inverse problems for original model equations on retrospective
data are proposed to solve the problems of identification and adaptation of initial and boundary
conditions and filtration parameters. Parallel computing technologies with optimal hierarchical
(multilevel) embedding of algorithms into the architecture of supercomputers are offered for
creation an integrated model of complex technological system.
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1. INTRODUCTION

One of the main problem in the process of development
and creation of hydrodynamic models for control and fore-
casting of reservoir engineering is incompleteness and ob-
servational errors of initial and current information about
large-scale controlled object with distributed parameters.
Additional uncertainty arises in the process of oil and gas
recovery, since basic parameters of filtration in porous me-
dia of reservoirs (e.g. absolute and relative permeability)
vary continuously in space and time.

Full and partial uncertainty of source or initial data,
as well as current information coming into the process
of reservoir engineering, require the solution of basic
problem of identification of filtration parameters, initial
and boundary conditions of the model of controlled object.

Three-dimensional simulation of large-scale fields as con-
trolled objects always leads to the set of large-scale (109

or more) approximating difference equations. Therefore,
the use of basic (sequential) computational methods and
algorithms for such sets is impossible due to the limited
capacity of computer systems. The required set of parallel
algorithms for high-performance multiprocessor systems is
discussed in the next section.

It is known that filtration characteristics (coefficients of
absolute and relative permeability) of reservoir vary (get
monotonically worse) over time and space, making it
impossible to forecast parameters of their development.
Hence monitoring of the state of reservoir in time and
space requires adaptation of hydrodynamic models with
allowance for filter parameters, frontal or continuous char-
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acter of filtration processes at all stages of reservoir en-
gineering. Methods and algorithms for identification of
such adaptation of hydrodynamic models are discussed in
Section 3.

2. MULTILEVEL PARALLEL METHODS OF
COMPUTATIONAL SIMULATION

2.1 Hierarchical principles and parallel technologies of
simulation

Characteristic features of porous media of oil and gas reser-
voirs are large volume, spatial extent and heterogeneity,
compressibility of fluids and porous media itself. Therefore
there is a need for the development and creation of custom
software systems using hierarchical multigrid variants of
decomposition with splitting on physical processes, spatial
and temporal coordinates. See Akhmetzyanov (2008a, b).

In this approach the reservoir is initially divided into rel-
atively homogeneous geological bodies. Then each geolog-
ical body is divided into two disjoint subsets of macroele-
ments (blocks), i.e. each geological body should be de-
composed. It is assumed that each block can contain no
more than one production or injection well. Therefore the
main elements of computational models of fluid filtration
in porous media become macroelements and wells. See
Akhmetzyanov et al. (2008).

Multilevel parallel computing technologies corresponding
to the following hierarchy levels are used to achieve
the greatest versatility of simulation methods and cost-
effectiveness (by the criterion of minimum computational
volume and time) of algorithms.
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0. Upper (zero) level corresponds to controlled object in
general. Grid operators at this level determine the balance
of flows between neighboring geological bodies calculated
from the results of next level of hierarchy.

1. First level corresponds to the partition of reser-
voir into geological bodies Ωi, i = 1,m that homoge-
neous in permeability. The numbering of geological bodies
should be chosen so that D1 = {Ω1,Ω3, · · ·} and D2 =
{Ω2,Ω4, · · ·} represent two subsets of elements that have
only common vertices, which allow the organization of
parallel solutions with decomposition methods for reser-
voir with splitting by spatial coordinates. To do this, at
each iteration by half a time we independently and in
parallel resolve subtasks with corresponding subsets D1

and D2. Grid operator equations on this level of hierarchy
are formed according results of parallel computing on the
next second level.

If some of geological bodies Ωi, i = 1,m partially overlap
along the borders, the construction of subsets D1, D2, · · ·
becomes somewhat complicated and the main iterations
are divided into the larger number of fractional steps.

2. Second level of the hierarchy corresponds to the
similar decomposition of each homogeneous geological
body Ωi, i = 1,m into disjoint subsets of macroelements
Di

1 = {Ωi1,Ωi3, · · ·} and Di
2 = {Ωi2,Ωi4, · · ·}. Parallel

computations for each iteration by time at this level
of hierarchy are also produced in two half steps for all
macroelements pertaining to subsets Di

1 and Di
2, i = 1,m.

3. Third level is the main one, which corresponds to
the independent subtasks for each Ωij , i.e. macroelements
containing the face of production or injection well. In
general, parallel solution of lower-level subtasks is per-
formed using multigrid variants of finite-difference, finite-
volume (balancing) or finite-element (variational) methods
combined with splitting by physical processes and spatial
coordinates to ensure efficiency, required accuracy and fast
convergence.

The proposed parallel technologies are naturally and opti-
mally incorporated into the architecture of multiprocessor
computing systems (e.g. clusters) using MPI, OpenMP,
OpenCL etc.

2.2 Integration of hydrodynamic models of reservoir-well-oil
and gas collecting system as a whole

Multilevel problem of matching the gas dynamic and hy-
drodynamic processes in reservoir engineering becomes
urgent: filtration in formations, lift strings, ground oil
and gas collecting systems of pipelines and oil and gas
treatment facilities. See Akhmetzyanov et al. (2012). This
means that in the process of mathematical simulation of
such interconnected system as a whole, except for the
bottom-hole pressures for calculation of equations of filter-
ing in formation, it is necessary to specify buffer pressure
at the well mouths and distribution of flows in collecting
networks and oil and gas treatment facilities. In general,
the physical processes at these levels are determined by
the laws of conservation of mass, momentum and energy,
with taking into account the compressibility of fluids and
porous media, and describes by the system of nonlinear

parabolic equations grouped together through boundary
conditions.

For the correct statement of the problem of gas flows
distribution (pressure and rate) in these subsystems it is
required to consistently (balanced) choose the technolog-
ical parameters, initial and boundary conditions, as well
as control actions. The system of nonlinear equations of
integrated model is also solved using discretization (grid
approximation) by time and space. Here space discretiza-
tion, depending on heterogeneity of oil and gas reservoirs,
should be carried out according to the structure of parti-
tion the reservoir on geological bodies.

3. PROBLEMS OF IDENTIFICATION

Traditional methods of statistical analysis of historical
data are ineffective when solving the problem of identifica-
tion and adaptation of hydrodynamic models of oil and gas
fields. The proposed methods are based on the methods of
the theory of inverse problems for quasilinear equations
of mathematical physics. In particular, they based on
coefficient, boundary and evolution inverse problems of
optimal control, when statement and solution of direct
problems are impossible due to the lack of sufficiently
precise information about the values of nonlinear functions
in the coefficients and right sides of operator equations, in
boundary and initial conditions on internal and external
borders.

We propose iterative methods for solving the inverse
(usually incorrect) problems of field development control,
which are based on (as for the direct usually well-posed
problems) various options for constructing the approxi-
mating sequences for approximating solutions. In other
words, we associate ill-posed inverse problems with a se-
quence of direct problems, consistent with error source
(input) data. At the same time the dimension of approxi-
mating space becomes regularization parameter.

Iterative methods of this type are commonly referred to as
iterative regularization methods. They provide the ability
to build effective methods for a wide class of inverse
problems of optimal oil and gas development control with
perturbed retrospective input.

The choice of this regularization caused by several reasons.
Typically, the optimal choice of regularization parameter is
performed for given values of error of right sides, boundary
and initial conditions, and given a priori information about
the decision. See Tikhonov et al. (1977).

When solving applied problems such a priori information
is usually partially or even totally absent. Therefore, to
solve the problems of identification and adaptation of
hydrodynamic models of oil and gas fields it is preferable
to use iterative regularization methods, the use of which
do no calls for an assessment of regularization parameter.

Computational technologies for different variants of the
statement of inverse problems of considered type are
focused on application of the theory of adjoint equations
or disturbances after (local or not local) linearization
of original system of operator equations of the model,
when the Lagrange identity is true for direct and adjoint
operators.

Copyright held by the International Federation of
Automatic Control

282



Fig. 1. Two-dimensional model

3.1 Restoring time-dependent fields (initial conditions) on
retrospective data

For simplicity the inverse problem is formulated for
two-dimensional model (Fig. 1), i.e. for time-dependent
parabolic equation

∂p/∂t−
i=2∑
i=1

∂/∂xi(k(x)∂p/∂xi) = 0, x ∈ Ω, (1)

with unknown initial conditions p(x, 0) and given ret-
rospective data (measurements) for all wells p(zm, t) ≈
ϕ(t), 0 < t < T,m = 1,M , where p, zm, T,M — pres-
sure, vectors of well coordinates with number m = 1,M ,
planning period and number of wells respectively.

The solution to this problem, according to the method
of regularization by A.N. Tikhonov, is formulated as
optimal control problem with control input u(x) ∈ H =
{u(x)|u(x) ∈ L2(Ω), k(x)(∂u/∂n) = 0,∀x ∈ ∂Ω} and
initial condition p(x, 0;u) = u(x),∀x ∈ Ω, i.e.:

Jα(w) =

= min
ν∈H


m=M∑
m=1

T∫
0

(p(zm, t;u)− ϕm(t))2∂t+ α||u||2
 ,

(2)

where α > 0 — regularization parameter. It is assumed
that the observation points (wells) in finite-element ap-
proximation coincide with some internal nodes Ω, and ap-
proximate solution of inverse problem p(x, t) = p(x, t;w)
is determined by iterative method for solving the Euler
equation Bψ0 + ταu = 0, i.e. according to necessary and
sufficient condition for optimality.

Step 1. For a given wk (k — number of iterations),
determine ground state

B(ykn+1 − ykn)/τ + Aykn = 0, n = 0, N0 − 1, yk0 (x) =

wk(x), x ∈ ω.

Step 2. Then define conjugate state in backward time

B(ψkn − ψkn+1)/τ + Aψkn+1 = 2χh(ykn − ϕh(x, tn)), n =

N0, N0−1, · · · , 1;B(ψk0−ψk1 )/τ+Aψk1 = 0, ψkN0+1 = 0, x ∈
ω,

where χh — sum of δ-functions from the space of gen-
eralized functions H at points with wells; B,A — grid
operators; y, ϕ — basic and conjugate variables.

Step 3. Finally, specify the initial condition

(wk+1 − wk)/sk+1 +Bψk0 + αwk = 0, x ∈ ω.
Thus the algorithm based on the solution of two time-
dependent problems and refinement of initial condition at
each iteration.

However the regularization parameter α should be deter-
mined by the level of error in initial data (usually un-
known). In practice we can limit to method of minimizing
residual functional (2), assuming that α = 0, i.e. solution
of equation Bψ0 = 0 according to similar scheme. Conse-
quently the main advantage of iterative methods over other
methods is absence of necessity to determine regularization
parameter.

3.2 Restoring boundary conditions

The direct problem is formulated for (1) in the rectangle
Ω = {x|x = (x1, x2), 0 < xi < li, i = 1, 2} with the
following initial and boundary conditions p(x, 0) = 0,
k(x)(∂p/∂n) = 0, x ∈ γ∗ ∪ Γ, x ∈ Ω, k(x)(∂p/∂n) =
µ(x1, t), x ∈ γ, where γ, γ∗ and Γ1,Γ2 — borders of area Ω
parallel to axes (∂Ω = γ∪γ∗∪Γ = Γ1+Γ2). Boundary con-
dition identification problem on γ ⊂ ∂Ω k(x)(∂p/∂n) =
µ(x1, t) is formulated as inverse problem with replacement
of this condition (γ ⊂ ∂Ω) to additional condition on the
boundary γ∗ ⊂ ∂Ω, p(x, t) = ϕ(x1, t). Inverse problem is
represented as operator equation Aµ = ϕ, where linear
non-symmetrical operator A converts functions defined on
γ ⊂ ∂Ω into functions defined on γ∗ ⊂ ∂Ω. Then operator
equation is transformed to symmetric form A∗Aµ = A∗ϕ,
where A∗ — adjoint operator, and its solution is given by
explicitly iterative method of steepest descent.

(µk+1 − µk)/sk+1 −A∗Aµk = A∗ϕ, k = 0, 1, · · · ;
sk+1 = ||rk||2/||Ark||2∗, rk = A∗Aµk −A∗ϕ.

(3)

Here norms are defined in Hilbert spaces of functions
defined on γ and γ∗. Adjoint operator A∗ is defined by
A∗ν = ψ(x, t), x ∈ γ, where ψ(x, t) — conjugate state
determined by solving the boundary value problem

−∂ψ/∂t+ Lψ = 0, ψ(x, T ) = 0, x ∈ Ω, 0 < t < T. (4)

3.3 Parametric identification of permeability coefficients

For simplicity and clarity (without loss of generality) as
a model problem we’ll consider one-dimensional parabolic
equation of pressure distribution

∂p/∂t− ∂/∂x(k(p)∂p/∂x) = 0, 0 < x, l;
p(0, t) = 0, p(l, t) = g(t); p(x, 0) = 0, 0 ≤ x ≤ l;
p(zm, t) ≈ ϕm(t), 0 < t ≤ T,m = 1,M.

(5)

In this statement of coefficient inverse problem the unique-
ness of its solution is provided by assumption of sufficient
smoothness of k(p) and monotony of g(t). Approximate
solution of parametric identification of permeability coeffi-
cient is represented as linear combination of basis functions
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Fig. 2. Identification by piecewise linear finite functions

ηr(p), r = 1, R of finite-dimensional subspace KR in space
of functions K, i.e.

kR(p) =

r=R∑
r=1

arθr(p), pmin ≤ p ≤ pmax. (6)

To solve the problem of parametric identification again
take an alternative approach, where subspace dimension
KR act as regularization parameter, i.e. step of uniform
grid

pr = pmin + (r − 1)(pmax − pmin)/(R− 1), r = 1, R

by p, determining the number of basis elements in (6),
i.e. piecewise linear finite functions with coefficients ar =
kR(pr), r = 1, R (Fig. 2).

Parametric identification using traditional methods of reg-
ularization is associated with complicating factor associ-
ated with nonlinear dependence of p(x, t) from k(p) =
kR(p). In monotonicity conditions of boundary modes we
can limit to sequential identification algorithms. In this
case with each t ≤ t∗ < T we can find function k(p),
where p ≤ g(t∗). These properties provide the simplicity
and efficiency of identification by piecewise constant finite
functions on uniform grid

pr = pmin + r(pmax − pmin)/R, r = 0, R.

With this parameterization in the interval pr−1 ≤ p ≤
pmax one numerical parameter ar is determined, as aq, q =
1, r − 1 is already defined in previous iterations. Such a
procedure is possible with other types of approximation
(6), for example, piecewise linear identification of the
production coefficient.

If the permeability coefficient is independent of pressure,
then the problem of identification and adaptation of k(x, t)
is greatly simplified. In this case, we can calculate the
estimated values of the coefficient on retrospective data
by moving average methods for monotonically decreasing
functions (exponents).

3.4 Generalization of identification methods

Suggested parameter identification methods can be easily
generalized to determine distribution coefficient values

Fig. 3. Identification by piecewise constant finite functions

k(x, p(x, t)), x ∈ Ω ⊂ R2 for the entire set of nodes of two-
dimensional grid approximation of oil and gas fields. For
inhomogeneous multilayer fields with different coefficients
of permeability we can perform parametric adaptation of
coefficients for each layer, and thus we can build quasi
three-dimensional reservoir model. In practice, such a
spatial hydrodynamic model is quite sufficient for adequate
representation of fluid filtration processes in heterogeneous
porous media of reservoirs.

Therefore, the construction of three-dimensional hydro-
dynamic models in general form are now inappropriate
because of the incompleteness and inaccuracy of the initial
and current information.

Similarly we can generalize methods for solving the prob-
lems of restoration of initial and boundary conditions for
multilayer oil and gas fields heterogeneous by permeability.

4. CONCLUSION

This paper provides the results of basic scientific research
to ensure the creation and adaptation of hydrodynamic
models of fluid filtration in porous media of natural reser-
voirs of oil and gas with complex geometry and geologi-
cal structure at all stages of development. In particular,
the identification of functional parameters of nonlinear
quasi three-dimensional operator models of fluid filtration
processes using functional and parametric optimization to
recover the distribution of filtration parameters (absolute
and relative permeabilities, coefficients of efficiency, initial
and boundary conditions) on retrospective data of mea-
surements in wells.

We investigated implementation features of proposed
methods and algorithms for multiprocessor systems with
multi-level parallelization of computations using different
architectures and interfaces (MPI, OpenMP and OpenCL)
focusing on specific applications of simulation of nonlinear
problems of fluid filtration processes in porous media for
optimal control of multi-layer oil and gas fields develop-
ment. In particular we investigated and presented meth-
ods of coordinated embedding of multilevel structure of
algorithms in architecture of supercomputers optimal by
criteria of minimum complexity and computation time.
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