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Abstract: Robot manipulators may be used as flexible camera platforms by mounting cameras
on the wrist of the robot. In this paper we present a new way of interaction between an
operator and the camera platform, where the operator wants to get a visual overview of a
remote operation. The goal is to relieve the operator from controlling both the operation and the
camera platform simultaneously, and allow the operator to focus only on the operation while the
camera plaform is automatically controlled based on learned operator preferences. We describe
an architecture for learning from operator inputs, and use an active camera control algorithm as
a base for learning. An M-RAN sequential function approximator is used as memory function.
Experimental results on a demonstration case indicate that the camera platform responds to
and remembers differences in operator preference.

Keywords: Robotic manipulators, industrial robots, learning systems, radial basis function
network, remote control, offshore operations.

1. INTRODUCTION

Offshore oil and gas platforms pose challenging environ-
ments for personnel owing to their remote, isolated places,
harsh maritime environment, and often explosive, toxic
and/or corrosive atmosphere. Remote control of offshore
operations from onshore control centres may reduce both
costs and health and safety concerns. Fig. 1 shows such
a platform concept for remote operations. There are,
however, several challenges involving remote operations,
some of which may be alleviated by using robot learning
methods. This is a topic of the current paper. A concept
laboratory for remote operations with robots has been
built and presented by Kyrkjebø et al. (2009). In the
laboratory, robot manipulators can be remotely controlled
by a human operator. Sufficient overview of the process
and environment is needed to perform remote controlled
offshore operations, and key to this is live video mon-
itoring. The authors have previously presented a robot
manipulator with a wrist mounted camera, constituting
a movable camera platform (see Fig. 2 and Bjerkeng et al.
(2011a,b)). The camera platform includes obstacle avoid-
ance and can be joystick-controlled by an operator.

An important issue is the fact that during remote opera-
tions the operator is tasked with controlling the camera
⋆ Contribution to invited session Robot Automation in Explosive Oil
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are The Research Council of Norway, SINTEF, NTNU, Statoil,
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Fig. 1. The Mesa Verde platform concept. The robot
system is to be mounted in the PUA region.

platform simultaneously with controlling the operation
manipulator itself, which creates potentially stressful and
information loaded situations. Ideally, the camera platform
should position itself at good viewing angles with as little
interference from the operator as possible.

In this paper we propose a new method of interaction be-
tween the remote operator and the camera platform with
the goal of reducing the need to control the platform. The
camera platform tries to learn where the operator wants
it for any given operation by learning from interactions
the operator has with the platform. We describe a frame-
work for learning from operator inputs using a hierarchical
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(a) Overview of the two manipulators and process structure.

(b) Camera platform seen from the operation manipulator
viewpoint.

Fig. 2. 3D models of the laboratory facility.

composition of the state space for learning and a modified
minimum resource-allocating-network (M-RAN) function
approximator to incrementally approximate operator pref-
erences (Yingwei et al., 1997).

A plethora of different learning strategies exist for robot-
centric learning. Types of robot learning where a human
is included as an expert in some form includes interactive
learning (Thomaz et al., 2005), imitation learning or
learning from demonstration (Argall et al., 2009), and
apprenticeship learning (Abbeel and Ng, 2005). All these
methodologies share some common ground, and as such we
choose to follow the terminology used by e.g. Argall et al.
(2009) and use the phrasing learning from demonstration
for denoting learning not only based on interactions with
the environment, but also on feedback from an external
human operator as this general term seems to encompass
more specialized versions. We extend and adapt central
ideas of these methodologies to the case of a camera
platform able to learn preferences of an operator.

The paper is organized as follows. Section 2 presents the re-
mote operations concept and laboratory facility, as well as
describes the active camera control algorithm. We develop
an approach to learning for the active camera control sys-
tem, and describe mapping functions and correspondence
issues in Section 3. In Section 4 the actual implementation
of the learning algorithms are described, and in Section
5 experimental setup and results displaying the concept
during a select operation is presented. Conclusions and
suggestions to further work are given in Section 6.

2. BACKGROUND

In this section we first give a short overview of the concept
for normally-unmanned oil and gas platforms. Then, a

laboratory facility for testing and development of methods
for remote inspection and maintenance (I&M) on such
platforms is presented. Finally, we give a summary of a
recently published control approach for robot-based real-
time camera monitoring which is used as a basis for the
learning algorithms developed in this paper.

2.1 Remote Operations Concept

A novel concept for remote controlled I&M on offshore
oil and gas platforms was presented by Kyrkjebø et al.
(2009). The platform concept separates the work area
accessible by human operators, and a closed permanently
unmanned area (PUA) that is only serviced by robots
(see Fig. 1). The remotely operated platform concept is
designed on the premise that robots may replace humans
for the most important scheduled I&M operations inside
the PUA such as gauge readings, valve and lever operations
and monitoring leakages (Graf and Pfeiffer, 2008).

Remote offshore I&M operations pose many significant
challenges (Anisi et al., 2010; Kyrkjebø et al., 2009).
Onshore operators must for instance be able to monitor
and control I&M operations with a large range of level
of detail. This requires new and versatile monitoring
approaches with active camera control, which is a topic
of this paper.

2.2 Lab Facility

A lab facility has been built in Trondheim, Norway, in
order to develop, test, and demonstrate solutions for next-
generation I&M operations for normally-unmanned oil
platforms. A brief overview of the facility is given in the
following.

The lab facility is composed as follows. A process structure
simulates parts of a production process on a real oil-
platform and two robot manipulators are used for I&M
tasks on the process structure (see Fig. 2).

Both robots are standard 6-axes manipulators (Kuka KR-
16). One is mounted on a 3-axes gantry. The gantry-
mounted robot (GR) performs the main I&M operations
on the process equipment, while the floor-mounted robot
(FR) is used for monitoring and assisting the gantry-
mounted robot with e.g. a stereo vision camera.

The lab facility can be remotely controlled from any loca-
tion via the Internet. Live video streams and continuously
updated 3D models of the facility provide a remote oper-
ator with awareness of the robot operations. The remote
operator can initiate high-level commands for automatic
I&M routines from a graphical representation of the pro-
cess equipments, or control the robots with off-the-shelf
joysticks either directly or via 3D models. See Kyrkjebø
et al. (2009) for further details.

2.3 Active Camera Control

Bjerkeng et al. (2011b) developed and tested a new posi-
tion based approach for real-time monitoring of an opera-
tion using an automated camera platform. The solution is
based on the weighted pseudoinverse redundancy resolu-
tion method and provides globally stable camera tracking.
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Secure operations are achieved using three independent
levels of collision avoidance, and robustness to kinematic
and representational singularities is shown to be an inher-
ent feature of the specific task formulation. Joint velocity
weighing is used to gracefully achieve joint limitations
present in industrial manipulators. This approach is sim-
pler than the standard visual servoing technique, and does
not require image processing or modifications to processing
equipment such as the addition of visual markers. The
position based method does however not eliminate the
possibility of occlusion.

The operator is allowed to vary a desired zoom distance
y = ||p − xr(qr)|| on-line since stereoscopic cameras
typically do not support zooming. The position of the
camera lens is given by xr(qr) and p(t) is the point the
camera should follow.

This distance control input is imposed as a proportional
gain controller along the desired view vector p− xr as

Fd = −kJT
v

p− xr

||p− xr||
(ydesired − ||p− xr||), (1)

and is imposed in the task nullspace. In (1), Jv is the
linear velocity Jacobian of the end effector, and k > 0
is the control gain. The camera task is achieved by using
the industrial manipulator’s on-board joint controller to
comply with qr given by integrating

q̇r = −kpJ
+
wΣ(qr) + (I− J+

wJt)W
−1Fd, (2)

where kp>0 is a proportional gain and Σ(qr) : R
n 7→

R
2 is a minimal camera task description. The matrix

Jt =
∂Σ(qr)
∂qr

is the task Jacobian, and J+
w is its weighted

Moore-Penrose pseudoinverse. The projection matrix (I−
J+
wJt)W

−1 maps the joint velocity Fd to the task nullspace
to eliminate task interference.

3. CONTROL STRATEGY

This section describes how an external operator is able to
adjust the zoom parameter of the active camera control
system and how the camera platform over time adapts
to and remembers the correct parameter in the given
situation.

We base our control strategy on the active camera con-
trol algorithm of Bjerkeng et al. (2011b). This algorithm
makes the camera platform tool point to the wrist of the
operation manipulator at a set distance which we denote
the zoom distance, as shown in Fig. 3. In the current
implementation of the active camera control algorithm,
the zoom distance is the only adjustable parameter. It is
straightforward to extend both the active camera control
algorithm as well as the learning algorithms presented in
this paper to include other parameters such as adjusting
spatial focus points. This extension will also alleviate the
issue of occlusions as mentioned in section 2.3, as the
operator will be able to move the camera platform away
from occluded positions. This is also mentioned as future
work in section 6.1. In this paper we base the presentation
on the published version of the algorithm which is limited
to adjustable zoom distance.

The control objective for the learning system is to generate
the correct zoom distance in real time according to data

Fig. 3. Illustration of the learning system feedback loop
and the laboratory setup consisting of operation ma-
nipulator and camera platform.

previously received from an operator which should relate
to the viewing preferences of that particular operator.

The section is divided into three parts, where the first
part gives an overview of the learning process while the
latter two parts cover two central aspects of the learning
algorithm.

3.1 Overview of the Learning Process

An illustration of the learning process is shown in Fig. 3.
The operator observes the current state of the operation
manipulator through a monitor streaming video from the
camera platform. When the zoom distance y of the camera
platform deviates from the preferred zoom distance y∗ of
the operator, the operator may use a joystick to inform
the learning system both that the current zoom distance
is incorrect as well as in which direction to experiment with
a new zoom distance. When the learning system receives
e = y∗ − y 6= 0 from the operator, it is allowed to change
its guess of the optimal zoom distance based on this e.

The learning process itself is quite simple in our context.
While being inspired by reinforcement learning (Sutton
and Barto, 1998) and interactive reinforcement learning
(Thomaz et al., 2005) in particular, the underlying Markov
decision process (MDP) of this particular problem can be
said to be stateless in the sense that for each state of the
operation manipulator we are interested in the optimal
zoom distance, i.e. there is no need to traverse a sequence
of states in order to reach the goal state. The truth of
the preceeding sentence is naturally dependent on the
choice of state space, which is one of two key issues of
our approach. The second key issue is the creation and
maintaining of a memory system capable of storing and
updating experiences in such a way as to gain a memory
map of the operator’s preferred views in any situation.
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3.2 Correspondence: On the Selection of State Space for
Learning

The form of learning discussed in this paper can be viewed
as a method of mapping situations to actions, i.e. to answer
the question of which action is best in a given situation
(Argall et al., 2009) – in our case the action maps to the
correct zoom distance. In order to recognize and isolate
one situation from another, the key components of that
situation need to be identified and quantified. We refer to
this quantified situation description as the state space of
our learning problem.

In a general setting the issue of correspondence deals with
identifying a mapping between the teacher and learner
which allows transfer of information from one entity to
another (Argall et al., 2009). For a camera platform that
should learn a behavior based on the percieved intentions
of an external operator, this question becomes complex.
We can at most anticipate what the operator’s preferences
for camera viewing are based on. We propose the following
three structural components of the state space:

(1) The spatial position of the currently used tool,
(2) Which tool is currently in use, and
(3) Which operator is currently controlling the operation

manipulator.

These situation identifiers are based purely on heuristic
experience gathered from users of the remote inspection
and maintenance concept laboratory. For the operations
carried out in our laboratory, each operation needs a
particular tool, so we are able to identify which operation
the operator is executing by examining which tool has been
selected (structural component 2). This means that we
in our case can identify each operation uniquely without
needing the operator to input the operation at hand.
In a general setting, structural component 2 could read
which operation is currently executing. Ideally, automated
techniques based on observing operators’ usage patterns
over time could be employed for pruning and selecting
more optimal state spaces, but this has not been adressed
in this paper.

Further, we propose a hierarchical composition of this
state space. Fig. 4 illustrates this composition. Structural
components 2 and 3 (tool type and operator ID) are
discrete and finite state dimensions of limited size, whereas
the spatial position of the currently used tool (i.e. the
operation manipulator wrist position) is a vector p ∈ R

3

of three continuous variables contained within a closed set
p ∈ P governed by the manipulation envelope. In our
composition, component 2 and 3 can be seen as indices into
a table where each table entry in itself contains a separate
memory function for that specific case. This memory
function is needed in order to represent a continuous set
through a finite set of variables.

Earlier works have described efficient memory functions for
continuous state spaces, and the following section describes
the internals of the memory function used in the current
research.

Fig. 4. Graphical illustration of the composition of the
state space for learning. Tool type and operator ID
are used as discrete indices into a table consisting
of memory functions based on the M-RAN function
approximator.

3.3 The M-RAN Function Approximator

Handling continuous state spaces through function ap-
proximation has been extensively studied both outside
(Bishop, 2007) and in the robot learning literature. One
particular advantage of function approximators is the in-
herent ability to generalize experience from a finite set
of samples to a possibly infinite space. Commonly used
function approximators in robotics include connectionist
structures such as artificial neural networks (ANN), radial
basis function networks (RBFN) (Fjerdingen et al., 2010),
and cerebellar model arithmetic computers or tile coding
(CMAC) (Sutton and Barto, 1998).

The memory function of the current control system imple-
ments an adaptation of a sequential learning scheme using
minimal radial basis function networks, denoted Minimal
Resource Allocation Network or M-RAN (Yingwei et al.,
1997). Radial basis function networks are well suited for
function approximation due to a simple topological struc-
ture and local approximation validity. A sequential version
of the RBFN algorithm, adding units to the network based
on the novelty of new data, is called a resource-allocating
network (RAN). The M-RAN algorithm additionaly allows
for pruning units shown to be inactive over time, thereby
going by the name minimal. These two properties are
important for our case as the hierarchical composition of
memory may lead to a large amount of memory maps (i.e.
function approximators), and as such each memory map
should be kept as lean and fast computing as possible.
The following discussion summarizes the work of Platt
(1991); Kadirkamanathan and Niranjan (1993); Yingwei
et al. (1997).

The output of a RAN algorithm can be given as

f(x) = α0 +

K
∑

k=1

αkφk(x), (3)

where φk(x) is the response of the kth unit to input vector
x. αk is the corresponding weight parameter and α0 a
bias term. For radial basis functions φk(x) is given by a
Gaussian function:

φk(x) = exp

(

−
1

σ2
k

||x− µk||
2

)

, (4)

where µk and σk denote the center vector and width of
each Gaussian function. The input vector in this particular
case is a vector containing the subset of the state space
variables previously mentioned pertaining to structural
component 1, i.e. x = p. As (3) shows, when summing all
Gaussian functions multiplied with their weight factors,
an arbitrary function may be approximated. The question
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then is how to add and prune units as well as adjust cur-
rently existing units in order to approximate the function
in question.

In the classical RAN algorithm, isotropic Gaussian func-
tions are employed. This implies that the width parameter
σk is a scalar, which means that in a multivariate Gaussian
function all dimensions will have equal width. We elect to
use a more general multivariate radial basis function in our
approach where we use a diagonal covariance matrix Σ, as
this in practice allows for tuning the width of the basis
functions on a per-dimension basis. Such a basis function
is given by

φ′

k(x) = exp
(

−(x− µk)Σ
−2
k (x− µk)

)

, (5)

where, if x ∈ R
N ,

Σk =









σk,1 0 · · · 0
0 σk,2 · · · 0
...

...
. . .

...
0 0 · · · σk,N









∈ R
N×N (6)

denotes the width in each dimension.

Growth Strategy Learning involves both adding units
and adjusting network parameters. A new unit is added
to the network if the observation (xn, yn) adheres to the
following constraints:

||xn − µnr|| > ǫn, (7)

en = yn − f(xn) > emin, (8)

ermsn =

√

∑n

i=n−(M−1)(yi − f(xi))2

M
>erms,min, (9)

where ǫn and emin are tunable thresholds for minimum
input state distance and minimum output difference, re-
spectively. µnr is the center of the unit closest to xn.
ermsn describes the RMS value of the output error over
a sliding window of size M . This value should be greater
than the tunable threshold erms,min. The RMS criterion is
there to filter out spurious occurances where a wildpoint
observation erroneously creates a new unit.

Parameters associated with the newly created unit are:

αK+1 = en, (10)

µK+1 = xn, (11)

diag(ΣK+1) = κ(xn − µnr). (12)

κ is a tunable factor determining how much the initial
responses of units should overlap in the input space. When
using an N -dimensional Σ, κ could easily be extended to
control the initiation width of each dimension indepen-
dently. This was, however, not necessary for our case where
all dimensions were of equal magnitude and significance.

Adjustment Strategy When an observation (xn, yn) does
not meet the criteria in (7)-(9) the currently existing
network parameters w are adjusted instead in order to
adjust the existing network to more closely approximate
the new value. An EKF algorithm (see Kadirkamanathan
and Niranjan (1993)) is used for this purpose:

w= [α0, α1, µT
1 , σ1, . . . , αK , µT

K , diag(ΣK)T ]T(13)

wn =wn−1 + enkn, (14)

where kn is the Kalman gain vector given by

kn = (Rn + aTnPn−1an)
−1Pn−1an, (15)

and an = ∇wf(x) is the gradient vector of f(x) with
respect to w. Rn is the measurement noise variance and
Pn is the error covariance matrix

Pn = (I − kna
T
n )Pn−1 +QI, (16)

where Q denotes a scalar which determines an allowed
random step in the gradient vector direction, introduced
to prevent the model from converging too rapidly to adapt
to new data. Pn must be increased in dimensionality each
time a new unit is added. See Kadirkamanathan and
Niranjan (1993) for more details on implementing this
EKF algorithm.

Pruning Strategy If the output of a unit αkφ(xk) is
less than a threshold over a number of M consecutive
inputs, Yingwei et al. (1997) removes this unit from the
network. This makes sense in many applications, but for
our application even though current observations do not
visit some part of our state space in a while it does not
necessarily mean they should be forgotten. It may just
mean the operator is currently occupying a separate part
of the system’s state space during an operation.

By the above argument, we choose not to implement a
pruning strategy. This makes the implemented function
approximator more akin to the RANEKF algorithm of
Kadirkamanathan and Niranjan (1993), but criterium 3
of the growth strategy, the noise filtering criterium (see
(9)), is exclusive to the M-RAN algorithm.

4. IMPLEMENTATION

This section describes how the learning camera control sys-
tem is implemented in software in the lab. The camera con-
trol system is based on a laboratory architecture allowing
an operator to control two industrial robot manipulators.
Matlab interfaces for communicating with both manipu-
lators are also given, able to communicate commands in
either joint perturbations in the configuration space (δq)
or wrist perturbations in the operational space (δp). Both
manipulators’ joint configuration states q, or respective
wrist operational space states p, may be retrieved. We
refer the reader to Bjerkeng et al. (2011b) for more specifics
on this architecture.

The algorithm of Bjerkeng et al. (2011b), summarized in
section 2.3, is implemented as a Matlab-based controller
on top of this architecture. The controller is interfaced
through setting the current operation manipulator wrist
coordinates, the requested zoom distance, as well as a
maximum increment parameter controlling the dynamic
properties of the camera platform manipulator.

The implemented algorithm is given in pseudo-code as the
Algorithm 1-listing states. The variable p in line 2 refers
to the wrist coordinates of the operation manipulator in
operational space (p). The zoom distance zoomDist (line
3) is the currently estimated best zoom distance of the
camera platform by the learning system, while desiredDist
(line 5) includes possible perturbations given by the op-
erator through the joystick interface. It is assumed here
that the nominal joystick position is 0 and that joystick
movements j (line 4) in either direction (closer or further
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Algorithm 1. Learning camera platform controller loop
1: while controller running do
2: p = GetRobotState()
3: zoomDist = policy.Calc(p) ⊲ Eqs. (3-4)
4: j = GetJoystick()
5: desiredDist = zoomDist + j*maxChange
6: err = desiredDist - zoomDist
7: if |err| > errThreshold then
8: policy.Train(p, err) ⊲ Section 3.3
9: end if

10: CameraCtrl(p, zoomDist) ⊲ Section 2.3
11: end while

Table 1. Control parameters of the imple-
mented M-RAN algoritm.

Parameter Value

ǫn 0.4

emin 0.008

erms,min 0.008

Q 0.4

κ 0.1

away) is given by a scalar normalized to the interval [−1, 1].
The parameter maxChange may then be used to scale the
responsiveness of the joystick.

If the error has a large enough magnitude, governed by
errThreshold, the algorithm will add a node, or train
the existing network of nodes, according to the rules
given in Section 3.3. One important note here regards the
update rule for operator inputs in line 5; if the operator
keeps pushing the joystick in one direction or the other,
the controller loop ensures that the desired distance is
continuously decreased or increased until the operator is
satisfied since the M-RAN policy, and hence the zoom
distance, will be updated at each controller step.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup

The experimental setup consists of the operation manip-
ulator, denoted the Gantry Robot (GR), and the cam-
era platform, denoted the Floor Robot (FR). These are
illustrated in Fig. 3. The FR holds a stereo vision camera
as illustrated in Fig. 2. The GR is controlled by joystick
commands and the FR by the algorithms described in this
paper.

The modified M-RAN function approximator is governed
by some control parameters. These parameters are repro-
duced in Table 1 for completeness.

5.2 The Experimentation Case

We choose to look at a specific operation case in our
experiments, as learning from an operator is heavily depen-
dent on the operator and operation in question. A given
operator and tool is assumed, effectively locking structural
component 2 and 3 of the state space. These two compo-
nents act simply as indices into a two-dimensional array of

Fig. 5. Illustration of operation robot (GR) movements
during experimentation case. Numberings correspond
to the transitions and locations described in Section
5.2.

memory functions, and it is straightforward to check the
implementation for correctness of this table lookup. We
thereby exclude this from the current experiments.

The selected tool for the operation is a laser vibrometer;
a tool able to measure vibrations by pointing a red laser
beam at any physical location (see Kyrkjebø et al. (2009)).
This tool is particularly interesting because it requires the
operator to switch between close-up views for aiming the
laser at certain locations and zoomed-out overviews for
finding the next location to measure.

We emulate an operator by creating a sample course to
follow for the GR. The procedure is outlined below, and
Fig. 5 illustrates the described experimentation case.

(1) The case starts at location A.
(2) Operator moves to location B for measurement. Uses

joystick to get better camera position.
(3) Operator moves to location C for another measure-

ment. Uses joystick to get better camera position.
(4) Operator moves near location B again. Camera posi-

tion and zoom should be retrieved from memory.
(5) Operator moves near location A for overview. Uses

joystick to get better camera position.
(6) Operator moves near location C for measurement.

Camera position and zoom should be retrieved from
memory.

(7) Operator moves near location A for overview. Camera
position and zoom should be retrieved from memory.

5.3 The 0-State Experiment

The goal of this experiment is to validate the algorithm
when no learning inputs are given by the operator. In this
case the algorithm should behave exactly like the active
camera control algorithm of Bjerkeng et al. (2011b). We
follow the outline of the experimentation case given in Sec-
tion 5.2, but without any operator feedback. The results
of the active camera control algorithm are compared with
the output of the learning system, and should be exactly
identical. Table 2 shows the results for the experimentation
case. The results are rather trivial, but clearly show that
in case of no feedback from the operator the learning
algorithm does not influence the original algorithm at all.
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Table 2. Results of experiment from Section
5.3.

Transition Location Zoom

1 A 0

2 A → B 0

3 B → C 0

4 C → B̃ 0

5 B̃ → Ã 0

6 Ã → C̃ 0

7 C̃ → Ã 0

5.4 Learning Operator Preferences

The goal of this experiment is to show whether operator
input has the desired effect on the camera zoom factor. The
outline of the experimentation case given in Section 5.2 is
followed. Table 3 summarizes the results. As indicated by
the table, after feedback has been given by the joystick
(transition 2, 3, and 5) the learning system adjusts the
preferred camera zoom factor for the current state in
the state space (transition 4, 6, and 7). The new zoom
distances are now stored by the memory function, and
each time the operation robot nears the approximate same
area of operation, independent of the route the operator
selects for getting to that location, the camera platform
will adjust its zoom accordingly.

There is an interpolated transition between the stored
state and neighbouring states owing to the generalizing
nature of the function approximator. This is illustrated
in Fig. 6, where the results of transition 6 are given.
The graph shows the time development on the x-axis and
the corresponding zoom distance parameter at each time
instant on the y-axis. The stair-like look of the graph is
due to operator pausing when moving the operation robot
(GR).

If the operator were to adjust the zoom factor ’in between’
for instance the B and C points, the learning system would,
based on the selected parameters for learning, add a new
point of interest at this location. This is exactly what
happened when point B and C were identified as points
of interest that deviated from what the learning algorithm
so far believed had the intended zoom factor (transition 2
and 3).

Table 3. Results of the experiment from Sec-
tion 5.4.

Transition Location Zoom

1 A 0

2 A → B -0.999

3 B → C -0.999

4 C → B̃ -0.973

5 B̃ → A 0.531

6 A → C̃ -0.974

7 C̃ → Ã 0.529
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Fig. 6. Result of transition 6 in the experiment from
Section 5.4. The x-axis shows the time development
when moving from A to C, while the y-axis shows the
corresponding zoom distance at each time instant.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a new method of interac-
tion between an operator and remote camera platform for
monitoring of manual robot manipulator operations. The
method is founded on the idea that the operator should
spend as little time and effort as possible on controlling the
camera platform to be able to focus on the task at hand
instead of positioning the monitoring system. To this end,
we have shown the feasability of a learning camera plat-
form by using a modified M-RAN function approximator
as memory function in a system architecture for learning.

To demonstrate our approach we have equipped an indus-
trial manipulator with a stereo vision camera and desig-
nated it as a follower robot for another joystick controlled
industrial manipulator. Experimental results on a demon-
stration case indicate that the camera platform responds
to and remembers differences in operator preference.

6.1 Future Work

In the current implementation of the active camera control
algorithm, the learnable parameters are limited to the
zoom factor. This limitation will be alleviated in future
works, so that more freedom is given to the operator.
We are currently looking at learning positioning of the
camera platform on a virtual manifold around the TCP
of the operation manipulator in order to learn the camera
platform to avoid situations of occlusion.

The camera platform’s ability to differentiate situations
an operator sees as distinctive is heavily dependent on the
choice of learning state space, as previously mentioned.
Looking at automated techniques for selecting important
state dimensions from a potentially larger set of candidate
dimensions, using dimensionality reduction techniques (see
e.g. Fu and Wang (2003)), may yield greater applicability
of the algorithm for more cases, as well as relieve some of
the guesswork of the designer. In cases where latent state
space features are present, more advanced techniques than
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RBF networks are needed. We are currently looking into
the use of LO-nets (Ray and Oates, 2011) for predicting
operator behaviour considering latent variables.

A more complete experiment suite with several operators
and a set of different operations is also in order to better
verify if the method is tractable in a real-life setting.
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