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Abstract: To ensure safe and stable drilling operation, bottom hole pressure (BHP) should be kept within
some region. However measurement of the BHP is sometimes notavailable or reliable, especially when
the circulation is low, e.g., during pipe connection procedures. This paper presents the application of a
moving horizon estimation (MHE) method for online estimation of the BHP during petroleum drilling.
In the proposed MHE formulation the states are estimated by aforward simulation with a pre-estimating
observer. Moreover, it considers the constraints of states/outputs in the MHE problem. Application of
the observer to a real data set from a North Sea oil well illustrates potential benefits.

1. INTRODUCTION

Under some sufficient pump pressure the drilling fluid down-
wardly circulates through the drill pipe, through the drillcol-
lars, through small holes in the drill bit, up the annulus between
the borehole and the drill pipe to the surface for recondition-
ing so as to be circulated. To ensure safe and stable drilling
operation, bottom hole pressure (BHP) should be kept within
some margin between pore and fracture pressure.Exceeding the
fracture pressure will fracture the rock formation, and there is
a high risk of an underground blowout. If the pressure in the
well is lower than the pore pressure, it may not be an effective
barrier agsinst a kick.

During drilling, the BHP can be measured, but its measurement
is usually communicated with slow mud pulse telemetry. Sev-
eral uncertain factors, for instance, movement of the drillpipe
and reservoir influx, have impact on its measurement, which
leads to high uncertainty. Moreover, its measurement is some-
times not available when the circulation is low or during pipe
connection. Therefore, considering the unreliable and partial
unavailability of the BHP measurement, accurate estimation is a
challenging problem (Zhou et al. [2008a], Paasche et al. [2011],
Stamnes et al. [2008], Zhou et al. [2009, 2008b], Nygaard et al.
[2007c]).

To present date there are a few publications on the estimation
of the BHP. For example, the use of low order models for
estimation and control of the BHP can be founded in Nygaard
et al. [2007a,b]. More recently, a third-order managed pressure
drilling (MPD) model developed by Kaasa [2007] is widely
used to estimate the BHP, see Zhou et al. [2008a], Paasche et al.
[2011], Stamnes et al. [2008], Zhou et al. [2009, 2008b], Sui
et al. [2011]. In Zhou et al. [2008a], Stamnes et al. [2008] a
nonlinear model-based adaptive observer to estimate the BHP
with estimation of other parameters is employed. In Paasche
et al. [2011], the regularized moving horizon estimation (MHE)
method proposed by Sui and Johansen [2011] is used to es-
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timate the BHP. In Sui et al. [2011], an powerful ensemble
method for estimating the BHP is presented.

In this paper, an MHE method proposed by Sui et al. [2010],
Sui and Johansen [2012] for online estimation of the BHP is
employed. The reason of choosing the MHE observer is that
it can provide a high degree of robustness in the presence
of modeling uncertainties since it is based on a batch of the
most recent information/measurements. This is in contrastto
nonlinear observers and nonlinear Kalman filters that update
the next estimate based on the most recent measurement only,
which is known to be optimal under white noise conditions
that are rarely met in practical applications. Moreover, the
constraints of states and parameters are considered in the MHE
problem, which may lead to the more accurate esmation of
the BHP. Sui and Johansen [2012] propose a novel MHE
observer where the states are estimated by a forward simulation
with a pre-estimating observer. Compared with standard MHE
approaches, it has additional degrees of freedom to optimize
the noise and disturbance filtering through the pre-estimator.
Testing on the data from a North Sea well, the results show that
such MHE observer can provide a promising behavior of the
estimation of the BHP.

2. MODEL DESCRIPTION

The MPD system we consider is modelled by a simplified mod-
el developed by Stamnes [2007]. The drill string and annulus
are treated as two separate control volumes that are connected
through the drill bit’s check valve. The model is based on a mass
balance for the two separate control volumes, and a momentum
balance at the drill bit. The parameters used in the paper are
given in Table 1.

The pressure dynamics are thus given by

ṗp =
βd

Vd
(qpump − qb), (1a)

ṗc =
βa

Va
(qb − qc+ qback + qres + V̇a). (1b)

The volume flow dynamics is derived from the momentum
balance and is given by
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Para. Description Unit
Va Annulus volume m3

Vd Drill string volume m3

βa Bulk modulus of fluid in annulus bar
βd Bulk modulus of fluid in drill string bar
pc Choke pressure bar
pp Pump pressure bar
qb Flow rate of the bit m3/s
qc Flow rate of the choke m3/s
qback Flow rate of the backpressure pump m3/s
qres Flow rate of influx from the reservoir m3/s
qpump Flow rate of the pump m3/s
λa Friction parameter of annulus bar s2/m6

λd Friction parameter of drill string bar s2/m6

ρa Density mud in annulus 105kg/m3

ρd Density mud in drill string 105kg/m3

g Acceleration of gravity m/s2

h Vertical depth of the bit m
ℓa Length of annulus m
ℓd Length of drill string m
Aa Cross sectional area of annulus m2

Ad Cross sectional area of drill string m2

pbit Bottom hole pressure bar

Table 1. Model parameters.

Fig. 1. A simplified drawing of the MPD drilling system.

q̇b =
1
M
(pp − pc −λaq2

b −λdq2
b +(ρd −ρa)gh), (2)

where the parameterM = Ma +Md with

Ma = ρa

∫ ℓa

o

1
Aa(x)

dx,

Md = ρd

∫ ℓd

o

1
Ad(x)

dx.

To simplify the model, it is assumed thatqres = 0. The bottom
hole pressure,pbit , depends on the choke pressure, pump pres-
sure, friction pressure and hydrostatic pressure, and given as
pbit =

1
M
(Ma pp +Md pc +Mdλaq2

b −Maλdq2
b +(Mdρa +Maρd)gh).

(3)
In summary, the drilling system dynamics can be formulated in
the state space representation

ẋ = f (x,u,α), (4)
y = h(x), (5)

where the statex, input u, outputy, time varying parameterα
vectors are given as

x =

[

pp
pc
qb

]

, u =

[

qpump
qback − qc + V̇a

]

,

y =

[

pp
pc

pbit

]

, α =











Va
Vd
ℓa
ℓd
h











(6)

Remark 1 Note that if the measurement of the BHP is not
available at some time, the output should be considered as
y = [pp, pc]

T .

In this paper, a linear model is considered. The nonlinear
MPD model can be linearized around a solution(x0

t ,u
0
t ) which

satisfies
ẋ0

t = f (x0
t ,u

0
t ,αt ). (7)

The perturbations inx,u andy can be defined as

xt = x0
t +∆xt , (8a)

ut = u0
t +∆ut , (8b)

yt = y0
t +∆yt = h(x0

t )+∆yt . (8c)
Such a linearized model, developed by Stamnes [2007], is
shown below

∆ẋ = A(x0
t ,αt)∆x+B(x0

t ,αt)∆u, (9a)

∆y =C(x0
t ,αt)∆x, (9b)

whereA,B,C can be expressed as

A(x0
t ,αt ) =















0 0 −βd

Vd

0 0
βa

Va

1
M

− 1
M

−
2(λa +λd)|x0

3,t |
M















, (10a)

B(x0
t ,αt ) =











βd

Vd
0

0
βa

Va
0 0











, (10b)

C(x0
t ,αt ) =







1 0 0
0 0 1

Ma

M
Md

M
2(

Md

M
λa −

Ma

M
λd)|x0

3,t |






, (10c)

andx0
t = (x0

1,t ,x
0
2,t ,x

0
3,t)

T .
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3. LINEAR MOVING HORIZON ESTIMATOR

In this section, we introduce a linear MHE observer to estimate
the BHP by considering system (9). The following discretiza-
tion of the model is used considered,

xt+1 = Axt +But + ξt , (11)
yt =Cxt +ηt , (12)

wherext ∈ X ⊆ Rnx ,ut ∈U ⊆ Rnu andyt ∈ Rny are the state, in-
put and the measurement, respectively.ξt ∈ Rnx is an unknown
state disturbance,ηt ∈ Rny is a measurement noise vector, and
ξt ,ηt are known only to the extent that they lie, respectively, in
the polyhedral setsΞ andΣ. It is assumed that:

(A1) the pair(A,C) is observable.
(A2) X is a polyheral set, and contains the origin in its interior.
(A3) xt ∈ X for all t ≥ 0.

The idea of the MHE is to estimate the current states by
solving a least squares optimization problem, which penalizes
the deviation between the measurements and predicted outputs
and possibly the distance from the estimated state and an a
priori information state. The basic strategy is to estimatethe
state using a moving window of data, such that the size of the
data set used for estimation is fixed by looking at a subset of
the available information. At timet, the information vector is
defined as

It = col(yt−N , . . . ,yt ,ut−N , . . . ,ut−1), (13)

whereN + 1 is the window length or horizon. The problem
consists in estimating, at any timet = N,N + 1, . . ., the state
vectorsxt−N , . . . ,xt , on the basis of the a priori estimate ¯xt−N,t
andIt .

The MHE problem proposed by Sui and Johansen [2012] is
formulated, as follows,

J(x̂t−N,t ; x̄t−N,t , It) = ‖yt
t−N − ŷt,t

t−N,t‖2
W + ‖x̂t−N,t − x̄t−N,t‖2

M
(14a)

subject to

x̂i+1,t = Ax̂i,t +Bui+L(yi − ŷi,t), i = t −N, . . . , t −1, (14b)
ŷi,t =Cx̂i,t , i = t −N, . . . , t, (14c)
x̂i,t ∈ X , i = t −N, . . . , t, (14d)

where W > 0,M > 0 are weight matrices andL ∈ Rnx×ny

is chosen to such that the eigenvalues ofΦ := A − LC) are
contained in the unit disc, and

yt
t−N =







yt−N
yt−N+1
. . .
yt






, ŷt,t

t−N,t =







ŷt−N,t
ŷt−N+1,t

. . .
ŷt,t






. (15)

The purpose of the pre-estimating Luenberger observer with
gainL is to reduce the effect of noise and disturbances before
the MHE optimization is invoked. The optimal solution of (14)
is defined by ˆxo

t−N,t and it yields the sequence of the state
estimates ˆxo

i,t , i = t −N, . . . , t from (14b). It is assumed that the
a priori estimate is determined from ˆxo

t−N−1,t−1, that is

x̄t−N,t = Ax̂o
t−N−1,t−1+But−N−1+L(yt−N−1− ŷo

t−N−1,t−1),

(16a)

ŷo
t−N−1,t−1 =Cx̂o

t−N−1,t−1. (16b)

The estimation error is defined as

et−N = xt−N − x̂o
t−N,t . (17)

Theorem 1. (Sui and Johansen [2012]) Suppose that assump-
tions (A1)-(A3) hold. There always exist the matricesW > 0

andM > 0 such that the estimation error dynamicset is input-
to-state stable (ISS). Moreover, whenξt = 0 andηt = 0, t =
0,1, . . ., thenet converges exponentially to zero.

Proposition 1. (Sui and Johansen [2012]) Suppose that as-
sumptions (A1)-(A3) hold. If the weight matricesM,W satisfy

ΦT MΦ−M ≤−Q1, (18a)

M−FT
N WFN ≤−Q2, (18b)

M = MT > 0, (18c)

W =W T > 0, (18d)

for some smallQ1 > 0,Q2 > 0, where

FN =









C
CΦ

...
CΦN









.

then the estimated error dynamicset is ISS.

In the paper, we chooseM = MT such that

M > ΦT MΦ. (19)

The above inequality is a linear matrix inequality (LMI), see
Boyd et al. [1998], which can be efficiently solved with some
existing numerical methods.

Assuming all variables are reasonably scaled, we propose to
choose the matrixW such that

W =W T
1 W1, (20)

and
W1FN =

√
ᾱ
√

M, (21)
whereᾱ > 0 is a scalar tuning parameter. Since the system is
observable, it leads to

W1 =
√

ᾱ
√

MF+
N , (22)

whereF+
N = (FT

N FN)
−1FT

N is the pseudo-inverse. In order to
guarantee the stability,W is chosen such that (18b) holds. Com-
bining with (20) and (21),̄α should satisfyᾱ > 1. Since the
positive tuning parameter̄α is scalar, acceptable performance
may depend on appropriate scaling of the state and output
variables and the associated model equations.

4. EXPERIMENTS AND RESULTS

Parameter Value Unit
Va 50.8393 m3

Vd 16.6953 m3

ρa 0.0161 105× kg/m3

ρd 0.0161 105× kg/m3

g 9.81 m/s2

h 1652.4 m
ℓa 1854.8 m
ℓd 1680.5 m
Ma 935.3021 10−5× kg/m4

Md 3223 10−5× kg/m4

Table 2. Parameter values

For testing of the observer’s capabilities and suitabilityfor the
drilling industry, the available data employed consists ofa time
series from an MPD drilling operation in the North Sea. The
time series consists of around 2.77 hours of drilling and pipe
connection events. The total number of samples in the time
series is 10000. Some of the measurements are noisy and also
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contain outright errors in some places. This is typical for data
sets in the drilling industry and a model should be robust to such
errors if it to be used in a real-time setting.
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Fig. 2. Drilling Inputs.

In this section, the MHE algorithm is applied to the combined
state and parameter estimation problem of estimatingpp, pc
and pbit . The data is sampled at 1Hz for the measurements of
pc, pp. However during this period, the measurement ofpbit is
not available, and the output is then limited toy= [pp, pc]

T . The
selected parameter values for model used is shown in Table 2.

The 10000 samples of inputs are shown in Figure 2. The equi-
librium point(x0

t ,u
0
t ) is obtained by (7):x0

t = (204,19,0.033)T ,
u0

t = (0,0)T . To convert the continuous system (9) to a discrete-

time system, the sampling interval isTs = 1 s. The discrete-time
MPD drilling system is obtained

A =

[

0.9667 0.0333 −274.7311
0.01 0.99 82.4137

0.0001 −0.0001 0.1899

]

,

B =











βd

Vd
0

0
βa

Va
0 0











,

C =

[

1 0 0
0 0 1

0.2 0.8 −1.5216

]

.

The matrixL is chosen by pole placement as

L =

[

0.8477 −0.0986 0.1811
0.0194 0.9456 −0.0537
0.0001 0 −0.0001

]

.

The MHE window size has been chosen asN = 19. From (19),
M is chosen as

M =

[

1.0828 −0.0093 0
−0.0093 1.0979 0

0 0 1

]

.

Furthermore, based on (20)-(22), we chooseW with ᾱ = 100.
All estimates are normalized before used in the solver cost
function (14a). Scaling is a tool to prioritize outputs and states
as deemed appropriate. If not estimated, the friction parameters
λa,λd and the bulk modulusβa,βd are tuned off-line to steady
state information as available in the data set.

In the estimation, state constraints are added to the optimization
problem:

xt ≥ 0 (23)
or

∆xt ≥−x0
t . (24)

4.1 Estimation of pc, pp and pbit

In this case, the parametersλa,λd and βa,βd are tuned off-
line as shown in Table 3. Figure 3 shows the estimatedpc, pp

Parameter Value Unit
βa 1.0368×104 bar
βd 1.1478×104 bar
λa 4.0432×103 bar s2/m6

λd 1.1534×105 bar s2/m6

Table 3. Parameter Values.

and Figure 4 shows the estimatedpbit by the MHE. The Mean
Average Error (MAE) between the BHP from the memory of
the pressure sensor and estimation ofpbit is 3.1448 bar.

From Figure 3 and Figure 4, it is easy to see that the BHP
can be well estimated when the inputs are persistently exciting.
However when the inputs are not persistently exciting, due to
the mismatch between the true system and the model and in-
correct selections of drilling parameters, there exist significant
estimation errors. During the period between 0.5 hours to 2
hours, since the pumps are off, the BHP should equal to the
hydrostatic pressure. When the pumps are off, the drilling fluid
is allowed to reach thermal equilibrium with the surrounding
rock formation, which in this case resulted in a net temperature
increase across the annulus. As the mud is not constrained by
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Fig. 3. Estimates ofpp andpc.
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Fig. 4. Bottom hole pressure by MHE.

the choke, the hot mud is allowed to expand, leading to a lower
mud density. Due to the selection of the constant mud density,
the estimation error is slightly large during 0.5 hours to 2 hours.
Therefore, the mud density estimat in the estimation model
might change based on the drilling activity in order to further
improve estimation accuracy.

4.2 Estimation of pc, pp, pbit and parameter ρa

In general, pure state estimation might be limited in its re-
sults. Combined with parameter estimation, a powerful toolis
available to improve model accuracy, see more discussion in
Paasche et al. [2011]. As what we discussed above, drilling
parameters like the mud density tend to vary during the drilling
activity. The poor selection of drilling parameters might lead to
degraded estimation performance. In this case, the MHE algo-
rithm is applied to the combined state and parameter estimation
problem of estimatingpc, pp, pbit and model parameterρa. It is
assumed that

ρ̇a = 0
and

ρl ≤ ρa ≤ ρu,

where the boundariesρl and ρu are chosen asρl = 0.01585
and ρu = 0.0163. The model is re-linearized due to the aug-
mentation with parameters. The value of the annulus density
directly impacts the estimation ofpbit . It should be estimat-
ed to consider the sensitivity of the model to changes inρa.
However, it should be noted that the parameterM also depends
on ρa. In order to reduce the complexity of the observer we
neglect such dependency. More discussions about it are given
in Stamnes [2007]. Figure 5 shows the estimatedpc, pp andρa
and Figure 6 shows the estimatedpbit by the MHE. The MAE
between memories ofpbit and estimations ofpbit is 1.9711
bar. From Figure 5 and Figure 6, we see that there still exists
some estimation error, but due to the consideration of parameter
estimation, the performance is improved. During 0.5 hours to
2 hours, the estimation error becomes smaller since the mud
density becomes lower.

5. CONCLUSION

In this paper, a MHE observer for estimation of the bottom hole
pressure while drilling and pipe connect is applied. The pro-
posed observer is parameterized to optimize the noise filtering
and include constraints of states and parameters in the MHE
problem. Application of the observer to a real data set from a
North Sea oil well illustrates promising and good behavior.
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