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Abstract: When efficient adjoint code for computing the necessary gradients is available,
the augmented Lagrangian algorithm provides an efficient and robust method for constrained
optimization. Here, we develop an augmented Lagrangian algorithm for constrained optimization
problems where adjoint code is not available, and the number of optimization variables is so large
that the approximation of gradients with the finite-difference method is not computationally
feasible. Our procedure applies a pre-conditioned steepest ascent algorithm to maximize an
augmented Lagrangian function which directly incorporates all bound constraints as well as all
inequality and equality constraints. The pre-conditioned gradient of the augmented Lagrangian
is estimated directly using a simultaneous perturbation stochastic approximation (SPSA) with
Gaussian perturbations where the preconditioning matrix is a covariance matrix selected to
impose a degree of temporal smoothness on the optimization variables, which, for the specific
application considered here, are the well controls. Our implementation of this augmented
Lagrangian method is applied to estimate the well controls which maximize the net present
value (NPV) of production for the remaining life of a given oil reservoir.

Keywords: Optimal Well Controls, Constrained Production Optimization, SPSA.

1. INTRODUCTION

Our focus is on the production optimization step of closed-
loop reservoir management (Brouwer and Jansen, 2004;
Jansen et al., 2005; Peters et al., 2010). In this step, we
wish to find well controls (well operating conditions) which
maximize the net-present-value (NPV) of production (or
cumulative oil production) over the presumed reservoir
life. Here, we consider only the maximization of an NPV
functional subject to the condition that all constraints
are satisfied. Throughout, the well controls which solve
this constrained optimization problem are referred to as
the optimal well controls. These controls take the form of
either specified flow rates or flowing bottom-hole pressures
for all wells on each of a set of specified time intervals,
the controls steps, which span the remaining life of the
reservoir. When an ensemble of plausible reservoir models
is available, it is best to do robust optimization (van
Essen et al., 2009). As our focus is on the development
and application of a reliable optimization procedure for
estimating the optimal well controls, we only consider
optimization based on a single reservoir model.
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There is ample evidence that the optimal well control
problem can be efficiently solved with a gradient-based
algorithm (Brouwer and Jansen, 2004; Nævdal et al., 2006;
Kraaijevanger et al., 2007; Sarma et al., 2008) with the gra-
dient of the objective function that we wish to maximize
computed by the adjoint method using an adjoint formu-
lation similar to the one presented by Li et al. (2003) for
history matching. When a gradient-based method for max-
imization of an objective function converges, it converges
to a local maximum, and, in general, it is possible that
such a local maximum corresponds to an objective function
value which is much smaller than the global optimum.
However, when the number of control variables in the
production optimization problem is large, a gradient-based
maximization algorithm at convergence typically results in
a value of the objective function which is close to the global
maximum. This is not a happenstance but is due to the
fact that the hyper-surface of the objective function for the
optimal control problem is characterized by hyper-plateaus
along which the objective function is almost constant; the
existence of these plateaus is implicitly implied by the
results of van Essen et al. (2009).

Unfortunately, commercial simulators have limited capa-
bility for computing the gradients needed for general con-
strained optimization with the adjoint method. We should
note, however, that there are cases where commercial code
performs well; for example, when well controls are rates
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and the constraints are linear, all gradients needed to
perform optimization can be obtained from the output of
Eclipse 300 (Chen et al., 2010). When we are required to
use a specific commercial code for the forward reservoir
simulation run, but the code does not output all the gra-
dients needed for the production optimization problem, it
is necessary to apply an optimization algorithm which does
not require an exact gradient computed from the adjoint
method. There are a plethora of such so-called derivative-
free optimization (DFO) algorithms; the performance of
several of them, for the production optimization problem
considered here, was compared in Zhao et al. (2011).
However, Zhao et. al. only considered bound constraints.
In essence, the objective of this paper is to show that with
proper care in their implementation, derivative-free meth-
ods can be applied to the general constrained production
optimization problem.

To accomplish the aforementioned objective, we modify
the augmented Lagrangian method used by Chen et al.
(2010) to solve the general constrained optimization prob-
lem. In the procedure of Chen et al., all gradients were
computed with the adjoint method and the bound con-
straints were enforced using a standard gradient projection
method. The algorithm presented here modifies the Chen
et al. procedure in two fundamental ways: (i) gradient
projection is not used; instead bounds are enforced using
a log-transform, and (ii) the pre-conditioned gradient of
the augmented Lagrangian is approximated by a simul-
taneous perturbation stochastic approximation (SPSA),
and then a preconditioned steepest-ascent algorithm is
applied to estimate the optimal well controls subject to
the constraints. In this methodology, a log-transform is
applied to each of the original well control variables, and
optimization is performed on the transformed variables.
As discussed below, the log-transformation ensures that
bound constraints are automatically satisfied so that the
standard gradient projection technique used to enforce
bound constraints is not needed. Although it will not
be discussed further in this short paper, we note that
because we only generate approximate gradients, the gra-
dient projection method does not always yield reliable
results. Thus, we were forced to find a way to avoid the use
of gradient projection. Conceptually, bound constraints
can be handled by simply truncating a control variable
to the appropriate bound when the variable moves outside
the bounds and setting that component of the gradient
equal to zero, or by transforming bound constraints to
inequality constraints. However, extensive computational
experiments have established that handling bounds via the
log-transform yields better final NPV’s than are obtained
using either of the other aforementioned two methods for
dealing with bound constraints (Do, 2012).

To conclude the introduction, we note that SPSA (Spall,
2003) provides an efficient alternative to the finite-
difference method for estimating the gradient of an objec-
tive (cost) function when the number of optimization vari-
ables is large. The SPSA method and a derivative of SPSA
based on Gaussian perturbations have been successfully
applied in a variety of petroleum engineering applications
(Bangerth et al., 2006; Li and Reynolds, 2011). Also note
that although we couple the SPSA method to compute the
required gradients in an augmented Lagrangian formula-

tion, it is also conceivable that the SPSA could be used to
compute the required gradients in a sequential quadratic
programming algorithm.

2. PROBLEM FORMULATION

The specific production optimization problem considered
here pertains to estimating the optimal well controls when
waterflooding an oil-reservoir. We assume that there is
no gas injection and ignore the income from, or cost of
disposal of produced gas so that the net-present-value
(NPV) functional is defined by

J(w, y(w)) =∑N
n=1

[∑Nprod

i=1 (roq̄
n
o,i − rwq̄nw,i)−

∑Nwinj

i=1 rwinjq̄
n
winj,i

]
∆tn

(1 + b)tn/365
.

(1)
Throughout, w is the vector of all well controls at all con-
trol steps; y is the vector of reservoir simulation primary
variables at all simulation time steps; N is the total num-
ber of reservoir simulation time steps; Nprod is the total
number of producers; Nwinj is the total number of water
injection wells; ro is the oil revenue ($/STB); rw is the
water disposal cost ($/STB); rwinj is the water injection
cost ($/STB); q̄no,i is the average oil production rate of

the ith producer (STB/day) during the nth time step; q̄nw,i
is the average water production rate of the ith producer
(STB/day) during the nth time step; q̄nwinj,i is the average

water injection rate of the ith injection well (STB/day)
during the nth time step; b is the annual discount rate; tn

is the cumulative time (days) up to the nth time step; ∆tn

(days) is the nth simulation time step.

The NPV defined in Eq. (1) is a function of the well control
vector w and the dynamic state vector y, which is the
vector of variables solved for by the reservoir simulator,
i.e., pressures and saturations. The well control variables
include the water injection rate or the bottomhole pressure
(BHP) of the injection wells and the production rate or
the BHP of the production wells. The maximization of the
NPV in Eq. (1) is usually subject to equality, inequality
and bound constraints, respectively, given by

ej(w, y(w)) = 0, j = 1, .., ne, (2)

cj(w, y(w)) ≤ 0, j = 1, .., nine, (3)
and

wlow
i ≤ wi ≤ wup

i , i = 1, 2, ..., nw, (4)
where ne, nine and nw, respectively, denote the number
of equality, inequality and bound constraints. Requiring
the field water injection rate to be equal to field liquid
production rate is an example of a highly nonlinear equal-
ity constraint. Requiring the field and individual water
cut to be less than a prescribed value is a nonlinear
inequality constraint. The requirement that the sum of the
rates at water injection wells be equal to a specified value
represents a linear equality constraint. Constraints arise
naturally due to the operational limits of the production
and injection facilities.

2.1 Simple bound constraints

In the methodology presented here, a log-transform (Zhao
et al., 2011) is applied to enforce the bound constraints.
This transform is defined by
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ui = ln

(
wi − wlow

i

wup
i − wi

)
. (5)

From Eq. (5), it is apparent that as the value of the control
variable wi approaches its lower bound (w

low
i ) from above,

ui → −∞, and when wi → wup
i from below, ui → ∞.

Thus, there are no bound constraints on the components
of the transformed control vector u. By doing optimization
in terms of u, we avoid the use of the gradient projection
method, which is typically used to enforce the bound con-
straints when using an augmented Lagrangian approach
for optimization. Avoiding the gradient projection method
is crucial to the procedure we present here because we do
not calculate gradients accurately enough to ensure that
the gradient projection method will be reliable. The log-
transform is a one-to-one mapping of the bounding interval
for wi onto (−∞,∞) and can be inverted using

wi =
exp(ui)w

up
i + wlow

i

1 + exp(ui)
=

wup
i + wlow

i exp(−ui)

1 + exp(−ui)
. (6)

Our optimization procedure is applied in the transformed
domain, but at each iteration, we need to invert to the
original w-domain in order to run the simulator to obtain
the results needed to calculate the NPV functional and
to determine if the nonlinear constraints are violated.
Throughout, we let Nu denote the dimension of the control
vector u, which is a column vector.

3. AUGMENTED LAGRANGIAN FUNCTION

The augmented Lagrangian function has proved to be suc-
cessful for both nonlinear and linear constraint problems.
This method can reduce the possibility of ill condition-
ing by introducing explicit Lagrange multiplier estimates
(Conn et al., 1992). In this study, we apply the log-
transformation to handle the bound constraints. Then we
incorporate all constraints into an augmented Lagrangian
function for the new unbounded control variables (Wang
and Spall, 2008). The augmented Lagrangian function β
is defined by

β(u, y(u), µ, λ) =

J(y, u)−

ne∑

j=1

λe,jej(u, y(u))−
1

2µ

ne∑

j=1

se,je
2
j (u, y(u))

−

nine∑

j=1

λc,j

[
max {cj(u, y(u)),−λc,j

µ

sc,j
}

]

−
1

2µ

nine∑

j=1

sc,j

[
max {cj(u, y(u)),−λc,j

µ

sc,j
}

]2

,

(7)
where λe,j and λc,j , respectively, denote the Lagrange
multipliers associated with the jth equality constraint and
the jth inequality constraint; the argument λ of β denotes
the vector of all Lagrange multipliers; se,j ’s and sc,j ’s,
respectively, denote scaling factors for the equality and
inequality constraints and µ is the penalty parameter.
The scaling factors, se,j and sc,j , are introduced so that
the scaled constraints are of roughly the same magni-
tudes because poor scaling tends to adversely affect the
convergence rate of a maximization algorithm. Following
Chen et al. (2010), we set se,j = 1/E2

j for j = 1, · · ·ne

and sc,j = 1/C2
j , for j = 1, · · ·nine, where Ej and Cj ,

respectively, are the nonzero constraint values that reflect

the magnitude of the jth equality constraint and the jth

inequality constraint, respectively; see Chen et al. (2010)
and the Brugge example considered later for additional dis-
cussion. The utility of the augmented Lagrangian function
is based on the fact that, under appropriate conditions,
a local solution of the constrained optimization problem
defined by: maximize the NPV functional J(y, u) subject
to the constraints of Eqs. 2 and 3 is a local maximum of the
augmented Lagrangian function β(u, y(u), µ, λ). Thus, we
seek a local maximum of the augment Lagrangian function,
and again under appropriate conditions, this maximum
will provide a good approximation of the local solution
of the constrained optimization. Precise conditions under
which we can generate a sequence of (u`, µ`, λ`), which
maximize a sequence of augmented Lagrangian functions
and have the sequence of u` converge to a vector of
controls that satisfy the constrained optimization problem
are somewhat technical and can be found in Conn et al.
(1992, 2000). One advantage of the augmented Lagrangian
method over the pure-penalty method is that with the
augmented Lagrangian method, we do not need to drive
the penalty parameter to zero to obtain convergence. Thus,
we can avoid the ill-conditioning that can occur when
the penalty parameter becomes too small. Conceptually,
with the augmented Lagrangian approach, we can decrease
the penalty parameter until we are close to a solution of
the constrained optimization problem and then, from that
point on, keep the value of the penalty parameter fixed
and adjust only the Lagrange multipliers from iteration to
iteration to attempt to find (u∗, λ∗) which satisfy the first
order Karush−Kuhn−Tucker optimality conditions (Conn
et al., 2000).

As in the standard implementation of the augmented La-
grangian method, the optimization process involved an
inner loop where the the maximization of the augmented
Lagrangian is done with fixed λ and µ and an outer
loop where, depending on the magnitude of the constraint
violation, either all the Lagrange multipliers are modified
or the penalty parameter is modified. The standard aug-
mented Lagrangian method is gradient-based, and in the
inner loop the augmented Lagrangian function with fixed
λ and µ is maximized, subject to the bound constraints,
using a gradient projection method. As there are no bound
constraints on the transformed control vector u, in our
inner loop we simply maximize the augmented Lagrangian
directly, i.e., letting λ` and µ` denote the values of La-
grange multipliers and penalty parameter at outer loop
` at the subsequent inner loop, λ` and µ` are held fixed
and we maximize β(u, y(u), µ`λ`), which is simply denoted
by β`(u) throughout. The other modification we make to
the standard implementation is that we approximate the
gradient of the augmented Lagrangian using the modified
SPSA introduced by Li and Reynolds (2011). We denote
this algorithm by G-SPSA and provide details on its
implementation later in the paper. The G-SPSA has the
main desirable features similar to those of the SPSA, i.e.,
the approximate gradient generated with G-SPSA gives
an uphill direction for sufficiently small perturbation size,
and the expectation of the G-SPSA gradient is equal to a
smoothing covariance matrix times the true gradient with
a bias in the approximation that goes to zero as the per-
turbation size goes to zero. We expect the computational
efficiency of an augmented Lagrangian technique that uses
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any approximate gradient of the augmented Lagrangian
function to be at least one to two orders of magnitude less
than a comparable implementation that uses an accurate
gradient generated with an adjoint method (Brouwer and
Jansen, 2004; Kraaijevanger et al., 2007). However, the
algorithm presented here can be applied to any augmented
Lagrangian function and can easily be coupled with any
reservoir simulator as it does not require adjoint code.

In addition to using a log-transform to remove the bounds
and using G-SPSA to approximate the gradient of the aug-
mented Lagrangian function, there is one other difference
between our implementation and the standard augmented
Lagrangian algorithm (Conn et al., 1992, 2000). Specif-
ically, we do not terminate the inner loop based on the
magnitude of the gradient of the augmented Lagrangian;
instead the following convergence criteria are used:

∆βk,` ≡
|β`(uk+1)− β`(uk)|

max(|β`(uk+1)|, 1)
< ε`, (8)

and

∆wk,` ≡
‖wk+1 − wk‖2

max(‖wk+1‖2, 1)
< ξ`, (9)

where k denotes the inner-loop iteration index, ` is the
outer-loop iteration index, and ε` and ξ` are the inner loop
convergence criteria which decrease as ` increases in the
standard way.

4. THE SPSA ALGORITHM

For the inner loop maximization of the augmented La-
grangian function β(y(u), u, µ, λ), with fixed values of µ
and the components of λ, we used the following precondi-
tioned steepest ascent algorithm:

uk+1 = uk + ak
ĝk
‖ĝk‖∞

, (10)

where k is the iteration index and ak is the step size. In
Eq. 10, ĝk is a preconditioned steepest-ascent search direc-
tion which approximates CU∇uβ(y(uk), uk, µ`, λ`), where
` denotes the outer-loop iteration index, and throughout
the inner-loop iteration, λ` and µ` are fixed at the values
obtained in the last outer-loop iteration. The procedure
for calculating ĝk is discussed next.

We first define aNu×Nu covariance matrix for the controls
which has the form

CU =



CU1 0 0 0
0 CU2 0 0
. . . .
0 0 0 CUnw


 , (11)

where nw is the number of wells at which we wish to
optimize the well controls and CU` , ` = 1, 2, ...nw is the
covariance matrix used to force some degree of temporal
smoothness on the well controls of well `. The subvector of
u that contains all controls for well ` is denoted by u`, and
the components of u` are denoted by u`m, m = 1, 2, · · ·nj .
We assume that these components are ordered such that
u`m’s correspond to consecutive control steps in time, i.e.,
u`m represents the well control for the mth control interval,
and the control for the next control time interval is u`m+1.
Here, we use a spherical covariance function to define the
entries of each CUj , i.e., the entry in the ith row and jth
column of CU` is given by

c`i,j =





σ2
`

[
1−

3|i− j|

2N `
s

+
1

2

(
|i− j|

N `
s

)3
]

, |i− j| ≤ N `
s ,

0 , otherwise.
(12)

Here, i and j refer to the ith and jth control steps,
respectively, and N `

s is the number of control steps over
which we wish the control at well ` to be correlated.
Finally, σ` is the standard deviation of the control of well `.
It is clear that if we generate a sample of the control vector
u from a Gaussian distribution with covariance matrix CU ,
then the controls for well ` will tend to be correlated
in time with a correlation length of N `

s time steps. In
our computational algorithm, CU is used to generate the
perturbation for calculating the G-SPSA gradient.

Given uk in Eq. 10, we compute the search direction by
averaging a set of G-SPSA gradients where each G-SPSA
gradient used in the average is computed as follows: first
we generate a sample Zk of the normal distribution with
covariance CU and mean equal to the Nu dimensional
column vector, i.e., Zk is a sample of N(0, CU ) (Li and
Reynolds, 2011); then we calculate a G-SPSA gradient as

ĝk =
β`(uk + ckZk)− β(uk)

ck
Zk, (13)

where the scalar ck is the “perturbation size.” As shown
by Li and Reynolds (2011), for sufficiently small ck, ĝk
points in an uphill direction from uk and the difference
between the expectation of ĝk and CU∇β`(uk) converges
to zero as ck → 0 provided the second derivatives of β`(u)
with respect to u are continuous and bounded. Because the
expectation of ĝk is equal to the true preconditioned gra-
dient, CU∇β`(uk), the “preconditioned steepest-ascent”
algorithm of Eq. 10 is both more robust and more compu-
tationally efficient if, instead of simply setting the search
direction equal to ĝk, we compute the search direction as
an average of a few G-SPSA gradients. Thus, we generate
M G-SPSA gradients, ĝk,j(uk), j = 1, 2, · · ·M , by the
procedure introduced above and then calculate

ĝk(uk) =
1

M

M∑

j=1

ĝk,j(uk) (14)

as the search direction in Eq. 10. In Eq. 10, we have
normalized the average stochastic gradient by dividing by
its infinity norm as our experience indicates that it is easier
to specify the step sizes ak when this normalization is done.

Following Spall (2003), the step size ak and perturbation
size ck are defined by the following equations:

ak =
a

(k +A+ 1)α
, (15)

ck =
c

(k + 1)γ
, (16)

where a,A, c, α and γ are positive real numbers which
satisfy A ≥ 0, α− 2γ > 0 and 3γ −α/2 > 0. The choice of
these parameters can sometimes have a fairly significant
effect on the performance of the SPSA algorithm. Our
guidelines (Do, 2012) for choosing parameters is given
below.

• Set α = 0.602 and γ = 0.101; these choices are based
on a theoretically-based recommendation of Spall
(2003).
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• Set the value of A equal to 10% of the maximum
number of iterations allowed, kmax.

• a0 is equal to the maximum change in any component
of u that is allowed at the first iteration. In the log-
transformed domain, we set a0 = 1.5.

• After choosing A and a0, a is computed such that at
k = 0, a satisfies a0 = a/(1 +A)α.

• Specify the minimum allowed perturbation size cmin

and find c by solving cmin = c/(kmax + 1)
γ .

Note that Eq. 16 specified how the perturbation sizes used
to compute G-SPSA gradients decrease during iteration.
It is important that ck not become so small that all correct
significant digits are lost when computing the difference in
the numerator of Eq. 13.

5. COMPUTATIONAL RESULTS

The Brugge field is a synthetic reservoir developed by TNO
(Peters et al., 2010) as a benchmark study to test different
algorithms in the closed-loop reservoir management. The
original model was constructed with approximately 20
million gridblocks and then upscaled to a 450,000 grid-
block model, which is used as the true reservoir to provide
observation data for history matching. The true case was
used to construct data such as well logs and facies maps.
According to this information, 104 geological realizations
were upscaled to a 60,048 gridcell model and provided to
participants. The simulation model consists of nine layers,
each with 139× 48 gridblocks. The total number of active
gridblocks is 44,550. Details of the structure and geology
of the Brugge field can be found in Peters et al. (2010).

Here, we consider only the production optimization step
of the closed-loop reservoir management problem. There
are 30 vertical wells in the Brugge reservoir, including 20
smart producing wells and 10 smart water injection wells.
Each well has multiple segments that can be controlled
individually. We optimize the well controls for years 10
through 30 based on the mean model obtained by Chen
et al. (2010) using the ensemble Kalman filter with covari-
ance localization to assimilate production data for the first
ten years of the reservoir life. This example is identical
to the production optimization problem for years 10-30
solved with an adjoint-gradient method in Chen et al.
(2010).

The production period of the reservoir is divided into 40
control steps, i.e., each control step is 182.5 days. There
are 84 control variables for each control step. These control
variables are the liquid production rate at each individual
segment of the production wells and the water injection
rate at each individual segment of the injection wells. The
total number of control variables is 40 × 84 = 3360. The
maximum liquid production rate of each producer segment
is 477 m3/D (3000 STB/D), and the maximum injection
rate of each injector segment is 636 m3/D (4000 STB/D).
The minimum value for the rate of each segment in a
production or an injection well is 0 m3/D. The minimum
bottomhole pressure (BHP) constraint for a producer
segment is 4997.32 kpa (725 psi); the maximum BHP
constraint for an injection well segment is 17997.25 kpa
(2611 psi). The BHP nonlinear constraints are considered
reactively by inputting them directly into the simulator
data file. In addition to the bound constraints, we have

a large number of inequality constraints. The total liquid
production rate of the three segments of each production
well j must be less than or equal to 477 m3/D, i.e., qLj ,1+

qLj ,2 + qLj ,3 ≤ 477 m3/D, j = 1, 2, . . . , 20. Similarly the
water injection rates at three segments of each injector
must satisfy qinjj ,1 + qinjj ,2 + qinjj ,3 ≤ 636 m3/D, j =
1, 2, . . . , 10. These 1200 linear inequality constraints are
incorporated into the augmented Lagrangian function of
Eq. (7). In Eq. (1), the oil price is ro = $503.14/m3

($80.0/STB), and both the water disposal and injection
costs are $31.45/m3 ($5.0/STB). The annual discount rate
is 10%.

The initial value for the injection rate of each injection
well segment is 212 m3/D (1333.3 STB/D), and the initial
value for the liquid production rate of each production well
segment is 111.3 m3/D (700 STB/D). We set the scaling
factors for inequality constraints sci = 1/C2

i . For the
total liquid production rate constraints of the producers,
Ci = 477, i = 1, 2, · · · , 800 and for the total injection
rate of the injectors, Ci = 636, i = 801, 802, · · · , 1200.
The initial Lagrange multipliers are set equal to 0 and
the initial penalty parameter is set equal to 10−7. The
initial values of the convergence tolerances in Eqs. (8)
and (9), respectively, are set equal to ε0 ≤ 0.005, ξ0 ≤ 0.05,
and these values decrease very slowly from iteration to
iteration. The algorithm terminates when ∆βk,` ≤ 0.002,
∆uk,` ≤ 0.02 and the sum of all constraint violations is
less than or equal to one percent of the minimum Ci, i.e.,
when the sum of all constraint violations is less than or
equal to 4.76 m3/D (30 STB/D). The search direction in
Eq. 10 is computed from Eq. 14 with M = 10. Eq. 12
with σ2

` = 1.0 and N `
s = 40 is applied for all ` to gen-

erate the covariance matrix CU which we use to generate
perturbations for calculation of stochastic gradients and
for promoting temporal smoothness of the well controls at
each individual well. The maximum number of iterations
allowed is set equal to the number of controls, i.e., set equal
to 3,360. As discussed in the guidelines following Eq. 16,
we set α = 0.602 and γ = 0.101, A = 336, a0 = 1.5 and
cmin = 0.05 so that in a = 50 and c = 0.113 when applying
Eqs. 15 and 16.

The G-SPSA-based augmented Lagrangian algorithm con-
verged after 2882 simulation runs using three outer loop
iterations. The NPV increased from $3.04 × 109 at the
initial guess for optimal well controls to $4.25 × 109 at
convergence. Using an augmented Lagrangian approach
with gradients computed by the adjoint method, Chen
et al. (2010) achieved a realized NPV of $4.17×109, which
is about 2% lower than our final NPV value. The Chen et
al. result, however, only required 30 reservoir simulation
runs, two orders of magnitude fewer simulation runs than
we required to achieve our result. It is important to real-
ize, however, the preconditioned steepest ascent algorithm
does not require adjoint capability, and to the best of our
knowledge, no commercial reservoir simulator provides the
user the gradient of general nonlinear constraints. The con-
straints for the Brugge case are linear. The G-SPSA-based
augmented Lagrangian method presented here has been
applied to problems with general nonlinear constraints,
Do (2012). The augmented Lagrangian function and NPV
are plotted versus the number of reservoir simulation runs
in Fig. 1, and the violations for all the group liquid
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Fig. 1. β and NPV vs, simulation runs.

Fig. 2. Violations of the group liquid production rate vs,
simulation runs.

Fig. 3. The estimated optimal injection segment controls.

production rate (GLPR) constraints are shown in Fig. 2,
where each individual curve corresponds to a specific well
at a specific control step. At convergence, all the GLPR
constraints are satisfied within the small tolerance speci-
fied. Although not shown, at convergence, the inequality
constraints on injectors are also satisfied to within the
tolerance specified. The estimated optimal well controls
at the thirty injector well segments are shown in Fig. 3.
Note that at the end of the reservoir life, most injector
well segments operate at or close to the lower bound of 0
STB/D.
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