A note on decoupling

Karin Eriksson, Claes Breitholtz and Anders Karlström

Division of Automatic Control, Automation and Mechatronics
Department of Signals and Systems
Chalmers University of Technology
email: ke@chalmers.se

Contents

- Introduction
- The 2×2 case
- The 3×3 case and some comments on higher dimension cases
- Preliminary results

Decoupling literature

- W.L. Luyben, Distillation Decoupling, AIChE J., 1970.
- K.V. Waller, Decoupling in Distillation, AIChE J., 1974.
- M. Waller, J.B. Waller and K.V. Waller, Decoupling Revisited, Ind. Eng. Chem. Res., 2003.
- P. Nordfeldt and T. Hägglund, Decoupler and PID controller design of TITO systems, J. Process Control, 2006.
- W.-J. Cai, W. Ni, M.-J. He and C.-Y. Ni, Normalized decoupling -A new approach for MIMO process control system design, Ind. Eng. Chem. Res., 2008.

Introduction

- Approaches to decoupling: Ideal, simplified, normalized
- 2×2 case most often considered

Decoupling in the 2×2 case (Luyben, 1970):

$$
G(s) F(s)=\left[\begin{array}{ll}
g_{11} & g_{12} \tag{1}\\
g_{21} & g_{22}
\end{array}\right]\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]=\left[\begin{array}{cc}
p_{11} & 0 \\
0 & p_{22}
\end{array}\right]=P(s)
$$

In ideal decoupling P is specified and, as a consequence, the structure of F can be complicated. In simplified decoupling, parts of F is specified while P is free.

Simplified decoupling in the 2×2 case

Four F-matrix candidates (Waller 1974):

$$
\begin{array}{ll}
F_{11}=\left[\begin{array}{cc}
1 & 1 \\
f_{21} & f_{22}
\end{array}\right] & F_{12}=\left[\begin{array}{cc}
1 & f_{12} \\
f_{21} & 1
\end{array}\right] \tag{2}\\
F_{21}=\left[\begin{array}{cc}
f_{11} & 1 \\
1 & f_{22}
\end{array}\right] & F_{22}=\left[\begin{array}{cc}
f_{11} & f_{12} \\
1 & 1
\end{array}\right]
\end{array}
$$

Structure of equation system:

$$
\begin{align*}
& G F_{11}=\left[\begin{array}{ll}
g_{11}+g_{12} f_{21} & g_{11}+g_{12} f_{22} \\
g_{21}+g_{22} f_{21} & g_{21}+g_{22} f_{22}
\end{array}\right] \tag{3}\\
& \quad \Longrightarrow\left[\begin{array}{cc}
g_{22} & 0 \\
0 & g_{12}
\end{array}\right]\left[\begin{array}{l}
f_{21} \\
f_{22}
\end{array}\right]=-\left[\begin{array}{l}
g_{21} \\
g_{11}
\end{array}\right]
\end{align*}
$$

Challenges and ongoing work

Handling systems of higher dimensions

1. A detailed analysis of the 3×3 case
2. Investigate possible generalizations

Systematic analysis and design procedure

- Mathematica software
- Discrete time representations

Discrete time representations

- Easy handling of time delays
- Realizability (causality) checked through polynomial orders
- Sampling time must be chosen considering system specification Example (taken from Waller 1974):

$$
G(s)=\left(\begin{array}{cc}
\frac{-2.2 e^{-s}}{1+7 s} & \frac{1.3 e^{-0.3 s}}{1+7 s} \tag{4}\\
\frac{-2.28 e^{-1.8 s}}{1+9.5 s} & \frac{4.3 e^{-0.35 s}}{1+9.2 s}
\end{array}\right)
$$

With sampling time $T_{s}=1 \mathrm{~min}$

$$
G(z)=\left(\begin{array}{cc}
\frac{-0.293}{z(z-0.867)} & \frac{0.124 z+0.0493}{z(z-0.867)} \tag{5}\\
\frac{-0.0588 z-0.0222}{z^{2}(z-0.900)} & \frac{0.293+0.150}{z(z-0.897)}
\end{array}\right)
$$

Simplified decoupling in the 3×3 case

- The number of F -matrix candidates for a system of dimension $n \times n$ is equal to the number of ways one element equal to 1 in each column can be chosen, i.e. n^{n} candidates. Thus, the 3×3 case has $3^{3}=27 F$-matrix candidates.
- Issues:

Does a solution to the equation $G F=P$ exist? If so, is the resulting matrix F realizable?
Problems with the resulting (free) dynamics? Impact from model uncertainties?

CHALMERS

Simplified decoupling in the 3×3 case

$$
\begin{gather*}
G(s) F(s)=\left[\begin{array}{lll}
g_{11} & g_{12} & g_{13} \\
g_{21} & g_{22} & g_{23} \\
g_{31} & g_{32} & g_{33}
\end{array}\right]\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]= \tag{6}\\
{\left[\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & p_{22} & 0 \\
0 & 0 & p_{33}
\end{array}\right]=P(s)}
\end{gather*}
$$

One element in every column of F is set equal to 1 .
Notation: F_{123} means that $f_{11}=f_{22}=f_{33}=1, F_{112}$ means that $f_{11}=f_{12}=f_{23}=1$ etc.

CHALMERS

Simplified decoupling in the 3×3 case

With F_{123}, the equation system to be solved becomes

$$
\underbrace{\left[\begin{array}{cccccc}
g_{11} & 0 & 0 & 0 & 0 & g_{13} \tag{7}\\
0 & y_{11} & 0 & g_{12} & 0 & 0 \\
0 & 0 & g_{22} & 0 & g_{23} & 0 \\
0 & g_{21} & 0 & g_{22} & 0 & 0 \\
0 & 0 & g_{32} & 0 & g_{33} & 0 \\
g_{31} & 0 & 0 & 0 & 0 & g_{33}
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{l}
f_{12} \\
f_{13} \\
f_{21} \\
f_{23} \\
f_{31} \\
f_{32}
\end{array}\right]}_{f}=-\underbrace{\left[\begin{array}{l}
g_{12} \\
g_{13} \\
g_{21} \\
g_{23} \\
g_{31} \\
g_{32}
\end{array}\right]}_{g}
$$

Solution, if M has full rank,

$$
\begin{equation*}
f=-M^{-1} g \tag{8}
\end{equation*}
$$

Observations

- The sparse matrix M to be inverted has at most $1 / 3$ non-zero elements in the 3×3 and the corresponding figure for the 2×2 case is $1 / 2$.
In general: For a system G of dimension $n \times n$, the coefficient matrix M will be of dimension $n(n-1) \times n(n-1)$. M will be sparse and have at most $1 / n$ of its elements apart from zero.
- The invertibility of M can, for example, be investigated using a block-matrix approach. Row operations on the system $M f=$ $-g$ are allowed.

Observations (cont.)

- The solutions to the 3×3 case involve conditions on some 2×2-minors of the system matrix G. In total, nine such minors exists and each specific F-matrix requires that three of these are non-zero.
- A pattern between the position of the elements equal to 1 in the F-matrix and the 2×2-minors exists. Let $m_{j i}$ be the 2×2 minor of G when excluding row j and column i. If a F-matrix with $f_{i j}=1$ is to be used, then $m_{j i} \neq 0$ is required.
- As a result, if some minors of G are zero, the number of F matrix candidates can be effectively reduced.

Observations (cont.)

- When a solution exists, the resulting elements of the F-matrix will be quotients of some 2×2-minors. The elements of the P-matrix will be on the form

$$
\begin{equation*}
p_{k k}= \pm \frac{\operatorname{det} G}{m_{i j}} \quad k=1,2,3 \tag{9}
\end{equation*}
$$

where the minors $m_{i j}$ are the same found in the denominators of the F-elements.

- In addition to conditions on minors, conditions on certain elements of G are also found.

Observations (cont.)

Example: For $F_{112}\left(f_{11}=f_{12}=f_{23}=1\right)$ a solution exists if

$$
\begin{align*}
& m_{11}=g_{22} g_{33}-g_{23} g_{32} \neq 0 \tag{10}\\
& m_{21}=g_{12} g_{33}-g_{13} g_{32} \neq 0 \\
& m_{32}=g_{11} g_{23}-g_{13} g_{21} \neq 0
\end{align*}
$$

at the same time as

$$
\begin{array}{ll}
g_{11} \neq 0 \\
g_{22} \neq 0 \tag{11}\\
g_{12} \neq 0
\end{array} \quad \text { or } \quad \begin{aligned}
& g_{23} \neq 0 \\
& g_{33} \neq 0
\end{aligned}
$$

Observations (cont.)

- An extension to the 4×4 case indicates that minors of dimension 3×3 will have a significant role. Besides that, conditions on 2×2-minors as well as single elements of the system matrix G are found.
- The software Mathematica is suitable for symbolic solving this kind of large equation systems.

CHALMERS

Example: Blending system of three vessels

Consider a system of three ideally stirred tanks. The volumes $(\mathrm{V}$) and the flows (Q and R) are all constants.

Example: Blending system (cont.)

Introduce the time constant $\tau=V / Q$ and the relative flow $\sigma=R / Q$. From a material balance over each vessel, the following transfer function model is obtained

$$
\begin{gather*}
C(s)=G(s) C_{i n}(s) \tag{12}\\
G(s)=\left[\begin{array}{ccc}
1+\sigma+\tau s & 0 & -\sigma \\
-\sigma & 1+\sigma+\tau s & 0 \\
0 & -\sigma & 1+\sigma+\tau s
\end{array}\right]^{-1} \tag{13}
\end{gather*}
$$

Example: Blending system (cont.)

Calculating the 2-times-2-minors of G gives

$$
\begin{gather*}
{\left[\begin{array}{lll}
m_{33} & m_{32} & m_{31} \\
m_{23} & m_{22} & m_{21} \\
m_{13} & m_{12} & m_{11}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1+\sigma+\tau s}{h(s)} & 0 & \frac{-\sigma}{h(s)} \\
\frac{\sigma}{h(s)} & \frac{1+\sigma+\tau s}{h(s)} & 0 \\
0 & \frac{\sigma}{h(s)} & \frac{1+\sigma+\tau s}{h(s)}
\end{array}\right]} \tag{14}\\
h(s)=(1+\tau s)\left(3 \sigma^{2}+3 \sigma(1+\tau s)+(1+\tau s)^{2}\right)=(\operatorname{det} G)^{-1}
\end{gather*}
$$

As $m_{32}=m_{21}=m_{13}=0, F$-matrices haveing f_{32}, f_{31} and/or f_{12} equal to one can not be used. As a result, the F-matrix candidates are reduced from the general 27 to 8 .

Example: Blending system (cont.)

The filter F_{123} gives a realizable decoupling

$$
\begin{gather*}
F_{123}=\left[\begin{array}{ccc}
1 & \frac{-m_{21}}{m_{22}} & \frac{-m_{31}}{m_{33}} \\
\frac{-m_{12}}{m_{11}} & 1 & \frac{-m_{32}}{m_{33}} \\
\frac{-m_{13}}{m_{11}} & \frac{-m_{23}}{m_{22}} & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & \frac{-\sigma}{1+\sigma+\tau s} \\
\frac{-\sigma}{1+\sigma+\tau s} & 1 & 0 \\
0 & \frac{-\sigma}{1+\sigma+\tau s} & 1
\end{array}\right] \tag{15}\\
P_{123}=\left[\begin{array}{ccc}
\frac{1}{1+\sigma+\tau s} & 0 & 0 \\
0 & \frac{1}{1+\sigma+\tau s} & 0 \\
0 & 0 & \frac{1}{1+\sigma+\tau s}
\end{array}\right] \tag{16}
\end{gather*}
$$

Example: Blending system (cont.)

$$
\begin{align*}
& F_{121}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
\frac{-\sigma}{1+\sigma+\tau s} & 1 & 0 \\
0 & \frac{-\sigma}{1+\sigma+\tau s} & \frac{-(1+\sigma+\tau s)}{\sigma}
\end{array}\right] \tag{17}\\
& F_{121}=\left[\begin{array}{ccc}
\frac{-(1+\sigma+\tau s)}{\sigma} & 0 & \frac{-\sigma}{1+\sigma+\tau s} \\
1 & 1 & 0 \\
0 & \frac{-\sigma}{1+\sigma+\tau s} & 1
\end{array}\right] \tag{18}
\end{align*}
$$

As these two filters (like the remaining five for which a solution exists) include elements that are non-causal, they are not realizable and can not be used for decoupling.

Realizability

For every F-matrix that generates a solvable equation system, all resulting elements are investigated with respect to polynomial degree. Write an F-matrix element as fractions between polynomials

$$
\begin{equation*}
f_{i j}(z)=\frac{Q_{i j}(z)}{P_{i j}(z)} \tag{19}
\end{equation*}
$$

Check the relation between the polynomials $Q_{i j}$ and $P_{i j}$ in terms of their highest exponent. In order for a certain F-matrix to be realizable, for all of its elements $f_{i j}$ the highest exponent of $P_{i j}$ must be equal to, or larger than, the highest exponent of $Q_{i j}$.
If no time delays are present, then the procedure can be carried out for s instead of z.

Decoupling

$$
G(s)=\left[\begin{array}{lll}
g_{11} & g_{12} & g_{13} \\
g_{21} & g_{22} & g_{23} \\
g_{31} & g_{32} & g_{33}
\end{array}\right] \rightarrow P(s)=\left[\begin{array}{ccc}
p_{11} & 0 & 0 \\
0 & p_{22} & 0 \\
0 & 0 & p_{33}
\end{array}\right]
$$

