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Problem formulation

Consider the following LTI system model:

ẋ = Ax + Bu

y = Cx + ny (1)

Here x ∈ R
nx are the states, u ∈ R

nu are the inputs,
y ∈ R

ny are the outputs we want to control, and ny ∈
R

ny

is a vector of additive noise.
In this work we present a method for design of mul-

tivariable LQ-optimal PID controllers based on convex
optimization for systems that can be described by (1).

Theory

A key result, which is the basis for this paper, is the
nullspace theorem [Alstad et al., 2008]:

Theorem 1. (Loss by introducing linear constraint for
noisy quadratic optimization problem) Consider the un-
constrained optimization problem

min
u

J(u, d) =
[
u
d

]T [
Juu Jud

JT
ud Jdd

] [
u
d

]
(2)

and a set of noisy measurements ym = y + ny, where
y = Gyu + Gy

dd. Assume that nc = nu constraints
c = Hym = cs, with rank(H) = nc, are added to the
problem, which will result in a non-optimal solution with
a loss L = J(u, d)−Jopt(d). Consider disturbances d and
noise ny with magnitudes

d = Wdd
′; ny = Wnyny′

;
∣∣∣∣∣∣∣∣[ d′

ny′

]∣∣∣∣∣∣∣∣
2

≤ 1. (3)

Then for a given H, the worst-case loss introduced by
adding the constraint c = Hy is Lwc = σ̄(M)/2, where
M is

M �
[
Md Mny

]
Md = −J1/2

uu (HGy)−1HFWd

Mn = −J1/2
uu (HGy)−1HWny

(4)

The optimal H that minimizes the loss can be found by
solving the convex optimization problem

min
H

‖HF̃‖F

subject to HGy = J1/2
uu

(5)
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Here F̃ =
[
FWd Wny

]
and F = −(GyJ−1

uu Jud − Gy
d).

The reason for using the Frobenius norm is that min-
imization of this norm also minimizes σ̄(M) Kariwala
et al. [2008].

Derivation of multivariable PID controller

Assuming that the available“measurements”in y include
the present, integrated, and derivative value of the out-
put, Theorem 1 can be used for design of multivariable
PID controllers. The following procedure is proposed:

1. To include integral action in the LQ problem for-
mulation, augment the plant with nd = ny distur-
bances such that offset-free tracking is guaranteed,
i.e. by using the rank-conditions from [Pannocchia
and Rawlings, 2003], and nσ = nd integrators that
belongs to the controller. The augmented plant be-
comes:⎡⎣ẋ

σ̇

ḋ

⎤⎦ =

⎡⎣A 0 Bd

C 0 Cd

0 0 0

⎤⎦
︸ ︷︷ ︸

Ã

⎡⎣x
σ
d

⎤⎦ +

⎡⎣B
0
0

⎤⎦
︸ ︷︷ ︸

B̃

u

⎡⎣yP

yI

yD

⎤⎦ =

⎡⎣ C 0 0
0 I 0

CA 0 CBd

⎤⎦
︸ ︷︷ ︸

C̃

⎡⎣x
σ
d

⎤⎦ +

⎡⎣ 0
0

CB

⎤⎦
︸ ︷︷ ︸

D̃

u +

⎡⎣ny
P

ny
I

ny
D

⎤⎦
(6)

This system can be discretized to

x̃k+1 = Φx̃k + Γuk

ỹk = C̃x̃k + D̃uk + ñy
(7)

Here x̃k = (xk, σk, dk), ŷk = (yP
k , yI

k, yD
k ) and ñy =

(ny
P , ny

I , ny
D).

2. Define the LQ-objective for the control problem,

min
U

J(U, x(0)) =
∞∑

i=0

xT
k Qxk + ΔuT

k RΔΔuk

subject to x0 = x(0) and
equation (7) for k = 0, 1, 2, . . . ,

(8)

where U � (u0, u1, u2, . . . ).



3. Convert (8) to a finite optimization problem by us-
ing for k ≥ N , uk = −KLQRxk. This gives an
objective function on the form

J(u0, u1, . . . , uN−1, x0) = xT
NPxN+

N−1∑
i=0

xT
k Qxk + ΔuT

k RΔΔuk,
(9)

where P is a solution of a Lyapunov equation, see
Scokaert and Rawlings [1998].

4. Substitute the model equations into the objective
function, to get an objective on the form (2), with

Juu

2
=

⎡⎢⎣ ΓTPΓ ΓTΦTKΓ ... ΓT(ΦN−1)TPΓ

ΓTPΦΓ ΓTPΓ ... ΓT(ΦN−2)TPΓ

...
...

. . .
...

ΓTPΦN−1Γ ΓTPΦN−2Γ ... ΓTPΓ

⎤⎥⎦
+ MT

[
RΔ

. . .
RΔ

]
M,

(10)

where

M =

[−1 1

. . . . . .
−1 1

]
∈ R

nu(N−1)×nuN , (11)

and

Jud

2
=

⎡⎢⎢⎢⎣
ΓT

ΓT

. . .
ΓT

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

P
PΦ
...

PΦN−1

⎤⎥⎥⎥⎦ Φ (12)

Here u = (u0, u1, . . . , uN−1) and d = x(0).

5. We now let the “measurements” in Theorem 1 in-
clude the process outputs and the inputs, y =
(yP

k , yI
k, yD

k , uk, . . . , uk+N−1). These variables can
be written as

y = Gyu + Gy
dd (13)

with

Gy =

⎡⎣D̃ 0
I 0
0 I

⎤⎦ ; Gy
d =

[
C̃ 0

]
, (14)

where 0 is a matrix of zeros of appropriate dimen-
sions and I is an identity matrix of appropriate di-
mensions.

6. We can now compute the sensitivity matrix F =
−(GyJ−1

uu Jud−Gy
d) and use (5) in Theorem 1 to find

the optimal H. This convex optimization problem
can be solved for example with cvx, a package for
specifying and solving convex programs [Grant and
Boyd, 2008], with the following MatlabTM code:

cvx_begin
variable H(N*nu,ny+nu*N);
minimize norm(H*Ftilde,’fro’)
subject to

H*Gy == sqrtm(Juu);
cvx_end

The optimal H combines Hy such that when con-
trolled to the constant setpoint of 0 gives minimum
operational loss from the optimal solution, which is
defined by the solution of (8) when the full state
vector x(0) is available for measurement.

7. From Alstad et al. [2008] we have that for an op-
timal H̃, H = DH̃ will still be optimal with re-
spect to the optimization problem in (5) provided
that the nc × nc D-matrix is non-singular. Let
H̃ = [Hy Hu]. For linearly independent inputs we
have that Hu is non-singular, hence another opti-
mal H is H = (Hu)−1H̃ = [(Hu)−1Hy I].

The H matrix is a Nnu×(3ny +Nnu) matrix. The
first nu rows of Hy = 0 has this information:

KP yP
k +KIy

I
k+KDyD

k +Iuk+0uk+1+· · ·+0uk+N−1 = 0
(15)

We solve for uk and finally get the LQ-optimal mul-
tivariable PID controller:

uk = −(KP yP
k + KIy

I
k + KDyD

k ) (16)

This is the MIMO PID approximation of the original LQ
problem. To guarantee closed loop stability a separate
analysis is required.

Conclusions

In this extended abstract we outlined how to find a mul-
tivariable LQ-optimal PID controller based on convex
optimization. This is a significant contribution because
previous work indicates that this problem is non-convex.
Examples will be given in the presentation.
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