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Abstract: Dual gradient drilling (DGD) is a method for drilling deep water offshore wells safely,
efficiently, and to a reduced cost. The dual gradient effect is enforced by using a heavy fluid
fitting the drilling window, and a subsea pump to lift the returns up to the rig. Automatic control
of this pump is fundamental to ensure a safe and efficient dual gradient drilling operation. In
this paper we extend existing work on modelling for DGD in two ways. Firstly, we present a
simplified model for operational scenarios where there are multiple fluids in the well, e.g. when
changing drilling fluids. Secondly, we make the model more realistic by including a model of the
centrifugal subsea pump. The resulting model is then used to simulate a scenario with changing
of drilling fluid, and where a PI controller is used to maintain a constant downhole pressure. The
simulation confirms that the model is reasonable, and that the PI controller is able to maintain
a near constant downhole pressure throughout the operation.
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1. INTRODUCTION

In this paper we present a simplified hydraulic model for
multi-fluid dual gradient drilling; we focus specifically on
systems with a partially filled riser as presented by Fossli
and Sangesland (2006). The model can also be applied to
general DGD system e.g. with water and mud (Schumacher
et al. (2002)) and through small modifications extend
existing work on modelling of managed pressure drilling
systems (Kaasa et al. (2012)).

A partially filled riser allows for the use of heavier mud
weights than conventional drilling. The results are im-
proved margins, potential for improved casing program,
improved cementing operations and improved well control
and integrity. Several drilling operations require simulta-
neous use of more than one drilling fluid in the well, e.g.
cement, spacer and mud during cementing operations. The
simplified model presented here can be used for control
design, estimation and simulation for these operations. A
schematic of a well being drilled with a partially evacuated
riser is shown in Fig. 1. The drilling fluid (mud) is pumped
down the drill string and up the annulus as in conventional
drilling, but the mud is returned through a subsea pump
and a separate return conduit. This differs from conven-
tional drilling. The pump is used to control the level in
the riser which in turn affects the pressure profile in the
annulus. The objective is to maintain the pressure at each
location in the well above the lower pore/collapse pressure
and below the fracture pressure.

There are a few simplified models for DGD systems in the
litterature. In Breyholtz and Nygaard (2009) and Brey-
holtz et al. (2011) an existing simplified model for MPD,
presented in Kaasa et al. (2012), is modified to fit the DGD
system. The model is used to implement a model predictive
controller that coordinates control of the subsea pump and

topside equipment. Hauge et al. (2012) present a simplified
model of a gas bubble percolating up an open well-bore.
The model can be used for control design and estimation
during gas influx scenarios. We also mention the work by
Landet (2011) where a high order model for MPD system
is presented; the model is based on discretizing the partial
differential equations describing a hydraulic transmission
line. The author proposes a modification to the model so
that multiple fluid scenarios can be simulated, but the
reasoning behind the modification is not entirely clear.

The modelling effort in this paper builds on the model
presented in Kaasa et al. (2012) and modified for DGD in
Breyholtz et al. (2011). We model the pressure dynam-
ics in the drill string based on a mass balance, taking
compressibility into account. Since the annulus is open
to the atmosphere (and thus not pressurized), we do not
model compressibility effects of the drilling mud in the
annulus, and consequently the mass balance results in a
volume balance. The flow rate from the drill string to
the annulus is modelled based on a momentum balance,
as is the pressure at any location in the well/drill string.
The key difference between the model derived here and
the work in Breyholtz and Nygaard (2009) and Breyholtz
et al. (2011) is that our model allows for two different types
of fluids to be present in each section of the well (drill
string, annulus, subsea pump and return lines); we also
include a model of the centrifugal subsea pump. Besides
the differences between a pressurized MPD system and a
DGD system, our model differs from the one in Landet
(2011) in that it has a lower number of control volumes
and the underlying assumptions regarding the pressure
dynamics are more transparent. Note that even though
we constrain ourself to only two fluids in this paper, it
is straight forward to extend the ideas to more than two
fluids.
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Fig. 1. Schematic of a dual gradient drilling system. Mud
flows through the rig pump, down the drill string,
through the bit, up the annulus and returns through
a subsea pump. The level of mud in the riser, hr, is
increased or decreased to control the annular pressure.

2. MODELLING

2.1 Conservation of Mass

Drill string We model the drill string as a hydraulic
system consisting of two fluids as shown in Fig. 2. Based
on the conservation of mass and the isothermal equation
of state we have

Vd1
βd1

ṗ1 = −q − V̇d1 (1a)

Vd2
βd2

ṗ2 = qp − V̇d2 (1b)

where p denotes pressure, q denotes flow rate, V denotes
volume and β denotes the isothermal bulk modulus (in-
verse of compressibility). The subscripts d1 and d2 refer
to volumes 1 and 2 in the drill string. (1a) models the
pressure variation at any location in Vd1 while (1b) models
the pressure variation at any location in Vd2.

Let p denote the pressure at any location in the drill string.
We assume that the pressure change at any location in the
drill string is the same, that is ṗ = ṗ1 = ṗ2. Adding the
two equations together gives(

Vd1
βd1

+
Vd2
βd2

)
ṗ = −q − V̇d1 + qp − V̇d2. (2)

Since the total drill string volume is (piecewise) constant

we have that V̇d1 = −V̇d2 which enables us to simplify (2)
to (

Vd1
βd1

+
Vd2
βd2

)
ṗ = qp − q. (3)

The above equation approximates the pressure dynamics
at any location in the drill string. One example is the pump

l

fdl2dV

1dV

q

pq

Fig. 2. The drill string contains two different fluids of
volume Vd1 and Vd2. As mud is pumped into the drill
string the position of the front, lfd, moves downward
towards the bit.

pressure, pp, just downstream the rig pump. The pump
pressure dynamics is thus governed by(

Vd1
βd1

+
Vd2
βd2

)
ṗp = qp − q. (4)

Note that for Vd2 = 0 this equation reduces to the drill
string dynamic equation derived in Kaasa et al. (2012).
When Vd1 > 0 and Vd2 > 0 the term Vd1

βd1
+ Vd2

βd2
shows

that the combined compressibility of the fluids in the drill
string affects the pressure dynamics.

To implement (4) it is neccessary to provide a relationship
for calculating the volume of the different fluids. To that
end we assume that the drill string is filled with fluid of
Type 1 and Type 2 with initial volumes Vd1(t0) and Vd2(t0)
respectively. Neglecting compressibility effects the volumes
are given as the solution to

V̇ cd1 = −q (5)

V̇ cd2 = qp. (6)

However, due to compressibility effects the above equa-
tions are not valid during transients. E.g. if the pressure
is increased the above equations will overestimate the two
volumes. To mitigate this problem we normalize the two
volumes according to

Vd1 = kV cd1 (7)

Vd2 = kV cd2 (8)

where

k =
Vd

V cd1 + V cd2
, (9)

and Vd is the total internal volume of the drill string. This
normalization ensures that Vd = Vd1 +Vd2. Note that (7)–
(9) does not take the different compressibilities of the fluids
into account. That is, if fluid 1 is more compressible than
Fluid 2, then Fluid 1 would compress relatively more than
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Fluid 2. In the Appendix it is shown how to take this effect
into account by using the definition of the bulk modulus.
We will use the simple method as comparisons show that
the approximation is quite good (less than one percent
error) for the relevant choices of bulk moduli. The position
of the front, lfd, is simply given as the solution to

lfd =
Vd2
Ad

(10)

where Ad is the internal cross-sectional area of the drill
string.

Annulus Similar to the derivation for the drill string we
consider two different fluids of volume Va1 and Va2, in the
annulus as shown in Fig. 1. Since the annulus is open to
the atmosphere we make the simplifying assumption that
compressibility effects caused by pressure variations are
negligible. The mass balance thus reduces to a volume
balance. The flow through the bit and the flow from
the booster pump both enter the annulus while the flow
through the subsea pump exits the annulus. In this paper
we make the simplifying assumption that qboost = 0 which
would typically be the case in multi-fluid scenarios. The
total volume of fluid in the annulus, Va, is governed by

V̇a = q − qssp (11)

which implies that the riser level, hr, satisfies

ḣr =
qssp − q

Aa(hr)
(12)

where Aa(hr) is the crossectional area of the annulus at
location hr. This equation is the same as the one used
in Breyholtz et al. (2011) and Zhou and Nygaard (2011).
For the the location of the front between the two fluid
types we have two different scenarios. In scenario 1 Fluid
1 occupies the top part of the annulus includig the inlet to
the subsea pump, while Fluid 2 occupies the bottom part
of the annulus, as depicted in Fig. 1. In this case lfa ≥ hssp
and

l̇fa =
−q

Aa(lfa)
(13)

In scenario 2 Fluid 2 occupies all of the well, except some
small part above the suction hose going to the subsea
pump. In this scenario

l̇fa = ḣr =
qssp − q

Aa(hr)
. (14)

Return lines The riser is connected to the subsea pump
by a suction line, and the subsea pump is connected to
the rig by a discharge line. The volumes in this part of the
system is modelled similarly to the drill string giving

V̇r1 =

{
0 lfa > hssp

−qssp lfa ≤ hssp
(15)

where Vr1 is the volume of fluid 1 in the return lines. The
volume of fluid 2 is Vr2 = Vr − Vr1, where Vr is the total
volume of fluid in the discharge line. The location of the
fluid front, lfr, is given by

lfr =
Vr1
Ar

, (16)

where Ar is the internal cross-sectional area of the return
line.

Remark 1. Note that the model does not handle an os-
cillating riser level hr that generates several disconnected

volumes of Fluid 1 and 2 in the discharge line. If this is an
issue the model can be extended by increasing the number
of allowed fluid fronts in the return lines.

2.2 Momentum balance

To model the flow rate through the bit we use a momentum
balance similar to the model in Kaasa et al. (2012) giving

M(hr)q̇ = pp − p0 − F (lfd, lfa, hr, q) +G(lfd, lfa, hr)

(17)

M(hr) =

∫ lbit

0

ρd(l)

Ad(l)
dl +

∫ lbit

hr

ρa(l)

Aa(l)
dl (18)

where p0 is the atmospheric pressure, F (lfd, lfa, hr, q) is
the total frictional pressure loss in the drill string and
annulus, G(lfd, lfa, hr) describes the hydrostatic pressure
difference between the drill string and the annulus, ρd(l)
and ρa(l) are the densities, at location l, in the drill
string and annulus respectively, lbit is the length from
the rig floor to the bit and finally Ad(l) and Aa(l) are
the crossectional areas, at location l, in the drill string
and annulus respectively. Note that F and G depend on
additional parameters such as geometry and density. These
arguments are omitted for notational convenience. More
detailed expressions for these functions are given in (29)
and (22).

In addition to the differential equation above we have that
the pressure at any location in the well is given by a steady
state momentum balance in the annulus according to

pa(l) = p0 + Fa(l, lfa, hr, q) +Ga(l, lfa, hr) (19)

where Fa(l, lfa, hr, q) is the frictional pressure drop, and
Ga(l, lfa, hr) is the hydrostatic pressure, from the top of
the annulus to location l. A similar relationship can be
formulated by applying a momentum balance in the drill
string.

Hydrostatic Pressure Looking at Fig. 2 we see that the
hydrostatic pressure at a location l in the drill string is
given by

Gd(l, lfd) =

{
ρd2gh(l) l < lfd

ρd2gh(lfd) + ρd1g(h(l) − h(lfd)) l ≥ lfd
(20)

where h(l) is a function that returns the vertical depth at
location l. Similarly for the annulus we have

Ga(l, lfa, hr) ={
ρa1g(h(l) − hr) l < lfa

ρa1g(h(lfa) − hr) + ρa2g(h(l) − h(lfa)) l ≥ lfa
(21)

The total hydrostatic pressure difference used in (17) is
given as

G(lfd, lfa, hr) = Gd(lbit, lfd) −Ga(lbit, lfa, hr). (22)

For future reference the hydrostatic pressure in the return
line, just upstream the subsea pump, is given as

Gr(lfr) = ρa1gh(lfr) + ρa2g(hssp − h(lfr)) (23)

where lfr is the fluid front in the return lines, found from
(16).

Frictional Pressure Losses In general drilling fluids are
non-Newtonian and the flow path will contain both lam-
inar and turbulant flow regimes, and transitions between
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these regimes (Bourgoyne Jr. et al. (1991); Zamora et al.
(2005); API (2006)). This makes detailed modelling of
frictional losses a significant challenge. For high accuracy
the so-called modified Herschel-Bulkley model is the in-
dustry choice. The modelling framework presented this
far allows for any functional description of the pressure
losses including non-Newtonian models. However, for clar-
ity of presentation and brevity we will constrain ourself to
Newtonian fluids from here on. For completness we state
the main relationships and explain how we use them. A
thorough account on viscous Newtonian flow is given in
White (1994). First we consider Fluid 2 in the drill string.
To determine if the flow regime is laminar or turbulent we
use the Reynolds number

Red2(l) =
4ρd2q

πdd(l)µd
(24)

where dd(l) is the drill string inner diameter and µd(l) the
viscosity, at location l in the drill string. Given a location
l and a flow rate q we can calculate the Reynolds number.
If this number is below Recrit = 2300 the flow is deemed
to be laminar, if it is above then the flow is turbulent.
To obtain the pressure loss we use the Darcy-Weisbach
equation

Fd2(lfd, q) =

∫ lfd

0

fd2(l)
8ρdq

2

π2d5d(l)
dl (25)

where the friction factor is given by

fd2(l) =
64

Red2(l)
(26)

for laminar flow,

fd2(l) =

(
−1.8log

[
6.9

Red2(l)
+

(
εd

3.7dd(l)

)1.11
])−2

(27)

for turbulent flow, and εd is the pipe wall roughness, see
White (1994) and Haaland (1983). The pressure loss in the
drill string consists of pressure losses in topside equipment,
drill string (two fluids) and bottomhole assembly including
the bit. For simplicity we consider only friction losses in
the drill string and over the bit in this paper. The frictional
pressure drop from rig pump to the bit is thus

Fd(lfd, q) = Fd2(lfd, q) + Fd1(lfd, q) +
ρd(lbit)q

2

2C2
vTFA

2
(28)

where Fd1(lfd) is found from an expression similar to
(25), Cv is the discharge coefficient and TFA is the total
fluid area in the bit (API (2006)). The density at the
bit, ρd(lbit), is equal to ρd1 as long as lfd < lbit, after
that it is equal to ρd2. Similar derivations hold for the
annulus friction pressure loss Fa(l, lfa, hr, q), the suction
line friction losses Fsuc(lfr, qssp) and the discharge line
friction losses Fdis(lfr, qssp). The total frictional pressure
loss used in (17) is given by

F (lfd, lfa, hr, q) = Fd(lfd, q) + Fa(lbit, lfa, hr, q). (29)

2.3 Subsea Pump

The centrifugal subsea pump is used to pump fluid from
the riser and up to the rig. The pump is typically controlled
using a frequency converter which maintains the pump at
a certain pump speed ωssp. In this paper we assume that
the frequency converter ensures that ωssp converges to its
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Fig. 3. Synthesised pump characteristics for subsea pump,
top curve corresponds to ωssp = 2000 rpm, bottom
curve corresponds to ωssp = 1000 rpm.

reference ωrefssp after a short transient period. That is, we
model the actuator dynamics as

τsspω̇ssp = −ωssp + ωrefssp (30)

where τssp is a time constant that models the frequency
converter and rotor/impeller dynamics. Since the pump is
dynamic (and not a positive displacement pump) the flow
rate, qssp, depends not only on ωssp, but also on the total
head. To take this effect into account we need to consider
the pump curve/characteristic in the model. The pump
characteristic is typically found through experimental test-
ing and looks similar to the example shown in Fig. 3. The
top dashed curve shows the total head that is produced by
the pump at ωssp = 2000 rpm, while the bottom dashed
curve corresponds to ωssp = 1000 rpm. As the flow rate
increases the total head is reduced. The operational point
of the pump is given by the intersection of the system
curve (whole) with the pump curve. For ωssp = 2000 this
intersection is marked with a circle in Fig. 3. The system
curve specifies the system head consisting of friction losses
and hydrostatic head. Head is derived by dividing pressure
by gravitational acceleration and the density of the fluid
in the pump. If we reduce the pump speed to 1400 rpm
corresponding to the third dashed curve from the bottom
we see that the two curves do not intersect, this implies
that the pump speed is not sufficient to pump the required
hydrostatic head. Mathematically we can express these
notions according to

htot = fssp(ωssp, qssp) (31)

where htot is the total head. Using the so called affinity
laws (similartiy rules), see e.g. White (1994), it is not hard
to approximate fssp from a limited set of experimental
data. In this paper we assume fssp has the form

fssp(ωssp, qssp) = c0ω
2
ssp − c1ωsspqssp − c2q

2
ssp (32)

where c0, c1, c2 are fitting constants and ω0 is the pump
speed at which the curve was fitted. For the synthesised
example in Fig. 3 we have c0 = 8.75 × 10−5, c1 = 0.175
and c2 = 7.00 × 103. Neglecting frictional effects in the
riser the system curve is described by
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viscosity [ Ns
m2 ] density [ kg

m3 ] Bulk modulus [Pa]

Fluid 1 2 × 10−3 1120 1.0 × 109

Fluid 2 4 × 10−3 1200 1.5 × 109

Table 1. Drilling fluid properties.

hsys(lfr, qssp) =
1

gρssp
[Gr(lfr) + Fdis(lfr, qssp)

−(Ga(hssp, lfa, hr) − Fsuc(lfr, qssp))]
(33)

where ρssp is the density of the fluid in the pump, the
hydro static pressure components Gr and Ga are defined
in (21) and (23), Fdis and Fsuc the frictional pressure losses
in the discharge and suction lines calculated as explained
in the previous section. Given the rotational velocity of
the pump, mud densities and the location of the different
fluids, the operational point of the pump is given as the
solution q∗ssp to the implicit equation

hsys(lfr, q
∗
ssp) = fssp(ωssp, q

∗
ssp). (34)

A solution is guaranteed to exist only if ωssp is sufficiently
high (e.g. over 1500 rpm in Fig. 3). When ωssp is not high
enough qssp < 0, a scenario that we do not consider in this
paper. That is, we assume that the solution q∗ssp always
exists.

3. SIMULATIONS

To illustrate the use of the model we also implement a
standard PI controller according to

ωrefssp = −Kp

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ

)
(35)

where Kp is the proportional gain, Ti is the integral time

and the error is e = pa(lbit) − prefbit where pa(lbit) is the

measured anulus pressure at the bit and prefbit is the bit
pressure reference. The controller is designed to maintain
a constant bit pressure in a multi-fluid scenario. We chose
the gains as Kp = −0.0049 and Ti = 88s based on a step
resonse test and the SIMC tuning rules in Skogestad and
Postlethwaite (2007).

The simulation consists of a fluid change. To begin with
the entire well is filled with fluid of Type 1, then fluid
of Type 2 is pumped into the well displacing the original
fluid. At the end of the simulation, the drill string, well,
return lines and most of the riser are filled with fluid of
Type 2. At the top of the riser there is some amount of
Fluid 1 left. The parameters for the fluids are given in
Table 1.

The well consists of a 300m long riser, a 1200m section with
inner diameter 9.66” and a 2000m open hole section with
inner diameter 8.5”. The first 1500m of the well (including
riser) are vertical followed by a 2000m horizontal section.
Parameters for the simulation are given in Table 2. For
simplicity we use the same wall roughness, εd in the entire
well.

Fig. 5–7 shows results from the simulation. In the simu-

lation prefbit = 175 bar. At t = 60 min the fluid pumped
through the rig pump is changed from Type 1 to Type
2. From Fig. 7 we can see that the fluid front in the
drill string, lfd, moves from zero to lbit = 3500m over
a period of about 20 minutes. During this period the
pump pressure, pp, first drops from 102 bar to 93 bar
before increasing to 97 bar. This is caused by an increase

Param. Description Value

τssp Time constant, pump 3s
εd Drill pipe roughness 2 × 10−3mm

TFA Total fluid area, bit 5.01 × 10−4m2

Cv Bit discharge coefficient 0.98
g Gravitational acceleration 9.81 m

s2

dd Inner diameter, drill string 0.1125m
ddo Outer diameter, drill string 0.1270m
dret Inner diameter, return line 0.152m
da Inner diameter, wellbore [0.495, 0.245, 0.216]m
lwell Length coordinates [0, 300, 1500, 3500] m
hwell Depth coordinates [0, 300, 1500, 1500]m
lsuc Length, riser to pump 50m
ldis Length, pump to rig floor 200m
hssp Depth, rig floor to pump 200m
lbit Location of bit 3500m
p0 Atmospheric pressure 1 × 105Pa

Table 2. Simulation parameters
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Fig. 4. Rotational velocity for the subsea pump.

in the hydrostatic pressure difference between the drill
string and the annulus while the front is in the vertical
section of the well, followed by increased friction as Fluid
2 moves along the horizontal section. Note that Fluid 2 has
higher density and viscosity than Fluid 1. While Fluid 1 is
displaced by Fluid 2 in the drill string there are only minor
disturbances on the bit pressure which are compensated
by minor adjustments to the pump speed, ωssp, by the PI
controller.

At t ≈ 78min the fluid front reaches the bit and starts to
move up the annulus. We see that the front, lfa, moves
with a speed that is inversely proportional to the different
annular cross-sectional areas, i.e. slows down as the area
increases. In the beginning the level in the riser is lowered
(hr increases) slowly to compensate for increased friction,
however when the front reaches the vertical section of the
well the level in the riser falls (hr increases) much faster
to compensate for the heavier fluid displacing the lighter
fluid.

When Fluid 2 reaches the riser (large diameter) the in-
crease in hr slows down. Finally, at t ≈ 130min, Fluid 2
starts to displace Fluid 1 in the return lines creating a
small disturbance at t = 132min (lfr = lds = 200m) when
Fluid 2 reaches the centrifugal pump.

4. CONCLUSIONS

We have extended existing work on simplified modelling
of dual gradient drilling operations by allowing for multi-
fluid operations. The model is suitable for control design,
simulation and estimation. We only consider two different
fluids in this paper but the ideas are readily extendable to
more than two fluids. Although simulations show that the
behaviour of the model is reasonable, the results presented
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Fig. 5. Flow rates through rig pump, bit and subsea pump.
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Fig. 6. Bit pressure (left axis) and pump pressure (right
axis).

should be seen as preliminary until comparisons with high
fidelity models and/or data can quantify the accuracy of
the model. In addition future work should investigate the
possibility of extending the model to allow for one of the
fluids to be of gas phase.
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Appendix A

To more accurately normalize the volume calculations
from Section 2.1 one can take the different compressibili-
ties into account. To take this effect into account we use
the bulk modulus, which for Fluid 1 is defined as

βd1 = −V cd1
∆p

(Vd1 − V cd1)
(A.1)

That is, for a given pressure difference ∆p the volume is
compressed from V cd1 to Vd1, where V cd1 is the solution to
(5). Rearranging we get

Vd1 = V cd1(1 − ∆p

βd1
) (A.2)

Similarly for fluid 2 we have

Vd2 = V cd2(1 − ∆p

βd2
) (A.3)

where V cd2 is the solution to (6). In the above equations
we have three unknowns Vd1, Vd2 and ∆p and it is
therefore necessary to add an additional relationship. For
this purpose we use the knowledge that the known drill
string volume, Vd, satisfies

Vd = Vd1 + Vd2 (A.4)

We now have three independent equations so we can solve
for the three unknowns.
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