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Abstract: The lift-gas allocation problem with pressure-drop constraints and well-separator
routing is a mixed-integer nonlinear program considerably hard to solve. To this end, a
mixed-integer linear programming formulation was developed by multidimensional piecewise-
linearization of pressure drop functions using standard (CC) and logarithmic (Log) aggregated
models. These models were compared by means of a computational analysis, which indicates
that the logarithmic model is faster than the standard one possibly because of the reduced
number of variables and constraints.
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1. INTRODUCTION

Technological innovations in hardware and software, such
as tools for digital measurement and data processing, make
possible the use of advanced automation techniques for
production optimization of oil fields. However, scientific
and technological challenges still remain to turn the con-
cept of smart fields into a viable technology (Campos et al.,
2010; Camponogara et al., 2010; Yeten et al., 2004).

Oil production is usually limited by reservoir conditions,
the capacity of surface facilities, such as lift-gas avail-
ability, flow and pressure constraints in pipelines, among
others. So, for an optimal daily operation, the interactions
between reservoir, wells, and surface facilities should be
considered simultaneously. Nowadays the operation of off-
shore oil fields is commonly based on sensitivity analy-
sis using simulation tools and heuristics. Although these
methods optimize oil production for particular cases, they
do not necessarily determine the operational mode that
maximizes daily oil production (Kosmidis et al., 2005).

Many works that use mathematical programming tools
to maximize production of offshore oil fields are found in
the literature (Buitrago et al., 1996; Alarcón et al., 2002;
Kosmidis et al., 2005; Camponogara and de Conto, 2009;
Misener et al., 2009). An aspect that still has scientific
challenges is the representation of pressure constraints in
flow lines connecting wells, manifolds, and separators. To
this end, this work addresses the representation of pressure
constraints with multidimensional piecewise-linear func-
tions, for the problem of allocating a limited lift-gas rate
to oil wells subject to routing and pressure constraints.

⋆ This work was supported in part by a research contract with
Petrobras.

When surface conditions such as manifold pressure vary
frequently, models based on gas-lift performance curves
(GLPC) may not represent well production satisfactorily
(Kosmidis et al., 2004). In such cases, the well flow depends
on the lift-gas injected and the pressure of the production
manifold downstream, which gathers the production of
several wells sharing a common pipeline that connects the
manifold to a separator. Further, the pressure drop in these
pipelines depends on the total rate of gas, oil, and water.

Because such functions are multidimensional and non-
convex, their direct use in optimization models may result
in a NP-Hard problem that could become computationally
intractable (Keha et al., 2006). Litvak et al. (1997); Bieker
(2007); Gunnerud and Foss (2010) proposed piecewise-
linear approximations for the pressure drops based on a
regular grid of breakpoints using Special Ordered Sets of
Type 2 (SOS2).

This paper proposes the approximation of pressure-drop
curves with multidimensional piecewise-linear functions
based on mixed-integer linear models described in (Vielma
et al., 2010). The pressure-drop functions are piecewise
linearized with simplexes according to J1 (“Union Jack”)
triangulations (Todd, 1977). The first model is called
convex combination (CC) because the functions are ap-
proximated with the convex combination of breakpoints
and binary variables to restrict the combination to only
one simplex of the J1 triangulation. The second model is
called logarithmic convex combination (Log) because the
number of variables and constraints is logarithmic in the
set of polytopes, a result of a special branching scheme
based on SOS2. These models are compared by means of
computational experiments.
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2. PROBLEM FORMULATION

The problem of allocating lift-gas to oil wells and deciding
upon the routing of wells to separation units, while being
subject to lift-gas and facility constraints, was addressed
in (Codas and Camponogara, 2012). For analyzing multi-
dimensional piecewise-linear models, here we extend that
work by modeling constraints on flow lines connecting
wells, manifolds, and separators. The problem is cast as
a mixed-integer nonlinear program:

P : max f =
∑

m∈M

g(qm)−
∑

n∈N

c(qni ) (1a)

s.t. :
∑

n∈N

qni ≤ qmax
i (1b)

For all n ∈ N :

lnyn ≤ qni ≤ unyn (1c)∑

m∈Mn

zn,m = yn (1d)

qn,m = qn,m(pm, qni )zn,m, ∀m ∈ Mn (1e)

ynq
n,L ≤

∑

m∈Mn

qn,m ≤ ynq
n,U (1f)

qm =
∑

n∈Nm

qn,m ≤ qm,S, ∀m ∈ M (1g)

pm = pm,S +∆pm(qm), ∀m ∈ M (1h)

yn ∈ {0, 1}, ∀n ∈ N (1i)

zn,m ∈ {0, 1}, ∀n ∈ N , ∀m ∈ Mn (1j)

having the following parameters:

• N is the number of oil wells, N = {1, . . . , N}, and
Nm ⊆ N is the subset of wells whose production can
be sent to manifold m;

• M is the number of manifolds, M = {1, . . . ,M},
and Mn ⊆ M is the subset of manifolds that can
handle production from well n. The production of
each manifold is directed to a single separator;

• H = {o, g, w} has the multiphase flows: oil (o), gas
(g), and water (w);

• qmax
i is the lift-gas rate output by the compressors;

• ln and un are bounds for lift-gas injection into well n;
• pm,S is the operational pressure of the separator that
receives production from manifold m;

• qn,L and qn,U are the lower and upper bound on the
flow rate of well n;

• qm,S is the capacity of the separator of manifold m;

variables:

• qni is the lift-gas rate allocated to well n;
• yn is 1 when well n is producing, and 0 otherwise;
• zn,m takes on value 1 if the production of well n is
directed to manifold m, and 0 otherwise;

• qn,mh is the flow of phase h ∈ H sent from well n to
manifold m and qn,m = (qn,mh : h ∈ H) is a vector
with all phase flows. The gas flow rate received by the
production manifold is the sum of the lift-gas injected
into well n (Inj) and the gas from the reservoir (R):
qn,mg = qn,mg,R + qn,mg,Inj;

• qm =
∑

n∈Nm

qn,m is the total flow received from the

wells connected to manifold m for all phases;

• pm is the pressure of manifold m;

and functions:

• f is a profit function defined in terms of the oil
revenue from the production of each manifold, given
by function g, and the cost of lift-gas injection given
by function c;

• qn,mh (pm, qni ) is the flow of phase h sent from well n
to manifold m, given as a function of the manifold
pressure and the lift-gas injected into the well, with
qn,m(pm, qni ) = (qn,mh (pm, qni ) : h ∈ H) being the
vector function with all phase flows.

• ∆pm(qm) is the pressure drop function through the
line that connects manifold m and the separator that
handles its production.

3. PIECEWISE-LINEAR FORMULATIONS

Piecewise-linear functions are often used to approximate
non-linearities and non-convex functions. Optimization
problems involving these functions can be modeled as
mixed-integer linear programs (MILP), which can be
solved with specialized algorithms or general-purpose
solvers. Usually, the latter approach takes advantage over
the first since it uses the advanced technology available for
solving MILPs (Vielma et al., 2010).

This section presents mixed-integer linear formulations for
multidimensional piecewise-linear functions that are used
later to approximate nonlinear functions of problem P .

Notation Let f : D → R be a continuous function
defined over a compact domain D ⊆ R

d. According to
Vielma et al. (2010), f is piecewise-linear if and only if
there exists a family of polytopes P, such that ∪P∈PP =
D, {mP }P∈P ⊆ R

d, and {cP }P∈P , such that:

f(x) = m′
Px+ cP , x ∈ P, ∀P ∈ P (2)

Let V (P ) be the set of vertices of polytope P and V(P) =
∪P∈PV (P ) be the set of all vertices.

The MILP formulations of piecewise-linear functions will
be illustrated with the function depicted in Figure 1. The
domain of this function is D = [0, 4], which is represented
by a family of polytopes P = {P1, P2, P3, P4}, where
P1 = [0, 1], P2 = [1, 2], P3 = [2, 3], and P4 = [3, 4],
and V (P1) = {0, 1}, V (P2) = {1, 2}, V (P3) = {2, 3}, and
V (P4) = {3, 4}.

1 2 3 4

10

20

30 (1,28)

(2,14)

(4,21)

(0,8)

(3,25)

f(x)

x

Fig. 1. Illustrative piecewise-linear function.

The formulations of concern in this paper consist of the
convex combination of break points {(v, f(v)) : v ∈

Copyright held by the International Federation of
Automatic Control

293



V (P )}, which in the case of the illustrative example are
{(0, 8), (1, 28), (2, 14), (3, 25), (4, 21)}.

3.1 Convex Combination Model (CC)

The aggregated convex combination model (CC) assigns
weighting variables to each vertex v ∈ V(P). Thus a graph
point is represented by (x, f(x)) =

∑
v∈V(P) λv(v, f(v)),

{λv}v∈V(P) ⊂ R+ such that
∑

v∈V(P) λv = 1. The CC

model is given by:∑

v∈V(P)

λvv = x (3a)

∑

v∈V(P)

λvf(v) = f(x) (3b)

λv ≥ 0, ∀v ∈ V(P) (3c)∑

v∈V(P)

λv = 1 (3d)

λv ≤
∑

P∈P(v)

yP , ∀v ∈ V(P) (3e)

∑

P∈P

yP = 1, yP ∈ {0, 1}, ∀P ∈ P (3f)

where P(v) := {P ∈ P : v ∈ V (P )} is the set of polytopes
that contain vertex v. This formulation was studied in the
literature, in particular by Keha et al. (2004), Lee and
Wilson (2001), and Padberg (2000).

3.2 Logarithmic Convex Combination Model (Log)

The logarithmic convex combination (Log) model is a
variation of CC that uses only a logarithmic number
of binary variables and constraints. Log associates each
polytope P ∈ P with a binary vector y ∈ {0, 1}⌈log2 |P|⌉

through an injective function B : P → {0, 1}⌈log2 |P|⌉

such that B(P ) = y. However, as discussed by Vielma
et al. (2010), B should comply with conditions for a
branching scheme on the λ variables such that the non-
zero λ variables are associated with the vertices of at least
one polytope of P:

∃P ∈ P such that {v ∈ V(P) : λv > 0} ⊆ V (P ) (4)

A branching scheme for (4) consists of a sequence
{Lt, Rt}t∈T of dichotomies defined by a finite set T of in-
dices and corresponding subsets Lt, Rt ⊂ V(P), such that
for every P ∈ P it is true that V (P ) = ∩t∈T (V(P)\Tt)
where Tt = Lt or Tt = Rt for each t ∈ T . Such branching
scheme imposes (4) by fixing λ variables to zero in each
side of the series, namely fixing λv = 0 for all v ∈ Lt on
the left branch and λv = 0 for all v ∈ Rt on the right
branch. For the illustrative example, a suitable branching
scheme illustrated in Figure 2 is T = {1, 2}, L1 = {2},
R1 = {0, 4}, L2 = {3, 4}, and R2 = {0, 1}. Given a
branching scheme for (4), a valid formulation for the Log
model is given by:

Eqs. (3a)−(3d) (5a)∑

v∈Lt

λv ≤ yt, ∀t ∈ T (5b)

∑

v∈Rt

λv ≤ (1− yt), ∀t ∈ T (5c)

yt ∈ {0, 1}, ∀t ∈ T (5d)

Fig. 2. Branching scheme for the Log model.

Vielma and Nemhauser (2011) developed a branching
scheme with a logarithmic number of binary variables and
dichotomies. Such branching scheme is valid for a polytope
family P that is topologically equivalent or compatible
with a triangulation known as J1 or “Union Jack.” They
also proposed a two-phase procedure branching schemes
compatible with SOS2 constraints for such triangulations.
The first phase consists in using disjunctive sets to limit
convex combination to a hypercube, while the second
phase inhibits the vertices of the hypercube so that the
convex combinations are restricted to a single simplex.

Nonlinearities of problem P appear in the well production
curves, which depend on the manifold pressure and lift-
gas injection, and the pressure drop functions in the flow
lines that connect production manifolds to separators. The
computational hardness of P rests on the nonlinear, mul-
tidimensional, and non-convex nature of these functions,
besides the discrete decisions involving well activation and
routing. In what follows, we present two MILP refor-
mulations of problem P that approximate the non-linear
functions using the CC and Log models.

4. CC MODEL REFORMULATION

The liquid rate qn,m(pm, qni ) of well n depends on the
pressure of the manifold m to which it is connected,
pm, and the lift-gas injection rate, qni . The liquid rate is
represented by a piecewise-linear function using the CC
model as follows:

For all n ∈ N :

qni =
∑

m∈Mn

∑

qi∈Kn,m

∑

pr∈Rn,m

λn,m
qi,pr

qi (6a)

∑

qi∈Kn,m

∑

pr∈Rn,m

λn,m
qi,pr

pr ≤ pm, ∀m ∈ Mn (6b)

pm ≤
∑

qi∈Kn,m

∑

pr∈Rn,m

λn,m
qi,pr

pr + pm,max(1− zn,m),

∀m ∈ Mn (6c)

q̃n,m =
∑

qi∈Kn,m

∑

pr∈Rn,m

λn,m
qi,pr

qn,m(qi, pr), ∀m ∈ Mn

(6d)

ynq
n,L ≤

∑

m∈Mn

q̃n,m ≤ ynq
n,U (6e)

λn,m
qi,pr

≥ 0, ∀qi ∈ Kn,m, ∀m ∈ Mn, ∀pr ∈ Rn,m (6f)
∑

qi∈Kn,m

∑

pr∈Rn,m

λn,m
qi,pr

= zn,m, ∀m ∈ Mn, (6g)
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λn,m
qi,pr

≤
∑

P∈Pn,m(qi,pr)

δn,mP , ∀m ∈ Mn, ∀qi ∈ Kn,m,

∀pr ∈ Rn,m (6h)∑

P∈Pn,m

δn,mP = zn,m, ∀m ∈ Mn (6i)

δn,mP ∈ {0, 1}, ∀P ∈ Pn,m (6j)

having the following extra parameters:

• Kn,m and Rn,m are the set of breakpoints for the
lift-gas rate and manifold pressure when well n is
connected to manifold m, respectively;

• Pn,m is the set of polytopes with vertices in Kn,m ×
Rn,m;

• Pn,m(qi, pr) = {P ∈ Pn,m : (qi, pr) ∈ V (P )};
• pm,max is the maximum manifold pressure;

and extra variables:

• λn,m
qi,pr

is the weighting variable of a breakpoint pair
in Kn,m × Rn,m. When manifold m receives the
production of well n, zn,m takes on value 1 and the
respective convex combination becomes active;

• δn,mP is a binary variable associated to each polytope
P ∈ Pn,m which assumes value 1 when the convex
combination is limited to polytope P . According to
constraints (6h)−(6j), only the vertices of P can be
part of the convex combination that defines lift-gas
injection into well n and manifold pressure pm;

• q̃n,m is the piecewise-linear approximation of qn,m.

The pressure drop ∆pm(qm) for the flow line connecting
manifold m to its separator is a nonlinear function, which
appears in equation (1h). A common way of representing
pressure drop curves is with piecewise-linear functions,
which divide the decision domain in hypercubes with
vertices corresponding to breakpoints and which employ
SOS2 constraints to ensure that convex combinations use
only vertices of a single hypercube (Gunnerud and Foss,
2010; Bieker, 2007; Kosmidis et al., 2005).

Unlike these works, we approximate the pressure drop
curves with piecewise-linear forms using simplexes. For the
CC model, P is reformulated by piecewise-linearizing the
nonlinear constraints (1g) and (1h) which depends on the
nonlinear pressure drop function ∆pm(qm).

For all m ∈ Mn :

q̃m =
∑

(ko,kg,kw)∈Qm

Ωm
ko,kg,kwq

m
ko,kg,kw (7a)

q̃m =
∑

n∈Nm

q̃n,m ≤ qm,S (7b)

∆̃p
m

=
∑

(ko,kg,kw)∈Qm

Ωm
ko,kg,kw∆pm(qm

ko,kg,kw) (7c)

pm = pm,S + ∆̃p
m

(7d)

Ωm
ko,kg,kw ≥ 0, ∀(ko, kg, kw) ∈ Qm (7e)

Ωm
ko,kg,kw ≤

∑

P∈Pm(ko,kg,kw)

δmP , ∀(ko, kg, kw) ∈ Qm (7f)

∑

P∈Pm

δmP = ym (7g)

∑

(ko,kg,kw)∈Qm

Ωm
ko,kg,kw = ym (7h)

ym ≤
∑

n∈Nm

zn,m (7i)

ym ∈ {0, 1} (7j)

δmP ∈ {0, 1}, ∀P ∈ Pm (7k)

having the extra parameters:

• Qm = Om×Gm×Wm is the set of breakpoints of flow
vector qm, whereGm, Om,Wm are the sets of gas, oil,
and water breakpoints of manifold m, respectively;

• Pm(ko, kg, kw) = {P ∈ Pm : (ko, kg, kw) ∈ V (P )};

and following extra variables:

• q̃m is the piecewise-linear approximation of qm;

• ∆̃p
m

is the piecewise-linear form of the pressure drop
in the output flow line of manifold m;

• Ωm
ko,kg,kw is the weighting variable associated to a

breakpoint in Qm;
• ym is a binary variable that assumes value 1 when
manifold m receives production from any well.

The polytopes that piecewise linearize the functions
qn,m(pm, qni ) and ∆pm(qm) are simplexes according to J1
(“Union Jack”) triangulation (Todd, 1977). Finally, the
objective function of problem P described in equation (1a)
is then rewritten in a piecewise-linear form as follows:

max f̃ =
∑

m∈M

g(q̃m)−
∑

n∈N

c(qni ) (8)

5. LOG MODEL REFORMULATION

New concepts are introduced to implement the branching
scheme proposed by Vielma and Nemhauser (2011). Let
Se = {s0, . . . , sn} be the set of breakpoints on axis e
and Ie := {[s0, s1], . . . , [sn−1, sn]} be the intervals of
breakpoints. Let Ie(s) := {I ∈ Ie : s ∈ I} be the
intervals containing s. Let Ξe([si, si+1]) = i + 1 be the
index of an interval [si, si+1] ∈ Ie. Let B : {1, . . . , |Ie|} →
{0, 1}⌈log2(|Ie|)⌉ be a SOS2 compatible function, meaning
that B(i) and B(i + 1) differ only in one bit according
to the Gray code property. The vertices of the domain is
V(P) = S1 × · · · × Sd and d is the dimension. The first
phase of the branching scheme uses the sets J+

e,B,l := {s ∈

Se : B(Ξe(I))l = 1, ∀I ∈ Ie(s)} and J0
e,B,l := {s ∈ Se :

B(Ξe(I))l = 0, ∀I ∈ Ie(s)}. The second phase selects a
simplex of the hypercube obtained in phase one using the
sets Lr,s = {v ∈ V(P) : vr is even and vs is odd} and
Rr,s = {v ∈ V(P) : vr is odd and vs is even}, ∀r, s ∈
D = {1, . . . , d}, such that r < s.

The Log model piecewise-linearizes qn,m(pm, qni ) building
the J1 triangulation and restricting convex combinations
to a single simplex implicitly, instead of using binary
variables with the following equations. For all n ∈ N , m ∈
Mn, l ∈ Φ(Kn,m) :∑

qi∈J
+
axis(Kn,m),B,l

∑

pr∈Rn,m

λn,m
qi,pr

≤ xn,m
l (9a)

∑

qi∈J0
axis(Kn,m),B,l

∑

pr∈Rn,m

λn,m
qi,pr

≤ (1− xn,m
l ) (9b)
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where Φ(S) = {1, . . . , ⌈log2(|S|−1)⌉}. For all n ∈ N , m ∈
Mn, l ∈ Φ(Rn,m) :∑

qi∈Kn,m

∑

pr∈J
+
axis(Rn,m),B,l

λn,m
qi,pr

≤ x̌n,m
l (9c)

∑

qi∈Kn,m

∑

pr∈J0
axis(Rn,m),B,l

λn,m
qi,pr

≤ (1− x̌n,m
l ) (9d)

For all n ∈ N , m ∈ Mn, (r, s) ∈ Γn,m :∑

(qi,pr)∈Ln,m
r,s

λn,m
qi,pr

≤ yn,mr,s (9e)

∑

(qi,pr)∈Rn,m
r,s

λn,m
qi,pr

≤ (1− yn,mr,s ) (9f)

having the follow extra parameters:

• axis(Q) is the axis that contains breakpoint set Q;
• Γn,m := {(r, s) ∈ D2 : r < s};
• Ln,m

r,s = {v ∈ V(Pn,m) : vr is even and vs is odd} and
Rn,m

r,s = {v ∈ V(Pn,m) : vr is odd and vs is even},
∀r, s ∈ D such that r < s.

and extra variables:

• xn,m
l (x̌n,m

l ) is a binary variable that induces the first
phase of Log branching for each entry l ∈ Φ(Kn,m)
(Φ (Rn,m)) of B;

• yn,mr,s is a binary variable that induces the second
phase of the Log branching for each (r, s) ∈ Γn,m.

The nonlinear function ∆pm(qm) is piecewise linearized as
follows. For all m ∈ M, Υ ∈ {O,G,W}, l ∈ Φ(Υm) :∑

(ko,kg,kw)∈Qm:kΥ∈J
+
axis(Υm),B,l

Ωm
ko,kg,kw ≤ xm,Υ

l (10a)

∑

(ko,kg,kw)∈Qm:kΥ∈J0
axis(Υm),B,l

Ωm
ko,kg,kw ≤ 1− xm,Υ

l (10b)

For all m ∈ M, (r, s) ∈ Γm :∑

(ko,kg,kw)∈Lm
r,s

Ωm
ko,kg,kw ≤ ymr,s (10c)

∑

(ko,kg,kw)∈Rm
r,s

Ωm
ko,kg,kw ≤ (1− ymr,s) (10d)

and extra variables:

• xm,Υ
l is the binary variable that defines the first phase

of Log branching for phase Υ ∈ {O,G,W} and for
each entry l ∈ Φ(Υm) of B;

• ymr,s is a binary variable that builds the second phase
of Log branching for each (r, s) ∈ Γm, where Γm :=
{(r, s) ∈ D2 : r < s}.

6. COMPUTATIONAL ANALYSIS

This section presents a synthetic production system of
a real-world oil field, which serves as a test bed for
performance analysis of the CC and Log formulation
applied to the oil production optimization problem.

6.1 Production System

The production system has N = 16 wells and M = 2
manifolds, where Nm = N for all m ∈ M. The field

has two separators, one for each manifold. The production
network is illustrated in Figure 3.

1 8 9 16

1 2
Separators

Manifolds

Wells

Lift-Gas

Manifold

Fig. 3. Gas-lift production network instance.

Wells and manifolds are topologically divided in two
groups: wells 1 to 8 are 1 km away from manifold 1,
and 10 km away of manifold 2, while wells 9 to 16 are
1 km away of manifold 2 and 10 km away of manifold 1.
The pipelines connecting wells to manifolds have 4 inches
of inner diameter (ID) and 0.001 inches of roughness
(R). With this topological structure, if well n is closer to
manifold m1 than m2 then qn,m1(p, qi) ≥ qn,m2(p, qi) for
any manifold pressure p and gas injection qi.

The wells have constant gas-oil-ratio (G) and water cut
(W) for all allowed gas injections and manifold pressures.
The liquid flow rate for all wells behaves according to the
equation ql = pi(pr − pwf ) where ql = qo + qw, pwf is the
bottom hole pressure, pi is the well production index, and
pr is the reservoir static pressure. These parameters are
shown in Table 1, where the units for G, W, pr, and pi are
sm3/sm3, %, psi, and STB/d/psi, respectively.

Table 1. Well parameters.

n G W pr pi n G W pr pi
1 200 0 2100 15 9 200 10 1900 5
2 200 20 2300 2 10 200 40 2200 9

3 300 10 1950 12 11 300 0 1850 11
4 300 40 2050 15 12 300 20 2300 6

5 400 0 1750 4 13 400 10 1825 14
6 400 20 1700 9 14 400 40 2200 7

7 500 10 1700 11 15 500 0 1600 8
8 500 40 2100 10 16 500 20 1800 5

The pipeline connecting manifold 1 to its separator is 100
m long, while the pipeline from manifold 2 to its separator
is 50 m long. Both have negligible elevation, ID = 4.5
inches, and R = 0.001 inches. The absolute pressure of the
manifolds ranges from 300 to 800 psi depending on the
operational conditions, while the nominal pressure of the
separators is 300 psi.

All wells have identical tubings with the following charac-
teristics: ID of 3 inches, perforation length of 3.7 km, depth
of 2.7 km, and injection point at 2.8 km. The maximum
injection allowed for each well is 8000 mscf/d.

The curves used to represent this process are available in
(Silva et al., 2011) in AMPL format. This instance was
obtained using Schlumberger Pipesim software, inspired
in a synthetic instance from (Kosmidis et al., 2004).

6.2 Performance Analysis

For the production optimization problem P and the syn-
thetic instance described above, the CC and Log refor-
mulations were compared with respect to solving time.
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These formulations were expressed in AMPL and solved
with CPLEX 11 in an Intel Core 2 Quad 3.0Ghz Linux
workstation with 4GB of RAM. All experiments were
executed with a time limit of 600 seconds (10 minutes).

Table 2 shows the running time (in seconds) to solve the
production optimization problem for varying availability
of lift-gas: high means that there is no limit on the lift-gas
rate; medium means that the lift-gas rate is half of the rate
necessary for maximum system production; and low means
that the rate is sufficient to maximize the production of a
single well. The results elicited the following remarks on:

Formulations: The Log formulation was solved much
faster than CC in all experiments. This result was
expected since the Log formulation is more compact
than CC, needing fewer binary variables and constraints
to express the piecewise-linear approximations. Further,
the LP relaxation of the Log takes less time to be solved
and its branch-and-bound tree tends to be shallower.

Lift-gas Availability: with high and medium lift-gas
availability, the solver could not reach the optimal
solution using CC but found an integral solution near
the optimality within time limit, while it found the
optimal solution and closed GAP using Log. With low
availability, the solver failed to find an integral solution
close to the optimal solution using CC within the time
limit (600 seconds), however the optimal solution was
found by the solver in less than a minute using Log.

Table 2. Comparison between formulations.

High Medium Low

CC
Time (s) 600 600 600
GAP (%) 0.07 15.96 130.22

Log
Time (s) 30 28 55
GAP (%) 0 0 0

7. SUMMARY

This work presented the oil production optimization prob-
lem subject to well-manifold routing and pressure con-
straints. Owing to the nonlinear and mixed-integer nature
of the problem, mixed-integer linear reformulations were
developed based on two models for piecewise linearization
of multidimensional non-convex functions. Both CC and
Log models represent piecewise-linear functions by convex
combination of breakpoints of simplexes, however CC uses
one binary variable for each simplex while Log needs only
a logarithmic number of variables and constraints on the
number of simplexes. The effectiveness of the formulations
was assessed by measuring the computational time taken
to solve instances of the production optimization problem
with a top-notch solver. The computational analysis cor-
roborates the hypothesis that the Log formulation is solved
faster than the standard one.
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Appendix A. EXPLICIT FORMULATIONS AND
ILLUSTRATIONS

For the function f(x, y) = e−y + e−x2
− x2 + xy − 2y depicted in

Figure A.1(a), we present explicit CC and Log formulations.
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Fig. A.1. Piecewise-linear function with J1 triangulation.

The domain of function f is the Union Jack(J1) Triangulation illus-
trated in Figure A.1(b), which is partitioned into a set of polytopes
P = {P1, P2, . . . , P32}, a set of vertices V(P) = {v1, v2, . . . , v25},
and a set of vertices for each polytope V(P1) = {(−2,−2), (−2,−1),
(−1,−1)}, V(P2) = {(−2,−1), (−1,−1), (−2, 0)}, . . . , V(P32) =
{(2,−1), (1,−1), (2,−2)}.

A.1 CC Formulation

The CC formulation is given by:
∑

v∈V(P)

λvv = λv1 (−2,−2) + λv2(−2,−1) + · · ·+ λv25(2,−2)

∑

v∈V(P)

λvf(v) = λv111.4074 + λv22.7366 + · · ·+ λv253.4074

λv1 ≥ 0, λv2 ≥ 0, . . . , λv25 ≥ 0∑

v∈V(P)

λv = λv1 + λv2 + λv3 + · · ·+ λv25 = 1

λv ≤
∑

P∈P

yP , ∀v ∈ V(P ) ⇔





λv1 ≤ yP1
+ yP8

λv2 ≤ yP1
+ yP2

λv3 ≤ yP1
+ yP2

+ yP7

+ yP10
+ yP15

+ yP16

+ yP9
+ yP8

.

.

.
λv25 ≤ yP25

+ yP32∑

P∈P

yP = yP1
+ yP2

+ yP3
+ · · ·+ yP32

= 1

yP ∈ {0, 1}, ∀P ∈ P ⇔ yP1
∈ {0, 1}, yP2

∈ {0, 1}, . . . , yP32
∈ {0, 1}

A.2 Log Formulation

For the space dimension d = 2, let D = {1, . . . , d} be a set of
indexes, and J = [−2, . . . , 2]d, be a set of vertices composing a J1
(“Union Jack”) Triangulation. Let B : I → {0, 1}⌈log2 |I|⌉ be an
injective function following the Gray code property: B([−2,−1]) =
(0, 0), B([−1, 0]) = (0, 1), B([0, 1]) = (1, 1), B([1, 2]) = (1, 0), where
I = {[−2,−1], [−1, 0], [0, 1], [1, 2]} is the set of intervals. Notice that
the intervals in I are of the form [si, si+1] for si ∈ S\{sn}, where
S = {s0, s1, . . . , sn} is the set of breakpoints with n = 4. The Gray
code property ensures that B is compatible with SOS2.

Let J+(e,B, l) ⊆ S be the set of breakpoints of axis e (x or y) such
that for each s the intervals I ∈ I(s) to which it belongs have value
1 at position l of their binary code B(I). For a formal definition,
please refer to Section 5. The definition of J0(e,B, l) is similar to

J+(e,B, l), except that the binary codes of the intervals containing
a breakpoint s must have value 0 at position l instead of 1.

Because the breakpoints are identical for axis x and y, the vertex
sets J+ and J0 are the same for both axis. For the example,

• J+(x, B, 1) = J+(y, B, 1) = {0},
• J0(x, B, 1) = J0(y, B, 1) = {−2, 2},
• J+(x, B, 2) = J+(y, B, 2) = {1, 2},
• J0(x, B, 2) = J0(y, B, 2) = {−2,−1}

The first phase of Log branching consists in selecting a square
within the function’s domain. This branching scheme uses two binary
variables in each axis to encode the intervals: (zx2 , z

x
1 ) encodes the

four intervals on axis x, while (zy2 , z
y
1 ) encodes axis y, where za

l
is a

binary variable for position l of the code for axis a. For the example,
selection of squares is implemented by the following relations:

2∑

s2=−2

∑

s1∈J+(x,B,1)

λs1,s2 ≤ zx1 ⇔

{
λ0,−2 + λ0,−1 + λ0,0

+λ0,1 + λ0,2 ≤ zx1

2∑

s2=−2

∑

s1∈J+(x,B,2)

λs1,s2 ≤ zx2 ⇔

{
λ1,−2 + λ1,−1 + λ1,0 + λ1,1

+λ1,2 + λ2,−2 + λ2,−1

+λ2,0 + λ2,1 + λ2,2 ≤ zx2

2∑

s1=−2

∑

s2∈J+(y,B,1)

λs1,s2 ≤ z
y
1 ⇔

{
λ−2,0 + λ−1,0 + λ0,0

+λ1,0 + λ2,0 ≤ z
y
1

2∑

s1=−2

∑

s2∈J+(y,B,2)

λs1,s2 ≤ z
y
2 ⇔

{
λ−2,1 + λ−1,1 + λ0,1 + λ1,1

+λ2,1 + λ−2,2 + λ−1,2 + λ0,2

+λ1,2 + λ2,2 ≤ z
y
2

2∑

s2=−2

∑

s1∈J0(x,B,1)

λs1,s2 ≤ (1− zx1 ) ⇔





λ−2,−2 + λ−2,−1 + λ−2,0

+λ−2,1 + λ−2,2 + λ2,−2

+λ2,−1 + λ2,0 + λ2,1

+λ2,2 ≤ (1− zx1 )

2∑

s1=−2

∑

s2∈J0(y,B,1)

λs1,s2 ≤ (1− z
y
1 ) ⇔





λ−2,−2 + λ−1,−2 + λ0,−2

+λ1,−2 + λ2,−2 + λ−2,2

+λ−2,2 + λ−1,2 + λ0,2

+λ1,2 + λ2,2 ≤ (1− z
y
1 )

2∑

s2=−2

∑

s1∈J0(x,B,2)

λs1,s2 ≤ (1− zx2 ) ⇔





λ−2,−2 + λ−2,−1 + λ−2,0

+λ−2,1 + λ−2,2 + λ−1,−2

+λ−1,−1 + λ−1,0 + λ−1,1

+λ−1,2 ≤ (1− zx2 )

∑

s1=−2

∑

s2∈J0(y,B,2)

λs1,s2 ≤ (1− z
y
2 ) ⇔





λ−2,−2 + λ−1,−2 + λ0,−2

+λ1,−2 + λ2,−2 + λ−2,−1

+λ−1,−1 + λ0,−1 + λ1,−1

+λ2,−1 ≤ (1− z
y
2 )

zx1 ∈ {0, 1}, zx2 ∈ {0, 1}, zy1 ∈ {0, 1}, zy2 ∈ {0, 1}

To choose square [−1, 0]× [−1, 0] the first phase defines (zx2 , z
x
1 ) and

(zy2 , z
y
1 ). The second branching phase selects a simplex within the

square chosen by the first branching phase being implemented by:

J̃ = {(s1, s2) ∈ N ×N : s1 < s2} = {(1, 2)}

Ls1,s2 = {v ∈ J : vs1 is even,vs2 is odd}, ∀(s1, s2) ∈ J̃ ⇔

L1,2 = {(−2,−1), (−2, 1), (0,−1), (0, 1), (2,−1), (2, 1)}

Rs1,s2 = {v ∈ J : vs1 is odd,vs2 is even}, ∀(s1, s2) ∈ J̃ ⇔

R1,2 = {(−1,−2), (−1, 0), (−1, 2), (1,−2), (1, 0), (1, 2)}
∑

(s1,s2)∈Ls1,s2

λs1,s2 ≤ ys1,s2 ⇔

{
λ−2,−1 + λ−2,1 + λ0,−1

+λ0,1 + λ2,−1 + λ2,1 ≤ y1,2

∑

(s1,s2)∈Rs1,s2

λs1,s2 ≤ 1− ys1,s2 ⇔

{
λ−1,−2 + λ−1,0 + λ−1,2

+λ1,−2 + λ1,0

+λ1,2 ≤ (1− y1,2)

y1,2 ∈ {0, 1}
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