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Abstract: Capacitance-resistance modeling of petroleum reservoirs has been used successfully to analyze 

transient behavior of petroleum reservoirs both onshore and offshore. This paper presents a linear 

reservoir model that provides advantages over the nonlinear capacitance-resistance model: convex 

objective function, efficient solution, and direct estimation of confidence limits on model parameters. 

The proposed procedure uses a constrained linear multivariate regression to infer preferential 

permeability trends and fractures in a waterflooded reservoir. The relationship between interwell-

connectivities and interwell-distance between injector-producer well-pairs was also investigated. 
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1. INTRODUCTION 

The capacitance-resistance model (CRM) is an input-output 

model that characterizes the properties of an oil reservoir 

using only historical production data. In the CRM, the input 

signal (injection rates) is converted to an output signal (total 

production rates) in a similar manner as electronic potential is 

converted to voltage or current in a resistance-capacitor (RC) 

circuit (Thompson, 2006), hence the name capacitance-

resistance model. In chemical engineering, the CRM is 

analogous to a single (or a series of) first-order tank storage 

model(s), where the flow rate into the tank is used to predict 

the level of the incompressible fluid inside and the outflow 

rate (Seborg et al., 2010). Fig. 1 shows a schematic of how 

the total production of slightly compressible fluids (oil and 

water) responds to a step-change made on an injection rate  in  

 

Fig. 1. Schematic representation of the impact of an injection 

rate signal on total production response for an arbitrary 

reservoir control volume in the CRM (Sayarpour, 2008). 

the CRM. The shape of the output response caused by a step-

change in injection rate depends on the time lag and 

attenuation between a producer and an injector. Yousef et al. 

(2006) introduced the capacitance model (CM) that can 

quantify interwell connectivity and the degree of fluid storage 

between well-pairs. Two different approaches, the balanced 

capacitance model (BCM) and the unbalanced capacitance 

model (UCM), were proposed to study interwell 

connectivities depending on whether the waterflood is 

balanced or not. Sayarpour et al. (2007) introduced analytical 

solutions for fundamental differential equation of the CM 

based on superposition in time and presented these solutions 

for three different reservoir control volumes: 1) volume of the 

entire field or tank model (CRMT), 2) drainage volume of 

each producer (CRMP), and 3) drainage volume between 

each injector-producer pair (CRMIP). Weber et al. (2009) 

discretized the CRM and used the CRM to optimize injection 

allocation and well location in waterfloods with many 

variables and constraints. Compared to traditional reservoir 

simulators, both the CM and CRM offer a rapid evaluation of 

reservoir behavior between injectors and producers because 

both models only require water injection, total liquid 

production rates, which are typically already measured and 

collected, and producer bottom hole pressures (BHPs) to 

solve for model parameters. Neither method requires a prior 

geologic model. However, both the CM and CRM use 

nonlinear multivariate regression to estimate model 

parameters. For a typical large waterflood, hundreds of 

producers and injectors may be present in a reservoir, 

resulting tens of thousands of model parameters in a field to 

be determined to completely define either the CM or CRM. 

In this case, obtaining a unique solution in history matching 

large reservoirs by nonlinear multivariate regression can be 
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difficult, and this approach can produce parameters that are 

statistically insignificant (Weber et al., 2009). Furthermore, 

establishing confidence intervals of the model parameters 

would also be difficult because of the nonlinear nature of 

both models. Nguyen et al. (2011) developed an integrated 

capacitance-resistance model (ICRM) that uses cumulative 

water injection and cumulative total production instead of 

water injection rate and total production rate. The ICRM 

performs linear regression to obtain the model estimates. 

Therefore, with ICRM, confidence intervals of model 

parameters can easily be established. ICRM guarantees a 

unique solution regardless of the number of parameters as 

long as the number of data points is greater than the number 

of unknowns (parameters). The main objectives of this work 

are to apply the ICRM to waterfloods and to evaluate the 

uncertainty on model parameters. Also, the power of the 

ICRM permits describing the interactions between newly 

introduced injectors and existing producers and predicting the 

future total liquid production based on interwell-distance 

dependent well-connectivities. 

2. PROCEDURE 

Both CRM and ICRM estimate two types of model 

parameters if producer bottom hole pressure (BHP) is 

constant: (1) well connectivities (or gains) that represent the 

degree of communication between injector-producer well-

pairs and (2) time constants that represent the degree of fluid 

storage (compressibility) between well-pairs.   

2.1  Capacitance-Resistance Model 

Weber et al. (2009) developed the producer-based 

representation of CRM (CRMP):  
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where qjk is the total liquid production (oil and water) rate 

from a producer j at time step k, iik is the water injection rate 

of injector i at time step k, Ni is the total number of injectors, 

t is a discrete time period, pwf is bottom hole pressure, Jj is 

productivity index of producer j, and fij is a gain. Physically, 

fij represents the fraction of water rate from injector i flowing 

towards producer j at steady state. The time constant, , is 

defined as 

t PcV

J
               (2) 

where ct is total compressibility, VP is pore volume, and J is 

productivity index of a producer. Model parameters such as 

gains and time constants are estimated by nonlinear 

multivariate regression that minimizes the following 

objective function:  
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where (qjk)obs is the observed total production rate, (qjk)cal is 

the calculated total production rate by the model, np is the 

total number of producers, and nt is the total number of 

historic time periods selected in a fitting window. Equation 

(3) is solved with (1) as well as additional constraints:  
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  for all i                         (4)      

, 0ij jf    for all j                         (5) 

Equation (4) is a total material balance (continuity equation) 

allowing for a loss of water injected within the control 

volume when the sum of gains is less than one (Weber et al., 

2009). Constraint (5) ensures that injected water does not 

adversely affect the reservoir production. 

2.2 Integrated Capacitance-Resistance Model (ICRM) 

The integrated capacitance-resistance model for secondary 

recovery is developed from the CRMP governing differential 

equation (6) that represents the in-situ-material balance over 

the effective pore volume of a producer (Sayarpour et al., 

2007). 
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Equation (6) can be integrated over the time interval from t0 

to tk: 
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After rearranging terms and integrating (7), ICRM for 

secondary recovery is obtained: 
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Here NP,j represents the cumulative total liquid production 

from a producer j. The parameter CWIi represents the 

cumulative water injection into an injector i. If producer 

BHPs are constant, (8) is simplified: 
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                           (9) 

Model parameters are estimated by linear multivariate 

regression that minimizes the following objective function: 
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This objective function is solved with (8) or (9) and the same 

constraints as for the CRMP. As seen in (4), (5), and (9), the 

ICRM and the constraints associated with it are all linear, 

indicating any local minimum found in (10) is a global 

minimum (Nguyen et al., 2011). Therefore, a unique set of 

parameters that give a global minimum is obtained when (10) 

is minimized. When the total water injection is approximately 
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Fig. 2. Syfield-1 consists of two high-permeability streaks of 

500 and 1,000 md (same example as in Sayarpour et al., 

2007). 

equal to the total liquid production, the waterflood is 

balanced (Sayarpour et al., 2007). In this case, (4) can be 

relaxed (ignored), and (11) can be solved for each producer j 

separately: 
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Furthermore, if all the constraints are ignored, then (11) can 

be solved analytically by matrix inversion. 

3. RESULTS 

The numerical simulator Eclipse was used to generate 

synthetic field data on which the CRMP and ICRM were 

fitted. The three synthetic fields used to validate the models 

are all undersaturated black-oil reservoirs. 

3.1   Synfield-1: Streak Case 

Synfield-1 is a synthetic field (streak case studied by 

Sayarpour et al., 2007) that consists of five vertical injectors 

and four vertical producers. Fig. 2 shows the well locations 

and permeability distributions of a synthetic field. This streak 

case is a homogeneous reservoir with the porosity of 18% 

and a permeability of 5 md except where two high-

permeability streaks exist. The simulation ran for 100 months 

of simulated time, and both injectors and producers started 

operating at the same time (in the first month). The producer 

BHPs were kept at 250 psi. Injection history for each injector 

Table 1.  Inferred Model Parameters for Synfield-1 

CRMP 
I1  I2  I3  I4  I5  

j 

(day) ICRM 

P1  
 0.896 0.580 0.224 0.217 0.184 16.0 

 0.896 0.593 0.198 0.252 0.163 5.16 

P2  
 0.029 0.033 0.051 0.201 0.039 28.2 

 0.036 0.035 0.040 0.205 0.033 13.6 

P3  
 0.012 0.181 0.087 0.035 0.170 24.2 

 0.020 0.181 0.086 0.040 0.166 12.3 

P4  
 0.067 0.199 0.650 0.557 0.586 21.6 

 0.059 0.199 0.663 0.551 0.593 10.6 

 

Fig. 3. Monthly water injection rates in Synfield-1 (Albertoni 

and Lake, 2003). 

with water injected for 100 months is shown in Fig. 3. Both 

the CRMP and ICRM methodologies were applied to match 

simulated data starting from month 58 to month 100. In this 

example, the total water injection was approximately equal to 

the total liquid production; therefore, (4) was not used. With 

ICRM, (11) was solved analytically by matrix inversion for 

each producer. Table 1 shows the estimated parameters from 

CRMP and ICRM. Fig. 4 shows the comparison between the 

estimated gains from CRMP and those from ICRM presented 

in histograms. The results show the gains estimated from the 

both models are comparable to each other. Fig. 5 shows the 

total production match for all producers. The result shows 

both CRMP and ICRM fit the data well. We expect the 

majority of the water injected into I1 would flow towards P1 

because there is a high-permeability (1000 md) streak 

between I1 and P1. The gain calculated by both models 

between I1 and P1 is 0.896, the highest gain obtained.  The 

large gain indicates 90 % of the water injected into I1 

travelled to P1 (at steady state), as expected. The gain 

calculated by both models for another high-permeability (500 

md) streak between I3 and P4 also indicates 65% of water 

injected into I3 travelled towards P4. Therefore, the estimated 

gains obtained from both CRMP and ICRM are consistent 

with the imposed geology. Time constants estimated by 

CRMP are about twice those estimated by ICRM, but the two 

quantities are of the same order of  magnitude.  The  cause  of  

 

Fig. 4. Comparison between CRMP gains and ICRM gains in 

Synfield-1. 95% confidence intervals on gains (fij) 

estimated by ICRM. A subscript i is an injector index in 

the range 1 to 5. 
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Fig. 5. Synfield-1 CRMP and ICRM match for total liquid 

production. 

this difference is that the observed cumulative production, 

which was calculated numerically by using the trapezoidal 

rule, has been overestimated. The ICRM fit could be 

improved by decreasing the time constant when the model is 

fitted to the piecewise constant approximation to the response 

(cumulative production). The linearity of ICRM makes it 

easy to establish confidence intervals of the model 

parameters (Montgomery and Peck, 1982).  Fig. 4 shows the 

95% confidence intervals on the ICRM gains. The confidence 

intervals of the parameters are narrow enough to conclude 

regression coefficients are statistically significant. As CRMP 

is a nonlinear model, a straightforward statistical analysis of 

the variability of the estimates is not possible. For this reason, 

the confidence intervals on the CRMP gains were not 

established in this work. 

3.2   Adding New Injectors 

A method that can guide reservoir engineers to decide where 

to drill new injectors to increase future oil production without 

having to run additional reservoir simulations for each 

scenario was investigated using ICRM. First, the relationship 

between gains and interwell-distance between injector-

producer well-pairs (dij) was studied by applying ICRM on 

Synfield-2. This synthetic reservoir is characterized as a 

homogeneous isotropic reservoir where wells (five water 

injectors and four producers) are located randomly (see Fig. 

6). ICRM was applied to match simulated data starting from 

January, 2007 to November, 2010. If the relationship 

between the gain and the interwell-distance between injector-

producer  well-pair  is  assumed to be linear, one can estimate  

 

Fig. 7. ICRM gains vs interwell-distance in Synfield-2. 

 

Fig. 6. Synfield-2 is a homogeneous reservoir (k=50 md and 

=0.2) and consists of five injectors and four producers. 

an interwell-distance dependent gain (fij
d
) at a given dij : 

.d

ij ijf Ad B                                       (12) 

In (12), the parameters, A and B, are linear regression 

coefficients. Equation (12) should only be used to interpolate 

gains; therefore, it is valid in the range of fijlo to fijhi, where 

fijlo is the lowest gain and fijhi is the highest gain estimated 

for a given reservoir. In Fig. 7, ICRM gains estimated from 

Synfield-2 are plotted on the y-axis and corresponding well 

distance between each injector-producer well-pair is plotted 

on the x-axis. As expected, the well-connectivity (gain) tends 

to decrease as the interwell-distance increases. Equation (12) 

was regressed on ICRM gains in Synfield-2, and regression 

coefficients were found to be -0.0003 ft
-1

 for A and 0.401 ft 

for B. In Fig. 8, the ICRM fits are compared to the fits whose 

model parameters were calculated by (12). The results show 

that interwell-distance dependent gains could provide 

plausible solutions in predicting reservoir productions for a 

homogeneous reservoir. In Synfield-2, the allocation factor 

for water injection rate could be estimated reasonably from 

the interwell-distance between well-pairs. This allows 

prediction of well-connectivities between newly drilled 

injectors and existing producers in homogenous reservoirs. 

Thus, (12) was used to  predict future total  liquid  production  

 

Fig. 8. ICRM fits (red solid line) and predicted total 

production rates based on fij
d
 (green dashed line) for 

Synfield-2. 
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Fig. 9. Synfield-3 consists of five water injectors and four 

producers initially. After six years of oil production, two 

injectors (I6 and I7) were added in a reservoir. 

rates after new injectors have been added in a homogeneous 

reservoir. Synfield-3 (Fig. 9) is identical to Synfield-2, but 

two injectors (I6 and I7) were added in a reservoir after 2200 

days (six years) of oil production. After new injectors have 

been added in a reservoir, oil production has been carried out 

for an additional four years. In Fig. 10, adding two new 

injectors supported reservoir pressure substantially, causing a 

sudden increase in total production rates of all four producers 

after oil production has occurred for 2200 days. Predicting 

gains between newly added injectors and producers by using 

(12) would make sense only if it is assumed that the model 

parameters remain constant with the introduction of new 

injectors. In order to validate this assumption that model 

parameters are invariant to adding new injectors, ICRM was 

applied on Synfield-3 by selecting two different fitting 

windows (see Fig. 10). The results (see Fig. 11) show that the 

gains between existing injectors and producers before adding 

new wells do not vary significantly compared to the gains 

between the same well-pairs that were calculated after adding 

injectors. After validating that ICRM gains between existing 

injectors and producers are insensitive to adding new 

injectors, the gains between newly added injector (I6 and I7) 

and producers (P1-P4) were calculated by (12). ICRM gains 

were also estimated via linear regression on newly simulated 

data after adding two injectors. Fig. 12 compares fij
d
 to fij and 

the results show that  they are similar to each other  (less than  

 

Fig. 11. ICRM gains before adding injectors (blue 

histograms) vs ICRM gains after adding injectors (red 

histograms) for Syfield-3. 

 

Fig. 10. Daily total liquid production rates in Synfield-3. 

30% error). These predicted gains (fij
d
) did not match exactly 

the ICRM gains (fij) but the general trend of the gains leads to 

productions if two injectors would have been added with 

known water injection scheme. In Fig. 13, green dashed line 

represents the future total liquid production rates that were 

predicted by fij
d
 for P1 if I6 and I7 have been added in 

Synfield-3 after 2200 days of oil production. In the same 

figure, red solid line represents the future liquid production 

rates for P1 without adding new injectors.  It seems that the 

ICRM fits based on fij
d
 are able to predict the future liquid 

production rates quite well if new injectors would have been 

added in the reservoir. In Fig. 13, it is clearly shown that the 

total production rates would increase substantially by q after 

2200 days of oil production due to the additional pressure 

support caused by adding two new injectors. One needs to be 

aware that (12) should be used to estimate gains between new 

injectors and existing producers only. It should not be used to 

estimate gains between existing injectors and new producers. 

If new producers are added in a reservoir, the gains between 

existing injectors and producer that are calculated by 

regression prior to adding wells will change significantly. In 

practice, the use of (12) is limited by strong assumptions, i.e., 

a homogeneous reservoir. One could run as many reservoir 

simulations as he or she desires to estimate gains between 

existing producers and newly introduced injectors at different 

locations for the particular non-homogeneous reservoir of 

interest. Estimated gains then could be fitted by empirical 

models as a function of injector location. However, this 

method would require too many reservoir simulations for 

each reservoir of interest and is not practical to use. The 

purpose of this section is not to identify the best injector 

location optimization method but to provide rapid predictions 

of the future production rates with the aid of ICRM. 

4. CONCLUSIONS 

CRMP and ICRM were applied to synthetic oilfields under 

waterflooding.  In  Synfield-1,  ICRM  fits  in  comparison  to  

 

Fig. 12. fij (blue histogram) vs fij
d
 (red histogram) with new 

injectors for Syfield-3.  
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Fig. 13. Prediction of the future total liquid production rates 

for P1 without (red solid line) or with new injectors 

(green dashed line) in Synfield-3. 

CRMP were presented, and this study showed that ICRM is 

an attractive alternative to CRMP.  In Synfield-2, the method 

to estimate the gains between well-pairs solely by interwell-

distance between well-pairs for a homogeneous reservoir was 

validated. In Synfield-3, the gains between existing injectors 

and producers remain constant with the introduction of new 

injectors, and future liquid production after adding new 

injectors could be plausibly predicted by the approximate 

gains. This method can help decide where to drill new 

injectors to increase future oil recovery and provide rapid 

solutions without having to run additional reservoir 

simulations for each scenario. 

NOMENCLATURE 

L, F, t mean length, force, and time, respectively. 

 

BHP = bottom hole pressure (F/L
2
) 

CM = capacitance model 

CRM = capacitance-resistance model 

CRMP = a producer-based representation of the    

capacitance-resistance model 

CWI = cumulative water injection (L
3
) 

ct = total reservoir compressibility (L
2
/F) 

dij = interwell-distance between injector-producer 

        well-pair (L) 

fij = fraction of injection from injector i flows to producer      

j, dimensionless 

fij
d
= interwell-distance dependent gain, dimensionless 

ICRM = integrated capacitance-resistance model 

i = water injection rate (L
3
/t) 

J = productivity index (L
5
/F-t) 

np = total number of producers 

nt = total number of historic time periods 

Ni = total number of injectors 

Np = cumulative total production (L
3
) 

P = pressure (F/L
2
) 

Pwf = bottom-hole pressure (F/L
2
) 

q = total liquid production rate (L
3
/t) 

R
2
 = correlation coefficient 

t = time (t) 

Vp= pore volume (L
3
) 

 

Greek alphabets 

 = time constant (t) 

 

Subscripts and superscripts 

cal = calculated quantity by the model 

i = injector index 

ij = injector-producer pair index 

j = producer index 

k = time step index 

obs = observed quantity 

0 = initial time step 

ACKNOWLEDGMENTS 

This work was supported by the sponsors of the Center for 

Petroleum Asset Risk Management (CPARM) at The 

University of Texas at Austin. Larry W. Lake holds the W. 

A. (Monty) Moncrief Centennial Chair in Petroleum 

Engineering. Thomas F. Edgar holds the George T. and 

Gladys H. Abell Endowed Chair of Engineering at The 

University of Texas. We thank the Computer Modeling 

Group Ltd. for permission to use their reservoir simulation 

software in this work. 

REFERENCES 

Albertoni, A., and Lake, L.W. (2003). Inferring Connectivity 

Only From Well-Rate Fluctuations in Waterfloods. SPE 

Reservoir Evaluation and Engineering Journal, 6 (1): 6-

16. 

Montgomery, D.C. and Peck, E.A. (1982). Introduction to 

Linear Regression Analysis. John Wiley & Sons, Ch.4, p. 

124-141.   

Nguyen, A.N., Kim, J.S., Lake, L.W., Edgar, T.F., and 

Haynes, Byron (2011). Integrated Capacitance-Resistive 

Model for Reservoir Characterization in Primary and 

Secondary Recovery. Paper SPE 147344 presented at the 

SPE Annual Technical Conference and Exhibition, 

Denver, Colorado, 30 October-2 November. 

Sayarpour, M., Zuluaga, E., Kabir, C.S., and Lake, L.W. 

(2007). The Use of Capacitance-Resistive Models for 

Rapid Estimation of Waterflood Performance and 

Optimization. Paper SPE 110081 presented at the SPE 

Annual Technical Conference and Exhibition, Anaheim, 

California, 11-14 November. 

Sayarpour, M. (2008). Development and Application of 

Capacitance-Resistive Models in Water/CO2 Floods, 

Ph.D. Dissertation, The University of Texas at Austin, 

Austin, Texas. 

Seborg, D., Edgar, T.F., and Mellichamp, D. (2010). Process 

Dynamics and Control. 3
rd

 Ed. John Wiley & Sons, Ch.2, 

p.25. 

Thompson, M. (2006). Intuitive Analog Circuit Design. 

Elsevier e-Book, Ch. 2, p.16.  

Weber, D., Edgar, T.F., Lake, L.W., Lasdon, L., Kawas, S., 

and Sayarpour, M. (2009). Improvements in 

Capacitance-Resistive Modeling and Optimization of 

Large Scale Reservoirs. Paper SPE 121299 presented at 

the SPE Western Regional Meeting, San Jose, California, 

24-26 March. 

Yousef, A.A., Gentil, P.H., Jensen, J.L. and Lake, L.W. 

(2006). A Capacitance Model to Infer Interwell 

Connectivity from Production and Injection Rate 

Fluctuations, SPE Reservoir Evaluation & Engineering 

Journal, 9 (5): 630-646. SPE-10.2118. DOI: 

10.2118/95322-PA. 

Copyright held by the International Federation of
Automatic Control

24


