# Simulation of Subsurface Two-Phase Flow in an Oil Reservoir

<u>Carsten Völcker</u>, John Bagterp Jørgensen, Per Grove Thomsen and Erling Halfdan Stenby

> Technical University of Denmark (DTU) Department of Informatics and Mathematical Modeling (IMM)

> > January 28, 2009



## Outline



- Two-Phase Isothermal Immiscible Flow
  - Conservation Equations
  - Constitutive Equations
- Output: Second State State
  - ODE Model
  - Runge-Kutta
  - ESDIRK Integration
- 4 Solving The Linear Equations
  - Modified Newton
  - Linear Solvers

### 5 Error Control

### 🕽 Test Case

## 2D Reservoir



## **Optimizing Production**

Maximizing net present value (NPV):

$$\max_{u} \quad \text{NPV} = \int_{t_0}^{t} l(x(t), u) dt$$
  
s.t. 
$$\frac{d}{dt} g(x(t)) = f(x(t), u)$$
$$x(t_0) = x_0$$

#### Closed loop optimizer:



# Water Flooding without/with Optimal Control

Without optimal control:





#### With optimal control:



## **Conservation Equations**

Mass conservation of water and oil:

$$\frac{\partial}{\partial t}C_w(P_w, S_w) = -\nabla N_w(P_w, S_w) + Q_w$$
$$\frac{\partial}{\partial t}C_o(P_o, S_o) = -\nabla N_o(P_o, S_o) + Q_o$$

- No flow potential due to gravitation.
- Homogenous permeability field.
- Capillary pressure neglected.
- Incompressible rock.

Mass concentrations:

$$C_w = \phi \rho_w(P_w) S_w$$
$$C_o = \phi \rho_o(P_o) S_o$$

Fluxes through the porous medium:

$$N_w = \rho_w(P_w)u_w(P_w, S_w)$$
$$N_o = \rho_o(P_o)u_o(P_o, S_o)$$

# Darcy Velocity and Boundary Conditions



#### Internal sources/sinks due to wells:

- Water is injected to maintain pressure and replace the oil.
- Oil and water are produced.

## Reduction Of State Variables:

Water saturation (volume fraction):

$$S_w + S_o = 1$$

Pressure difference due to capillary pressure:

$$P_{cow} = P_o - P_w$$

Reduction of variables:

$$S_w = 1 - S_o \quad \Rightarrow \quad S = S_w = 1 - S_o$$
$$P_{cow} = 0 \quad \Rightarrow \quad P = P_w = P_o$$

State variables  $(S, P) = (S_w, P_o)$ :

$$S = S(t, s)$$
$$P = P(t, s)$$

## Density and compressibility

#### Compressible fluids:

$$\rho_w = \rho_{w0} e^{P - P_{w0}}$$
$$\rho_o = \rho_{o0} e^{P - P_{o0}}$$



## Relative Permeabilities by The Corey Relations

#### Relative permeabilities:

$$k_{rw} = k_{rw0} s^{n_w}$$
$$k_{ro} = k_{ro0} (1-s)^{n_u}$$

#### Reduced water saturation:

$$s = \frac{S - S_{wc}}{1 - S_{wc} - S_{or}}$$



## **Different Formulation**

Partial differential equation (PDE) model:

$$\begin{aligned} \frac{\partial}{\partial t} C_w(P_w, S_w) &= -\nabla N_w(P_w, S_w) + Q_w \\ \frac{\partial}{\partial t} C_o(P_o, S_o) &= -\nabla N_o(P_o, S_o) + Q_o \end{aligned}$$

Different formulation of an ordinary differential equation (ODE) model after discretizing spatially:

$$\frac{d}{dt}g(x(t)) = f(t, x(t)) \quad x(t_0) = x_0$$

## Runge-Kutta Methods

Tailored formulation of an s-stage Runge-Kutta method:

$$T_{i} = t_{n} + c_{i}h_{n} \quad i = 1, 2, \dots, s$$

$$g(X_{i}) = g(x_{n}) + h_{n}\sum_{j=1}^{s} a_{ij}f(T_{j}, X_{j}) \quad i = 1, 2, \dots, s$$

$$g(x_{n+1}) = g(x_{n}) + h_{n}\sum_{j=1}^{s} b_{j}f(T_{j}, X_{j})$$

$$g(\hat{x}_{n+1}) = g(x_{n}) + h_{n}\sum_{j=1}^{s} \hat{b}_{j}f(T_{j}, X_{j})$$

$$e_{n+1} = g(x_{n+1}) - g(\hat{x}_{n+1}) = h_{n}\sum_{j=1}^{s} d_{j}f(T_{j}, X_{j}) \quad d_{j} = b_{j} - \hat{b}_{j}$$

#### Only s-1 implicit stages:





## Modified Newton Step

The state values  $X_i$  are obtained by sequential solution of the residual:

$$R(X_i) = g(X_i) - h_n \gamma f(T_i, X_i) - \psi_i = 0 \quad i = 2, 3, \dots, s$$
$$\psi_i = g(x_n) + h_n \sum_{j=1}^{i-1} a_{ij} f(T_j, X_j) \quad i = 2, 3, \dots, s$$

The Jacobian of the residual  $R(X_i)$ :

$$J(X_i) = \frac{\partial R}{\partial X_i}(X_i) = \frac{\partial g}{\partial x}(X_i) - h_n \gamma \frac{\partial f}{\partial x}(T_i, X_i)$$
$$\approx \frac{\partial g}{\partial x}(x_m) - h_m \gamma \frac{\partial f}{\partial x}(t_m, x_m)$$
$$= J(x_m) = LU$$

Only updating the Jacobian by slow convergence or divergence:

$$LU\Delta X_i = R(X_i)$$
$$X_i := X_i - \Delta X_i$$

## Jacobian Structure

#### 1D: 3 Non-zeros:



#### 2D: 5 Non-zeros:



#### 3D: 7 Non-zeros:



#### Solving the linear equations:

- Sparse direct solver: LU factorization and back sustitution.
- Iterative solver: GMRES.

## Adaptive Time Stepping

#### In most commercial simulators:

• Simple heuritics implemented e.g. maximum variation of saturations. ESDIRK, embedded error estimator:

$$\hat{e}_{n+1} = g(x_{n+1}) - g(\hat{x}_{n+1}) = h_n \sum_{i=1}^{s} d_i f(T_i, X_i)$$

Measures of the error may be controlled adjusting the time step according to

$$h_{n+1} = \frac{h_n}{h_{n-1}} \left(\frac{\varepsilon}{\hat{r}_{n+1}}\right)^{k_2/k} \left(\frac{\hat{r}_n}{\hat{r}_{n+1}}\right)^{k_1/k} h_n$$

•  $\hat{e}_{n+1}$  is an error estimate of the conserved quantities  $g(x_{n+1})$ .

## ESDIRK Performance

#### ESDIRK23 performance and statistics, $45 \times 45$ grid blocks:



## Performance by Significant Digits

#### ESDIRK performance on 1D case, 1000 grid blocks:



• ESDIRK12 = red, ESDIRK23 = green, ESDIRK34 = blue.

Test Case

## 2D Test Case, $45\times45$ Grid Blocks

#### Oil saturation after 31 days:



#### Oil saturation after 62 days:



## Permeability field with two streaks:



#### Test Case

## Butcher Tableau's of Runge-Kutta Methods

The explicit Runge-Kutta (ERK) method:

| 0     | 0                    |                      |                      |                  |                      |
|-------|----------------------|----------------------|----------------------|------------------|----------------------|
| $c_2$ | $a_{21}$             | 0                    |                      |                  |                      |
| $c_3$ | $a_{31}$             | $a_{32}$             | 0                    |                  |                      |
| ÷     | ÷                    |                      |                      | ·                |                      |
| $c_s$ | $a_{s1}$             | $a_{s2}$             | 0.03                 |                  | 0                    |
|       | 01                   | 01                   | ~30                  |                  | -                    |
|       | $b_1$                | $b_2$                | $b_3$                |                  | $b_s$                |
|       | $b_1$<br>$\hat{b}_1$ | $b_2$<br>$\hat{b}_2$ | $b_3$<br>$\hat{b}_3$ | · · · ·<br>· · · | $b_s$<br>$\hat{b}_s$ |

The A-matrix in Runge-Kutta methods:



## Butcher Tableau's of Runge-Kutta Methods

#### The diagonally implicit Runge-Kutta (DIRK) method:

| $c_1$                 | $a_{11}$                                              |                                                           |                                                           |                  |                                                           |
|-----------------------|-------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------|-----------------------------------------------------------|
| $c_2$                 | $a_{21}$                                              | $a_{22}$                                                  |                                                           |                  |                                                           |
| $c_3$                 | $a_{31}$                                              | $a_{32}$                                                  | $a_{33}$                                                  |                  |                                                           |
| ÷                     | ÷                                                     |                                                           |                                                           | ·                |                                                           |
|                       |                                                       |                                                           |                                                           |                  |                                                           |
| $c_s$                 | $a_{s1}$                                              | $a_{s2}$                                                  | $a_{s3}$                                                  | •••              | $a_{ss}$                                                  |
| $c_s$                 | $a_{s1}$<br>$b_1$                                     | $a_{s2}$<br>$b_2$                                         | $a_{s3}$<br>$b_3$                                         | •••              | $a_{ss}$<br>$b_s$                                         |
| <i>C</i> <sub>8</sub> | $egin{array}{c} a_{s1} \ b_1 \ \hat{b}_1 \end{array}$ | $\begin{array}{c} a_{s2} \\ b_2 \\ \hat{b}_2 \end{array}$ | $\begin{array}{c} a_{s3} \\ b_3 \\ \hat{b}_3 \end{array}$ | · · · ·<br>· · · | $\begin{array}{c} a_{ss} \\ b_s \\ \hat{b}_s \end{array}$ |

#### The A-matrix in Runge-Kutta methods:



## Butcher Tableau's of Runge-Kutta Methods

The singly diagonally implicit Runge-Kutta (SDIRK) method:

| $c_1$ | $\gamma$                                                  |                                                           |                                                       |              |                                                           |
|-------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|--------------|-----------------------------------------------------------|
| $c_2$ | $a_{21}$                                                  | $\gamma$                                                  |                                                       |              |                                                           |
| $c_3$ | $a_{31}$                                                  | $a_{32}$                                                  | $\gamma$                                              |              |                                                           |
| ÷     | ÷                                                         |                                                           |                                                       | ·            |                                                           |
|       |                                                           |                                                           |                                                       |              |                                                           |
| $c_s$ | $a_{s1}$                                                  | $a_{s2}$                                                  | $a_{s3}$                                              |              | $\gamma$                                                  |
| $c_s$ | $a_{s1}$<br>$b_1$                                         | $a_{s2}$<br>$b_2$                                         | $a_{s3}$<br>$b_3$                                     | •••          | $\frac{\gamma}{b_s}$                                      |
| $c_s$ | $\begin{array}{c} a_{s1} \\ b_1 \\ \hat{b}_1 \end{array}$ | $\begin{array}{c} a_{s2} \\ b_2 \\ \hat{b}_2 \end{array}$ | $egin{array}{c} a_{s3} \ b_3 \ \hat{b}_3 \end{array}$ | ····<br>···· | $\begin{array}{c} \gamma \\ b_s \\ \hat{b}_s \end{array}$ |

The A-matrix in Runge-Kutta methods:



## Butcher Tableau's of Runge-Kutta Methods

The explicit singly diagonally implicit Runge-Kutta (ESDIRK) method:

| 0                     | 0                                                     |                                                           |                                                           |      |                                                           |
|-----------------------|-------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------|-----------------------------------------------------------|
| $c_2$                 | $a_{21}$                                              | $\gamma$                                                  |                                                           |      |                                                           |
| $c_3$                 | $a_{31}$                                              | $a_{32}$                                                  | $\gamma$                                                  |      |                                                           |
| ÷                     | ÷                                                     |                                                           |                                                           | ·    |                                                           |
|                       |                                                       |                                                           |                                                           |      |                                                           |
| $c_s$                 | $a_{s1}$                                              | $a_{s2}$                                                  | $a_{s2}$                                                  |      | $\gamma$                                                  |
| $c_s$                 | $a_{s1}$<br>$b_1$                                     | $a_{s2}$<br>$b_2$                                         | $a_{s2}$<br>$b_3$                                         | •••  | $\frac{\gamma}{b_s}$                                      |
| <i>C</i> <sub>8</sub> | $egin{array}{c} a_{s1} \ b_1 \ \hat{b}_1 \end{array}$ | $\begin{array}{c} a_{s2} \\ b_2 \\ \hat{b}_2 \end{array}$ | $\begin{array}{c} a_{s2} \\ b_3 \\ \hat{b}_3 \end{array}$ | ···· | $\begin{array}{c} \gamma \\ b_s \\ \hat{b}_s \end{array}$ |

#### The A-matrix in Runge-Kutta methods:



#### Test Case

## Butcher Tableau's of Runge-Kutta Methods

#### The fully implicit Runge-Kutta (FIRK) method:

| $c_1$                 | $a_{11}$                                                  | $a_{12}$                                                  | $a_{13}$                                                  | •••  | $a_{1s}$                                                  |
|-----------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------|-----------------------------------------------------------|
| $c_2$                 | $a_{21}$                                                  | $a_{22}$                                                  | $a_{23}$                                                  |      | $a_{2s}$                                                  |
| $c_3$                 | $a_{31}$                                                  | $a_{32}$                                                  | $a_{33}$                                                  |      | $a_{3s}$                                                  |
| ÷                     | ÷                                                         |                                                           |                                                           | ·    | ÷                                                         |
|                       |                                                           |                                                           |                                                           |      |                                                           |
| $c_s$                 | $a_{s1}$                                                  | $a_{s2}$                                                  | $a_{s3}$                                                  | •••  | $a_{ss}$                                                  |
| $c_s$                 | $a_{s1}$<br>$b_1$                                         | $a_{s2}$<br>$b_2$                                         | $a_{s3}$<br>$b_3$                                         | •••  | $a_{ss}$<br>$b_s$                                         |
| <i>C</i> <sub>8</sub> | $\begin{array}{c} a_{s1} \\ b_1 \\ \hat{b}_1 \end{array}$ | $\begin{array}{c} a_{s2} \\ b_2 \\ \hat{b}_2 \end{array}$ | $\begin{array}{c} a_{s3} \\ b_3 \\ \hat{b}_3 \end{array}$ | •••• | $\begin{array}{c} a_{ss} \\ b_s \\ \hat{b}_s \end{array}$ |

#### The A-matrix in Runge-Kutta methods:



#### Only s - 1 implicit stages:

|       | $\hat{b}_1$ | $\hat{b}_2$ | $\hat{b}_3$ | •••   | $\hat{b}_s$ |
|-------|-------------|-------------|-------------|-------|-------------|
|       | $b_1$       | $b_2$       | $b_3$       | • • • | $\gamma$    |
| 1     | $b_1$       | $b_2$       | $b_3$       | •••   | $\gamma$    |
| :     | ÷           |             |             | ·     |             |
| $c_3$ | $a_{31}$    | $a_{32}$    | $\gamma$    |       |             |
| $c_2$ | $a_{21}$    | $\gamma$    |             |       |             |
| 0     | 0           |             |             |       |             |





ESDIRK

#### Only s-1 implicit stages:

| 0     | 0                             |                                                        |                               |                  |                           |
|-------|-------------------------------|--------------------------------------------------------|-------------------------------|------------------|---------------------------|
| $c_2$ | $a_{21}$                      | $\gamma$                                               |                               |                  |                           |
| $c_3$ | $a_{31}$                      | $a_{32}$                                               | $\gamma$                      |                  |                           |
| :     | ÷                             |                                                        |                               | ·                |                           |
| 1     | 1                             | ,                                                      | ,                             |                  |                           |
| T     | $o_1$                         | $b_2$                                                  | $b_3$                         | • • •            | $\gamma$                  |
|       | $b_1$<br>$b_1$                | $b_2$<br>$b_2$                                         | $b_3$<br>$b_3$                | •••              | $\frac{\gamma}{\gamma}$   |
|       | $b_1$<br>$b_1$<br>$\hat{b}_1$ | $\begin{array}{c} b_2 \\ b_2 \\ \hat{b}_2 \end{array}$ | $b_3$<br>$b_3$<br>$\hat{b}_3$ | · · · ·<br>· · · | $rac{\gamma}{\hat{b}_s}$ |

The first stage is explicit, which implies that:

$$X_1 = x_n$$
$$x_{n+1} = X_s$$

#### Only s-1 implicit stages:



The Butcher tableau is constructed such that:

$$X_1 = x_n$$
$$x_{n+1} = X_s$$

#### Only s - 1 implicit stages:

The state values  $X_i$  are obtained by sequential solution of the residual:

$$R(X_i) = g(X_i) - h_n \gamma f(T_i, X_i) - \psi_i = 0 \quad i = 2, 3, \dots, s$$
$$\psi_i = g(x_n) + h_n \sum_{j=1}^{i-1} a_{ij} f(T_j, X_j) \quad i = 2, 3, \dots, s$$