חESTE OIL

Nordic Process Control Workshop 2009, Porsgrunn, Norway
" Model Reduction applied on Natural Gas Pipeline Systems"

Hans Aalto

חESTE OIL

Main pipeline system components:

Compressor stations, pipeline segments and offtakes

Compressor station discharge pressures are usually used to operate the pipeline

Start with the PDE for a (=each!) pipeline segment

$$
\begin{gathered}
\frac{\partial P}{\partial t}+\frac{b}{A} \frac{\partial q}{\partial z}=0 \\
\frac{\partial q}{\partial t}+A \frac{\partial P}{\partial z}+f \frac{b}{D A} \frac{q^{2}}{P}=0
\end{gathered}
$$

This is the simplest isothermal PDE model for pipelines in the horizontal plane only and with small gas velocities!

meste all

Discretize w.r.t to the space co-ordinate z, using N elements (nodes) for each segment (!) $\mathrm{i}=1,2, \ldots . \mathrm{N}$

$$
\begin{aligned}
\frac{d P_{i}}{d t} & =\frac{b_{i}}{A_{i} \Delta z_{i}}\left(q_{i-1}-q_{i}\right) \\
\frac{d q_{i}}{d t} & =\frac{A_{i}}{\Delta z_{i}}\left(P_{i}-P_{i+1}\right)-f_{i} \frac{b_{i}}{D_{i} A_{i}} \frac{q_{i}^{2}}{P_{i}}
\end{aligned}
$$

Compressor station between node " $k-1$ " and " k " : PIcontroller of discharge pressure manipulating gas flow:

$$
\frac{d q_{k-1}}{d t}=-K \beta_{k}\left(q_{k-1}-q_{k}\right)+\frac{K}{T_{i}}\left(P_{k, S E T}-P_{k}\right)
$$

Nonlinearity measure (example)

1 bar perturbation: @ 48 bar Gain=3.08, Timeconst. 119 min. @ 64 bar Gain=1.53 , Timeconst. 59 min.

Transfer functions from reduced models:

How would we obtain the transfer function between 2 variables of a given pipeline?

- Identify from true pipeline system data
- Identify from dynamic simulator data
"Direct method": from design data to transfer functions!

חESTE OIL

... Linearize this large ODE model in a given steady state operating point

$$
\begin{aligned}
\frac{d \Delta P_{i}}{d t} & =\alpha_{i}\left(\Delta q_{i-1}-\Delta q_{i}\right) \\
\frac{d \Delta q_{i}}{d t} & =\beta_{i}\left(\Delta P_{i}-\Delta P_{i+1}\right)-2 \gamma_{i} \frac{\Delta q_{i}}{P_{i, S S}}+\gamma_{i} \frac{q_{i, S S}^{2} \Delta P_{i}}{P_{i, S S}^{2}}
\end{aligned}
$$

or:

$$
\begin{aligned}
& \frac{d \mathbf{x}(t)}{d t}=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t), \\
& \mathbf{y}(t)=\mathbf{C x}(t)
\end{aligned}
$$

where $\mathbf{x}{ }_{-}^{\wedge}\left[\Delta P_{1} \Delta q_{1} \Delta P_{2} \Delta q_{2} \ldots \Delta P_{N} \Delta q_{N}\right]^{\top}$

חESTE OIL

Matrices $\mathrm{A}(2 \mathrm{Nx} 2 \mathrm{~N})$ and $\mathrm{B}(2 \mathrm{Nxm})$ depend on the geometry, physical parameters, node partition and steady state data = design (engineering) information

C $(1 \times 2 \mathrm{~N})$ is needed just to select which state variable is of interest

$$
\begin{aligned}
& \frac{d \mathbf{x}(t)}{d t}=\mathbf{A} \mathbf{x}(t)+\mathbf{B} \mathbf{u}(t) \\
& \mathbf{y}(t)=\mathbf{C} \mathbf{x}(t)
\end{aligned}
$$

The rest is easy, obtain the transfer function from ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) using standard methods ???
eg. ss2tf of Matlab

$$
G(s)=\frac{K\left(T_{a} s+1\right)\left(T_{b} s+1\right) \ldots}{\left(T_{1} s+1\right)\left(T_{2} s+1\right)\left(T_{3} s+1\right) \ldots}
$$

MESTE OIL
NO! Transfer function from large system is difficult, even if dominating time constants may be obtained. In our case, numerator dynamics has relevance!

MESTE OIL

=> Use Linear Model Reduction techniques!

Truncation: Solve \mathbf{P} and \mathbf{Q} from

$$
\begin{aligned}
& \mathbf{A P}+\mathbf{P A}^{\mathrm{T}}+\mathbf{B} B^{\mathrm{T}}=\mathbf{0} \\
& \mathbf{A}^{\mathrm{T}} \mathbf{Q}+\mathbf{Q A}+\mathbf{C}^{\mathrm{T}} \mathbf{C}=\mathbf{0}
\end{aligned}
$$

Compute Hankel singular values

$$
\sigma_{i}=\sqrt{\lambda_{i}(P Q)}
$$

Arrange eigenvectors of PQ into: a transformation matrix

$$
\mathbf{T}=\left[\begin{array}{lll}
\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{2} \ldots \mathbf{v}_{2 \mathrm{~N}}
\end{array}\right]
$$

The upper $\mathrm{N}_{\mathrm{r}} \ll 2 \mathrm{~N}$ submatrices of the transformed matrices $=\mathrm{a}$ reduced linear state space system

$$
\left\{\begin{array}{l}
\widetilde{\mathbf{A}}=\mathbf{T}^{-1} \mathbf{A T} \hat{=} \mathbf{W}^{\mathrm{T}} \mathbf{A V} \\
\widetilde{\mathbf{B}}=\mathbf{T}^{-1} \mathbf{B} \hat{=} \mathbf{W}^{\mathrm{T}} \mathbf{B} \\
\widetilde{\mathbf{C}}=\mathbf{C T} \hat{=} \mathbf{C V}
\end{array}\right.
$$

meste all

Balanced truncation: \mathbf{P} and \mathbf{Q} required to be diagonal

Transfer function from reduced model with $N_{r}=3 . . .4$ is easily obtained with standard methods!

חESTE OIL

Pipeline system w. 6 segments, 8 offtakes, 4 compressor stations and 70 nodes
=> $2 \mathrm{~N}=140$

חESTE IL

Transfer function from CS2 discharge pressure to "Pa", far downstream CS2 [time constant]=minutes!:

$$
\frac{1.44(116.9 s+1)}{(117.7 s+1)(190.6 s+1)} \sim \frac{1.44}{(190.6 s+1)}
$$

Dito for "Pb", close to CS2:

$$
\frac{1.16(83.5 s+1)}{(11.2 s+1)(183.6 s+1)}
$$

Empirical calculation of the Gramians P and Q

-Step (impulse) perturbations on the system or on a fullscale simulation model

- After obtaining T, define a transformed state and apply a Galerkin projection to get a reduced non-linear model:

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{y}(t)=\mathbf{g}(\mathbf{x}(t), \mathbf{u}(t)) \\
& \dot{\mathbf{x}}_{\mathbf{r}}(t)=\mathbf{P T f}\left(\mathbf{T}^{-1} \overline{\mathbf{x}}(t), \mathbf{u}(t)\right) \\
& \dot{\mathbf{x}}_{N-\mathbf{r}}(t)=0, \quad \mathbf{x}_{N-\mathbf{r}}(t)=\mathbf{x}_{N-\mathbf{r}, S S} \\
& \mathbf{y}(t)=\mathbf{g}\left(\mathbf{T}^{-1} \overline{\mathbf{x}}(t), \mathbf{u}(t)\right) \\
& \overline{\mathbf{x}}(t) \xlongequal{\hat{C}}\left[\begin{array}{c}
\mathbf{x}_{r} \\
\mathbf{x}_{N-r}
\end{array}\right]=\mathbf{T} \mathbf{x}(t) \quad, \mathbf{P}=\left[\begin{array}{ll}
\mathbf{I}_{\mathbf{r}} & \mathbf{0}
\end{array}\right]
\end{aligned}
$$

MESTE OIL

Response of original ODE model for 92 km pipeline with 58 states, reduced nonlinear model $\mathrm{Nr}=8$ (circles) and dito with $\mathrm{Nr}=4$.

חESTE OIL

General problem (not necessarily natural gas pipeline): We need an EKF for a large non-linear system

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \\
\mathbf{y}(t) & =\mathbf{g}(\mathbf{x}(t)) \\
\dot{\hat{\mathbf{x}}}(t) & =\mathbf{f}(\hat{\mathbf{x}}(t), \mathbf{u}(t))+\mathbf{K}\left[\mathbf{y}_{M}(t)-\mathbf{g}(\hat{\mathbf{x}}(t))\right]
\end{aligned}
$$

Steady state Riccati equation applies for linearized continuous time system, $\operatorname{dim}(\mathbf{K})=\mathrm{n} \times$ ny :

$$
\begin{aligned}
& \mathbf{K}=\mathbf{P C}^{\mathrm{T}} \mathbf{R}^{-1} \\
& \mathbf{A P}+\mathbf{P A}^{\mathrm{T}}+\mathbf{Q}-\mathbf{P C}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{C P}=\mathbf{0}
\end{aligned}
$$

MESTE OIL

All "mappings" in the sequel from a smaller matrix \mathbf{K}_{r} to a bigger \mathbf{K}, actually mean:

$$
\mathbf{K}=\mathbf{f}\left(\mathbf{K}_{\mathrm{r}}\right) \hat{=} \mathbf{f}\left(\left[\begin{array}{cc}
\mathbf{K}_{\mathbf{r}} & \mathbf{0} \\
\mathbf{0} & \varepsilon \mathbf{I}
\end{array}\right]\right), \varepsilon \rightarrow 0
$$

Kalman filter for the reduced model also obeys Riccati:

$$
\begin{aligned}
& \mathbf{K}_{\mathrm{r}}=\mathbf{P}_{\mathrm{r}} \mathbf{C}_{\mathrm{r}}^{\mathrm{T}} \mathbf{R}^{-1} \\
& \mathbf{A}_{\mathrm{r}} \mathbf{P}_{\mathrm{r}}+\mathbf{P}_{\mathrm{r}} \mathbf{A}_{\mathrm{r}}^{\mathrm{T}}+\mathbf{Q}_{\mathrm{r}}-\mathbf{P}_{\mathrm{r}} \mathbf{C}_{\mathrm{r}}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{C}_{\mathrm{r}} \mathbf{P}_{\mathrm{r}}=\mathbf{0}
\end{aligned}
$$

Then, if: $\quad \mathbf{K}=\mathbf{V K}, \mathbf{Q}=\mathbf{W} \mathbf{Q}_{\mathbf{r}} \mathbf{W}^{\mathbf{T}}$
The Riccati equation for the full system holds, and: $\mathrm{P}=\mathrm{WP}_{\mathrm{r}} \mathrm{W}^{\boldsymbol{\top}} \quad$ True also for discrete-time system

חESTE OIL

Exmple: 90 -km long true pipeline segment:

$\Delta z=1667 \mathrm{~m}=>82$ elements $=164$ states
Design Kalman filter for $n_{r}=4$ and then scale up $K=V^{*} K_{r}$ to obtain state estimator for 164 states

MESTE OIL
... Results:

Estimated gas flow after CS Simulated gas flow

Estimated upstream pressure

Estimated P_{a} Measured P_{a}

חESTE OIL

What if we want to do the EKF exercise but do not have access to the full scale linear n-dimensional system (A,B,C) ?

Recall:

- Empirical Gramians would give us P,Q,V and W
- Low dimensional model ($\mathbf{A}_{r}, \mathbf{B}_{r}, \mathbf{C}_{r}$) could be obtained by identification
=> Do the matrices match, can we do "scale up"
$\mathbf{K}=\mathbf{V}^{*} \mathrm{~K}_{\mathrm{r}}$?

Let us borrow some results from discrete-time subspace identification (The state space model realisation part of it)

חESTE OIL

Use the system impulse response to form a Hankel matrix:

$$
\mathbf{H}=\left[\begin{array}{cccc}
\mathbf{h}_{1} & \mathbf{h}_{2} & & \mathbf{h}_{\mathrm{N}+1} \\
\mathbf{h}_{2} & \mathbf{h}_{3} & & \mathbf{h}_{\mathrm{N}+2} \\
\vdots & & \ldots & \\
\mathbf{h}_{\mathrm{N}} & \mathbf{h}_{\mathrm{N}+1} & & \mathbf{h}_{2 \mathrm{~N}+2}
\end{array}\right] \quad \mathbf{h}_{\mathrm{i}}=\mathbf{C A}^{\mathrm{i}-1} \mathbf{B}
$$

Svd of \mathbf{H}, which is actually an estimate from data, \mathbf{H}^{\wedge}
$\mathbf{H}=\mathbf{Q S V}^{\mathbf{T}}$
Choose a model order "r" and partition:

$$
\mathbf{Q}=\left[\begin{array}{ll}
\mathbf{Q}_{\mathbf{r}} & \mathbf{Q}_{\mathrm{N}-\mathbf{r}}
\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{ll}
\mathbf{V}_{\mathbf{r}} & \mathbf{V}_{\mathrm{N}-\mathbf{r}}
\end{array}\right]
$$

\mathbf{S}_{r} is a diagonal matrix with r principal singular values.
Observability and Controllability matrix estimates:

Read \mathbf{C}, actually \mathbf{C}_{r} from $\boldsymbol{\Gamma}_{\mathrm{N}}$ and \mathbf{B}_{r} from $\boldsymbol{\Omega}_{\mathrm{N}}$
For \mathbf{A}, actually \mathbf{A}_{r}, apply the "shift invariance" $\boldsymbol{\Gamma}_{\mathrm{N}}=\boldsymbol{\Gamma}_{\mathrm{N}-1} \mathbf{A}$
Solve \mathbf{A} using pseudo-inverse

חESTE OIL

Actually we have done a balanced truncation!
-Using H , make a full state dimension model with $\mathrm{r}->\mathrm{n}<\mathrm{N}$:

- $\mathrm{P}=\mathbf{\Omega}_{\mathrm{N}} \Omega_{\mathrm{N}}{ }^{\top}$
- $Q=\Gamma_{N}{ }^{\top} \Gamma_{N}$
- Calculate $\mathbf{A}_{\mathbf{n}}, \mathbf{B}_{\mathrm{n}}$ and \mathbf{C}_{n} as above $=$ linearization!
- Calculate \mathbf{T} (as above), call $\mathbf{W}=\mathbf{T}^{-\mathbf{T}}$ and $\mathbf{V}=\mathbf{T}$ Use W and V for a lower-dimensional model $\mathrm{r}<\mathrm{n}$:

$$
\tilde{\mathbf{A}}=\mathbf{W}^{\mathbf{T}} \mathbf{A}_{\mathbf{n}} \mathbf{V}, \mathbf{A}_{\mathbf{r}}=\tilde{\mathbf{A}}\left(1: n_{r}, 1: n_{r}\right) \quad \text { etc. }
$$

r :th order model can also be obtained by repeating the realisation procedure.
NOTE, that \mathbf{V} is needed to do the "scale up" for the Kalman filter

חESTE OIL

Impulse response data from a simulation model = no noise problem = should work, but non-linearity may harm

Fix: Discrete-time EKF innovations part to be combined with continuous-time non-linear model

Find weak points of "scale up" procedure, some horrible counter-example etc.

Subspace realisation for a large full order linear (=n) system may be tough; almost redundant states etc.
meste all

Thank You!

