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Abstract: We study flatness of two-input control-affine systems, defined on an n-dimensional
state-space. We give a complete geometric characterization of systems that become static
feedback linearizable after a one-fold prolongation of a suitably chosen control. They form a
particular class of flat systems: they are of differential weight n+3. We provide a system of first
order PDE’s to be solved in order to find all minimal flat outputs. We illustrate our results by
two examples: the induction motor and the polymerization reactor.
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1. INTRODUCTION

In this paper, we study flatness of nonlinear control
systems of the form

Ξ : ẋ = F (x, u),

where x is the state defined on a open subset M of Rn
and u is the control taking values in an open subset U of
Rm (more generally, an n-dimensional manifold M and an
m-dimensional manifold U). The dynamics F are smooth
and the word smooth will always mean C∞-smooth.

The notion of flatness has been introduced in control
theory in the 1990’s by Fliess, Lévine, Martin and Rou-
chon (Fliess et al. [1992, 1995], see also Martin [1992],
Jakubczyk [1993], Pomet [1995]) and has attracted a lot
of attention because of its multiple applications in the
problem of trajectory tracking and motion planning (Fliess
et al. [1999], Pomet [1997], Pereira da Silva and Cor-
rêa Filho [2001], Martin et al. [2003], Respondek [2003],
Schlacher and Schoeberl [2007], Lévine [2009]). The fun-
damental property of flat systems is that all their so-
lutions may be parametrized by m functions and their
time-derivatives, m being the number of controls. More
precisely, the system Ξ : ẋ = F (x, u) is flat if we can
find m functions, ϕi(x, u, . . . , u(r)), for some r ≥ 0, called
flat outputs, such that

x = γ(ϕ, . . . , ϕ(s)) and u = δ(ϕ, . . . , ϕ(s)), (1)
for a certain integer s, where ϕ = (ϕ1, . . . , ϕm). Therefore
all state and control variables can be determined from the
flat outputs without integration and all trajectories of the
system can be completely parameterized.

It is well known that systems linearizable via invert-
ible static feedback are flat. Their description (1) uses
the minimal possible, which is n + m, number of time-
derivatives of the components of flat outputs ϕi. For any
flat system, that is not static feedback linearizable, the
minimal number of derivatives needed to express x and u

(which will be called the differential weight) is thus bigger
than n + m and measures actually the smallest possible
dimension of a precompensator linearizing dynamically the
system. Any single input-system is flat if and only if it is
static feedback linearizable (and thus of differential weight
n+1), see Charlet et al. [1991], Pomet [1995]. Therefore the
simplest systems for which the differential weight is bigger
than n + m are systems with two controls linearizable
via one-dimensional precompensator, thus of differential
weight n + 3. They form the class that we are studying
in the paper: our goal is to give a geometric character-
ization of two-input control-affine systems that become
static feedback linearizable after a one-fold prolongation
of a suitably chosen control.

The paper is organized as follows. In Section 2, we recall
the definition of flatness and define the notion of differen-
tial weight of a flat system. In Section 3, we give our main
results. We characterize two-input control-affine systems
linearizable via one-fold prolongation, that is, flat systems,
of differential weight n+3. We give in Section 4 a system of
first order PDE’s to be solved in order to find all minimal
flat outputs. We illustrate our results by two examples in
Section 5 and provide sketches of the proofs in Section 6.

2. FLATNESS

Flat systems form a class of control systems, whose set
of trajectories can be parameterized by a finite number of
functions and their time-derivatives. Fix an integer l ≥ −1
and denote M l = M × U × Rml and ūl = (u, u̇, . . . , u(l)).
For l = −1, we put M−1 = M and ū−1 is empty.
Definition 2.1. The system Ξ : ẋ = F (x, u) is flat
at (x0, ū

l
0) ∈ M l, for l ≥ −1, if there exists a neigh-

borhood Ol of (x0, ū
l
0) and m smooth functions ϕi =

ϕi(x, u, u̇, . . . , u
(l)), 1 ≤ i ≤ m, defined in Ol, having the

following property : there exist an integer s and smooth
functions γi, 1 ≤ i ≤ n, and δj , 1 ≤ j ≤ m, such that
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xi = γi(ϕ, ϕ̇, . . . , ϕ
(s)) and uj = δj(ϕ, ϕ̇, . . . , ϕ

(s))

along any trajectory x(t) given by a control u(t) that sat-
isfies (x(t), u(t), . . . , u(l)(t)) ∈ Ol, where ϕ = (ϕ1, . . . , ϕm)
and is called a flat output.

When necessary to indicate the number of derivatives of
u on which the flat outputs ϕi depend, we will say that
the system Ξ is (x, u, · · · , u(r))-flat if u(r) is the highest
derivative on which ϕi depend and in the particular case
ϕi = ϕi(x), we will say that the system is x-flat. In
general, r is smaller than the integer l needed to define
the neighborhood Ol which, in turn, is smaller than the
number of derivatives of ϕi that are involved (in our
study r = −1 and l = −1 or 0). The minimal number
of derivatives of components of a flat output, needed to
express x and u, will be called the differential weight of a
flat output and will be formalized as follows. By definition,
for any flat output ϕ of the flat system Ξ there exist
integers s1, . . . , sm such that

x = γ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m )

u = δ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m ),

and let (λ1, . . . , λm) be the smallest m-tuple of integers
verifying this property (which always exists, see Respon-
dek [2003]). We will call

∑m
i=1(λi + 1) the differential

weight of ϕ. A flat output ϕ of Ξ is called minimal if
its differential weight is the lowest among all flat outputs
of Ξ. We define the differential weight of a flat system to
be the differential weight of a minimal flat output.

Consider a control-affine system

Σ : ẋ = f(x) +

m∑
i=1

uigi(x),

where f and g1, · · · , gm are smooth vector fields on M .
The system Σ is linearizable by static feedback if it is
equivalent via a diffeomorphism z = φ(x) and an invertible
feedback transformation, u = α(x) + β(x)v, to a linear
controllable system Λ : ż = Az + Bv. The problem of
static feedback linearization was solved by Jakubczyk and
Respondek [1980] and Hunt and Su [1981] who gave the
following geometric necessary and sufficient conditions.
Define the distributions Di+1 = Di + [f,Di], where D0 =
span{g1, · · · , gm}. Σ is locally static feedback linearizable
if and only if for any i ≥ 0, the distributions Di are of
constant rank, involutive and Dn−1 = TM . Therefore the
geometry of static feedback linearizable systems is given by
the following sequence of nested involutive distributions :

D0 ⊂ D1 ⊂ · · · ⊂ Dn−1 = TM.

A feedback linearizable system is static feedback equiva-
lent to the Brunovsky canonical form

(Br)
żij = zij+1

żiρi = vi

where 1 ≤ i ≤ m, 1 ≤ j ≤ ρi − 1, and
∑m
i=1 ρi = n,

see Brunovsky [1970], and is clearly flat with ϕ =
(z11, · · · , zm1) being a minimal flat output (of differential
weight n + m). In fact, an equivalent way of describing
static feedback linearizable systems is that they are flat
systems of differential weight n+m.

In general, a flat system is not linearizable by invertible
static feedback, with the exception of the single-input case
where flatness reduces to static feedback linearization. Flat

systems can be seen as a generalization of linear systems.
Namely they are linearizable via dynamic, invertible and
endogenous feedback, see Fliess et al. [1992, 1995], Martin
[1992], Pomet [1995, 1997]. Our goal is thus to describe
the simplest flat systems that are not static feedback
linearizable: two-inputs control-affine systems that become
static feedback linearizable after one-fold prolongation,
which is the simplest dynamic feedback. They are flat of
differential weight n+ 3. In this paper, we will completely
characterize them and show how their geometry differs
but also how it reminds that given by the involutive
distributions Di for static feedback linearizable systems.

3. MAIN RESULTS

Throughout, we will consider two-input control-affine sys-
tems of the form

Σ : ẋ = f(x) + u1g1(x) + u2g2(x), (2)
where x ∈ M , u = (u1, u2)t ∈ R2 and f , g1, and g2 are
smooth vector fields onM . We deal only with systems that
are not static feedback linearizable. This occurs if there
exists an integer k such that Dk is not involutive. Suppose
that k is the smallest integer satisfying that property
and assume rkDk − rkDk−1 = 2 (see Proposition 7, in
Section 6, asserting that the latter is necessary for dynamic
linearizability and thus for flatness). From now on, unless
stated otherwise, we assume that all ranks involved are
constant in a neighborhood of a given x0 ∈M . All results
presented here are valid on an open and dense subset of
M × U ×Rml (the integer l being large enough) and hold
locally, around a given point (x0, ū

l
0) of that set.

Proposition 1. The following conditions are equivalent:

(i) Σ is flat at (x0, ū
l
0), with the differential weight n+3;

(ii) Σ is x-flat at (x0, u0), with the differential weight
n+ 3;

(iii) There exists, around x0, an invertible static feedback
transformation u = α(x) + β(x)ũ, bringing the
system Σ into the form Σ̃ : ẋ = f̃(x) + ũ1g̃1(x) +
ũ2g̃2(x), such that the prolongation

Σ̃(1,0) :

{
ẋ = f̃(x) + y1g̃1(x) + v2g̃2(x)
ẏ1 = v1

is locally static feedback linearizable, where y1 = ũ1,
v2 = ũ2, f̃ = f + αg and g̃ = gβ, where g = (g1, g2)
and g̃ = (g̃1, g̃2).

A system Σ satisfying (iii) will be called dynamically lin-
earizable via invertible one-fold prolongation. Notice that
Σ̃(1,0) is, indeed, obtained by prolonging the control ũ1 as
v1 = ˙̃u1 (which explains the notation). The above results
asserts that for systems of weight n + 3, flatness and x-
flatness coincide and that, moreover, they are equivalent to
linearizability via the simplest dynamic feedback, namely
one-fold preintegration.

Our main result describing flat systems of differential
weight n+3 is given by two following theorems correspond-
ing to the first noninvolutive distribution Dk being either
D0, i.e., k = 0 (Theorem 3) or Dk, for k ≥ 1 (Theorem 2).
For both theorems, we assume that D̄k 6= TM , where D̄k is
the involutive closure of Dk. The particular case D̄k = TM
(met in applications, see Example 5.1) will be discussed at
the end of this section (Theorem 4).
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Theorem 2. Assume k ≥ 1 and D̄k 6= TM . A control
system Σ, given by (2), is x-flat at x0, with the differential
weight n+ 3, if and only if

(A1) rk D̄k = 2k + 3;
(A2) rk (D̄k+[f,Dk]) = 2k+4, implying the existence of a

nonzero vector field gc ∈ D0 such that adk+1
f gc ∈ D̄k;

(A3) The distributions Bi, for i ≥ k, are involutive, where
Bk = Dk−1 + span {adkfgc} and Bi+1 = Bi + [f,Bi];

(A4) There exists ρ such that Bρ = TM .

The geometry of the systems described by Theorem 2 can
be summarized by the following sequence of inclusions:
D0 ⊂

2

· · · ⊂
2

Dk−1 ⊂
1

Bk ⊂
1

Dk ⊂
1

D̄k = Bk+1 ⊂
2

· · · ⊂
2

Bµ ⊂
1

· · · ⊂
1

Bρ = TM

where all the distributions, except Dk, are involutive and
the integers beneath “⊂” indicate coranks. Notice the
existence of a corank one involutive subdistribution Bk

in Dk which plays an important role in our analysis. It
is easy to check that D̄k = Bk+1. Indeed, by definition,
Bk+1 = Dk + span {adk+1

f gc} and is involutive. Moreover,
rkBk+1 = 2k + 3, otherwise we obtain Bk+1 = Dk and
Dk would be involutive. Since Dk ⊂ Bk+1 and rkBk+1 =
2k + 3, it follows that D̄k = Bk+1. Thus the direction
completing Dk to D̄k has to be colinear with adk+1

f gc.

The previous theorem enables us to define, up to a multi-
plicative function, the characteristic control, i.e., the con-
trol to be prolonged in order to obtain a locally static feed-
back linearizable Σ̃(1,0). The vector field gc ∈ D0 (see (A2))
can be expressed as gc = β1g1 + β2g2, for some smooth
functions (not vanishing simultaneously) on M . We de-
fine the characteristic control as uc(t) = β2(x(t))u1(t) −
β1(x(t))u2(t) and it is the characteristic control that needs
to be preintegrated in order to dynamically linearize the
system, that is, we put v1 = d

dt (β2u1 − β1u2) = d
dt ũ1.

If k = 0, i.e., the first noninvolutive distribution is D0,
then a similar result holds, but in the chain of involutive
subdistributions B0 ⊂ B1 ⊂ B2 ⊂ ... (playing the role
of Bk ⊂ Bk+1 ⊂ Bk+2 ⊂ ...), with B0 = span {gc}, the
distribution B1 is not defined as Bk+1 but as G1 = D0 +
[D0,D0] (compare (A3) and (A3)′). Moreover, flat systems
with k = 0 exhibit a singularity in the control space
(created by one-fold prolongation of the characteristic
control) which is defined by
Using(x) = {u ∈ R2 : (g1∧gc∧[f+u1g1+u2gc, gc])(x) = 0}
and excluded by (CR).
Theorem 3. Assume k = 0 and D̄k 6= TM . A system
Σ, given by (2), is x-flat at (x0, u0), with the differential
weight n+ 3, if and only if

(A1)’ G1 is involutive;
(A2)’ rkG1 + [f,D0] = 4, implying the existence of a

nonzero vector field gc ∈ D0 such that adfgc ∈ G1;
(A3)’ The distributions Bi, for i ≥ 1, are involutive, where

B1 = G1 and Bi+1 = Bi + [f,Bi], for i ≥ 1;
(A4)’ There exists ρ such that Bρ = TM ;
(CR) u0 /∈ Using(x0).

The conditions of both theorems are verifiable, i.e., given
a two-input control-affine system, we can easily verify
whether it is flat of weight n+ 3 and verification involves

derivations and algebraic operations only, without solving
PDE’s or bringing the system into a normal form.

Let us now consider the case D̄k = TM . It is immediate,
by Proposition 7 (in Section 6), that n = 2k + 3. The
involutivity of Dk can be lost in two different ways: either
[Dk−1,Dk] ⊂ Dk and [adkfg1, ad

k
fg2] /∈ Dk or [Dk−1,Dk] 6⊂

Dk. As asserts Theorem 4 below, in the first case, the
system is flat of differential weight n+3 without any addi-
tional condition whereas in the second case, the system Σ
has to verify some additional conditions analogous to those
of Theorem 2. Since the condition (A2), enabling us to
compute the involutive subdistribution Bk, has no sense in
that case, we have to define Bk in another way. To this end,
we introduce the characteristic distribution of Dk, defined
as follows. For a distribution D, a characteristic vector
field c belongs to D and satisfies [c,D] ⊂ D. The char-
acteristic distribution of D is the distribution spanned by
all its characteristic vector fields. It follows directly from
the Jacobi identity that the characteristic distribution is
always involutive.

In the case k = 0 and Dk = TM , the singular controls are
not defined by Using(x) but as
U ′sing(x) = {u ∈ R2 : dim span {g1, g2, adfg1 + u2[g2, g1],

adfg2 + u1[g1, g2]}(x) = 3}.
Theorem 4. Assume k ≥ 0 and D̄k = TM . Then

(i) either [Dk−1,Dk] ⊂ Dk and then Σ is x-flat at any
x0 ∈ M (x-flat at any (x0, u0) ∈ M × R2, such that
u0 /∈ U ′sing(x0), if k = 0). Moreover, if Σ is flat, it is
flat of differential weight n+ 3.

(ii) or [Dk−1,Dk] 6⊂ Dk, then k ≥ 1 and Σ is x-flat of
differential weight n + 3 at x0 ∈ M if and only if,
around x0, Σ satisfies:
(C1) rk Ck = 2k, where Ck is the characteristic

distribution of Dk ;
(C2) rk (Ck ∩ Dk−1) = 2k − 1;
(C3) The distribution Bk = Ck +Dk−1 is involutive;
(C4) Bk+1 = TM , where Bk+1 = Bk + [f,Bk].

It can be shown that in the case [Dk−1,Dk] 6⊂ Dk
(no mater whether D̄k = TM or not), the involutive
subdistribution Bk can always be defined as above, i.e.,
the definition of Bk given by item (A3) of Theorem 2 and
that provided by conditions (C1)− (C3) of Theorem 4 are
equivalent if [Dk−1,Dk] 6⊂ Dk. This is not valid anymore
if [Dk−1,Dk] ⊂ Dk; indeed, in that case Ck = Dk−1, (C2)
is not verified and (C3) would give Bk = Dk−1.

4. CALCULATING FLAT OUTPUTS

In this section, firstly, we answer the question whether a
given pair of smooth functions on M forms a flat output
and, secondly, provide a system of PDS’s to be solved in
order to find all minimal flat outputs. In particular, we
will discus uniqueness of flat outputs for flat systems of
differential weight n+ 3. Let µ be the largest integer such
that corank (Bµ−1 ⊂ Bµ) is two and ρ is the smallest
integer such that Bρ = TM .
Proposition 5. Consider a control system Σ, given by (2),
that is flat at x0 (at (x0, u0), if k = 0), of weight n+ 3.

(i) Assume D̄k 6= TM or D̄k = TM and [Dk−1,Dk] 6⊂
Dk. Then a pair (ϕ1, ϕ2) of smooth functions on a
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neighborhood of x0 is a minimal x-flat output at x0 if
and only if (after permuting ϕ1 and ϕ2, if necessary)

dϕ1 ⊥ Bρ−1, dϕ2 ⊥ Bµ−1,
and dϕ2 ∧ dϕ1 ∧ dLfϕ1 ∧ · · · ∧ dLρ−µf ϕ1(x0) 6= 0.
Moreover, the pair (ϕ1, ϕ2) is unique, up to a dif-
feomorphism, i.e., if (ϕ̃1, ϕ̃2) is another minimal
x-flat output, then there exist smooth maps h1
and h2, smoothly invertible (h2 with respect to its
first argument), such that ϕ̃1 = h1(ϕ1) and ϕ̃2 =

h2(ϕ2, ϕ1, Lfϕ1, . . . , L
ρ−µ
f ϕ1); if ρ = µ, then ϕ̃i =

hi(ϕ1, ϕ2), 1 ≤ i ≤ 2, and h = (h1, h2) is a diffeo-
morphism.

(ii) Assume D̄k = TM and [Dk−1,Dk] ⊂ Dk. Then a
pair (ϕ1, ϕ2) of smooth functions on a neighborhood
of x0 is a minimal x-flat output at x0 if and only if
(dϕ1 ∧ dϕ2)(x0) 6= 0 and the involutive distribution
L = (span {dϕ1, dϕ2})⊥ satisfies

Dk−1 ⊂ L ⊂ Dk.
Moreover, for any function ϕ1, satisfying dϕ1 ⊥ Dk−1
and (Ladk

f
g1ϕ1, Ladk

f
g2ϕ1)(x0) 6= (0, 0), there exists

ϕ2 such that the pair (ϕ1, ϕ2) is a minimal x-flat
output; given any such ϕ1, the choice of ϕ2 is unique,
up to a diffeomorphism, that is, if (ϕ1, ϕ̃2) is another
minimal x-flat output, then there exists a smooth
map h, smoothly invertible with respect to the second
argument such that ϕ̃2 = h(ϕ1, ϕ2).

In the case D̄k = TM and [Dk−1,Dk] ⊂ Dk, there is as
many flat outputs as functions of three variables. Indeed,
the distribution Dk−1 is involutive and of corank three.
According to item (ii), ϕ1 can be chosen as any function
of three independent functions, whose differentials span
(Dk−1)⊥ and then there exists a unique ϕ2 (up to a
diffeomorphism) completing it to a minimal x-flat output.
This reminds very much non-uniqueness of flat outputs of
two-control driftless systems, Li and Respondek [2012].

As an immediate corollary of Proposition 5, we obtain
a system of PDE’s whose solutions give all minimal x-
flat outputs. In the case D̄k 6= TM or D̄k = TM and
[Dk−1,Dk] 6⊂ Dk, the vector field gc is well defined, so
denote v2j−1 = adj−1f gc, for 1 ≤ j ≤ µ + 1, and v2j =

adj−1f g1, for 1 ≤ j ≤ µ, and complete them, for 1 ≤ i ≤ ρ−
µ, by v2µ+1+i = adµ+i−1f g1, if ad

µ
f g1 6∈ Bµ, or by v2µ+1+i =

adµ+if gc, otherwise. We thus have defined n−1 vector fields
v1, . . . , vn−1 satisfying Bµ−1 = span {v1, . . . , v2µ−1} and
Bρ−1 = span {v1, . . . , vn−1}. In this case the result follows
immediately and is stated as item (i) of proposition below.
If D̄k = TM and [Dk−1,Dk] ⊂ Dk, then for 1 ≤ j ≤ k = µ,
denote wj = adj−1f g1 and wµ+j = adj−1f g2. Clearly,
Dk−1 = span {w1, . . . , w2k} but we have to construct one
more vector field w, as described in item (ii).
Proposition 6. Consider a system Σ, given by (2), that is
flat at x0 (at (x0, u0), if k = 0), of differential weight n+3.

(i) Assume D̄k 6= TM or D̄k = TM and [Dk−1,Dk] 6⊂
Dk. Then a pair (ϕ1, ϕ2) of smooth functions on a
neighborhood of x0 is a minimal x-flat output at x0 if
and only if (after permuting ϕ1 and ϕ2, if necessary)

Lvjϕ1 = 0, 1 ≤ j ≤ n− 1
Lvjϕ2 = 0, 1 ≤ j ≤ 2µ− 1

and dϕ2 ∧ dϕ1 ∧ dLfϕ1 ∧ · · · ∧ dLρ−µf ϕ1(x0) 6= 0.
(ii) Assume D̄k = TM and [Dk−1,Dk] ⊂ Dk. Then a

pair (ϕ1, ϕ2) of smooth functions on a neighborhood
of x0 is a minimal x-flat output at x0 if and only if
(after permuting ϕ1 and ϕ2, if necessary) ϕ1 is any
function satisfying

Lwjϕ1 = 0, 1 ≤ j ≤ 2k,

and (Ladk
f
g1ϕ1, Ladk

f
g2ϕ1)(x0) 6= (0, 0) and, for any

ϕ1 as above, ϕ2 is given by
Lwjϕ2 = 0, 1 ≤ j ≤ 2k, and Lwϕ2 = 0,

where w = (Ladk
f
g2ϕ1)adkfg1 − (Ladk

f
g1ϕ1)adkfg2 and

(dϕ1 ∧ dϕ2)(x0) 6= 0.

Clearly, the distribution L spanned by w and Dk−1 is of
corank two and, as can be proved, involutive thus implying
that for any ϕ1 we can solve the system of equations for
ϕ2. Different choices of ϕ1 lead, in general, to different
involutive distributions L and thus to different functions
ϕ2 and, as we have mentioned, there is as many choices as
nondegenerate functions of three variables.

5. EXAMPLES

5.1 Induction motor

Consider the induction motor (called direct-quadrature
model in Chiasson [1998], see also Martin and Rouchon
[1996], Delaleau et al. [2001]):

ΣIM



ω̇ = µψdiq −
τL

J
ψ̇d = −ηψd + ηMid

ρ̇ = npω +
ηMiq

ψd

i̇d = −γid +
ηMψd

σLRLS
+ npωiq +

ηMi2q

ψd
+

ud

σLS

i̇q = −γiq −
Mnpωψd

σLRLS
− npωid −

ηMidiq

ψd
+

uq

σLS

where ud, uq are the inputs (the stator voltages), id and
iq are the stator currents, ψd and ρ are two well-chosen
functions of the rotor fluxes (see Chiasson [1998] for their
precise expression) and ω is the rotor speed. All other
parameters of the motor (the inductances LS and LR, the
load-torque τL, etc.) can be supposed constant and known.
After applying a static feedback transformation (which has
also a physical interpretation, see Chiasson [1998] for more
details) the system is transformed into the form:

Σ̃IM

 ω̇ = µψdiq −
τL

J
ρ̇ = npω +

ηMiq

ψd

ψ̇d = −ηψd + ηMid i̇q = vq
i̇d = vd

This system is not static feedback linearizable. Indeed,
the distribution D1 = span { ∂

∂id
, ∂
∂iq
, ∂
∂ψd

, ∂
∂ω + ηM

µψ2
d

∂
∂ρ} is

not involutive, D̄1 = TM and [D0,D1] ⊂ D1. Here k = 1
and we are in the case of Theorem 4(i) and the system
is flat without additional condition, a property that has
been already observed and applied, Martin and Rouchon
[1996], Delaleau et al. [2001].

According to Propositions 5(ii) and 6(ii), the system
admits many flat outputs (the choice being parameterized
by a function of three well defined variables) and let us
calculate some of them. Recall that a pair of independent
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functions (ϕ1, ϕ2) is a minimal x-flat output if and only
if the involutive distribution L = (span {dϕ1, dϕ2})⊥
satisfies D0 ⊂ L ⊂ D1. Hence L has to be of the form L =
span { ∂

∂ĩd
, ∂
∂ĩq
, h}, where h is any vector field of the form

h = α ∂
∂ψd

+ β( ∂
∂ω + ηM

µψ2
d

∂
∂ρ ) such that L is involutive and

(α, β) 6= (0, 0). Let us first take L = span { ∂
∂id
, ∂
∂iq
, ∂
∂ψd
}.

The associated flat outputs are independent functions of
ω, ρ and we can take (ϕ1, varphi2) = (ω, ρ).

Let us now give some less intuitive minimal flat outputs.
Choose L = span { ∂

∂id
, ∂
∂iq
, ∂
∂ω+ ηM

µψ2
d

∂
∂ρ}. Any two indepen-

dent functions ϕ1 and ϕ2 depending on ω, ψd, ρ whose dif-
ferentials annihilate L, that is, satisfying ∂ϕi

∂ω + ηM
µψ2

d

∂ϕi
∂ρ ≡ 0,

for 1 ≤ i ≤ 2, can be taken as minimal flat outputs. Solving
those equations, we get ϕi = ϕi(ψd,

ηM
µψ2

d

ω − ρ). We can

choose, for instance, (ϕ1, ϕ2) = (ψd,
ηM
µψ2

d

ω − ρ).

Finally, let L = span { ∂
∂id
, ∂
∂iq
, ∂
∂ψd

+ ∂
∂ω + ηM

µψ2
d

∂
∂ρ}. The

functions ϕ1 and ϕ2 depend on ω, ψd, ρ and satisfy
∂ϕi
∂ψd

+ ∂ϕi
∂ω + ηM

µψ2
d

∂ϕi
∂ρ ≡ 0, for 1 ≤ i ≤ 2. Solving those

equations, we obtain ϕi = ϕi(ρ + ηM
µψd

, ψd − ω). We can
choose (ϕ1, ϕ2) = (ρ+ ηM

µψd
, ψd − ω).

5.2 Polymerization reactor

Consider the reactor, Martin et al. [2003], Rouchon [1995]:

Σ



Ċm =
Cmms

τ
− (1 + ε̄

µ

µ+MmCm
)
Cm

τ
+Rm(Cm, Ci, Cs, T )

Ċi = −ki(T )Ci + u2
Ciis

V
− (1 + ε̄

µ

µ+MmCm
)
Ci

τ

Ċs = u2
Csis

V
+
Csms

τ
− (1 + ε̄

µ

µ+MmCm
)
Cs

τ

µ̇ = −MmRm(Cm, Ci, Cs, T ) − (1 + ε̄
µ

µ+MmCm
)
µ

τ
Ṫ = θ(Cm, Ci, Cs, µ, T ) + α1Tj
Ṫj = f6(T, Tj) + α4u1

where u1, u2 are the control inputs and Cmms , Ciis , Csis ,
Csms , Mm, ε̄, τ , V , α1, α4 are constant parameters. The
functions Rm, ki, θ and f6 are not well-known and can
be considered arbitrary: they derive from experimental
data and involve kinetic laws, heat transfer coefficients and
reaction enthalpies. After applying a change of coordinates
and a suitable static feedback transformation, we obtain :

Σ̃PR


˙̃Ci = C̃s

˙̃Cm = µ̃
˙̃Cs = ũ1 ˙̃µ = b(C̃m, C̃i, C̃s, µ̃, T̃ )

˙̃T = T̃j
˙̃Tj = ũ2

where b is a smooth function depending explicitly on
T̃ = T . If ( ∂2b

∂T̃∂C̃s
, ∂

2b
∂C̃2

s

) 6= (0, 0), then the distribution

D1 = span { ∂
∂C̃s

, ∂
∂C̃i

+ ∂b
∂C̃s

∂
∂µ̃ ,

∂
∂T̃j

, ∂
∂T } is noninvolutive,

rk D̄1 = 5 and D̄1 6= TM . Consequently, we are in the case
of Theorem 2, with k = 1. Let us suppose that ∂2b

∂C̃2
s

6= 0.
Therefore, [D0,D1] 6⊂ D1 and the corank one involutive
subdistribution B1 can be computed in two different
ways (see condition (A3) of Theorem 2 and the comment
following Theorem 4). We will calculate B1 by applying
the procedure given by Theorem 2. The distribution

D̄1 + [f,D1] = span { ∂

∂C̃s
,
∂

∂C̃i
,
∂

∂T̃j
,
∂

∂T
,
∂

∂µ̃
,
∂b

∂C̃s

∂

∂C̃m
}

is of rank 6 (provided that ∂b
∂C̃s

does not vanish) and
g̃2 = ∂

∂T̃j
is such that adf g̃2 ∈ D̄1. Therefore, item (A2) of

Theorem 2 is verified and g̃2 plays the role of gc. Thus the
corank one subdistribution B1 is given by

B1 = D0 + span {adf g̃2} = span { ∂

∂C̃s
,
∂

∂T̃j
,
∂

∂T
}

and is clearly involutive. We have B2 = B1 + [f,B1]
= span { ∂

∂C̃s
, ∂
∂C̃i

, ∂
∂T̃j

, ∂
∂T ,

∂
∂µ} involutive and B3 = TM .

The system Σ̃PR satisfies all conditions of Theorem 2,
hence the corresponding prolongation Σ̃

(1,0)
PR , obtained by

prolonging ũ1, is locally static feedback linearizable and
can be brought into the Brunovsky canonical form with
C̃m = MmCm + µ, C̃i = Ci − Ciis

Csis
Cs playing the role

of top variables. Let us now compute the minimal flat
outputs (ϕ1, ϕ2) of Σ̃PR. We are in the first case of
Proposition 5, with ρ = 3 and µ = 2. Since the differential
of ϕ1 annihilates B2, it follows that ϕ1 = ϕ1(C̃m) with
∂ϕ1

∂C̃m
6= 0. The differential of ϕ2 annihilates B1 and satisfies

dϕ2 ∧ dϕ1 ∧ dLfϕ1 6= 0. This yields ϕ2 = ϕ2(C̃m, C̃i, µ̃)

with ∂ϕ2

∂C̃i
6= 0. Hence, a choice of minimal flat outputs is

(ϕ1, ϕ2) = (C̃m, C̃i).

6. SKETCHES OF PROOFS

6.1 Notations and useful results

Consider a control system of the form Σ : ẋ = f(x) +
u1g1(x) + u2g2(x). By Σ(1,0) we will denote the system Σ
with one-fold prolongation of the first control, that is

Σ(1,0) :

{
ẋ = f(x) + y1g1(x) + +v2g2(x)
ẏ1 = v1

with y1 = u1 and v2 = u2. Throughout this section,

F =

n∑
i=1

(fi + y1g1i)
∂

∂xi

stands for the drift and

G1 =
∂

∂y1
, H2 =

n∑
i=1

g2i
∂

∂xi

denote the control vector fields of the prolonged system. To
Σ(1,0), we associate the distributions D0

p = span{G1, H2}
and Di+1

p = Di
p + [F,Di

p], for i ≥ 0, (the subindex p

referring to the prolonged system Σ(1,0)).

We start by stating two results needed in our proofs.
Proposition 7. Consider Σ given by (2), dynamically lin-
earizable via invertible one-fold prolongation and let Dk
be the first noninvolutive distribution. If k ≥ 1, then
rkDk − rkDk−1 = 2.
Proposition 8. Consider Σ given by (2), and let Dk be
the first noninvolutive distribution. Assume k ≥ 1 and
Dk satisfies the conditions (A1) − (A2) of Theorem 2. If
the distribution Bk = Dk−1 + span {adkfgc} is involutive,
where gc is defined by item (A2), then all distributions
E i = Di−1+span {adifgc}, for 1 ≤ i ≤ k−1, are involutive.
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6.2 Proof of Theorem 2
We give a sketch of the proof of Theorem 2, which is a
general result whereas Theorems 3 and 4 deal with the
particular cases k = 0 and D̄k = TM .
Necessity. Consider an x-flat system Σ : ẋ = f(x) +
u1g1(x) +u2g2(x) of weight n+ 3. By Proposition 1, there
exists an invertible feedback transformation u = α(x) +

β(x)ũ, bringing Σ into Σ̃ : ẋ = f̃(x) + ũ1g̃1(x) + ũ2h̃2(x),
such that the prolongation Σ̃(1,0) is locally static feedback
linearizable. For simplicity of notation, we drop the tilde,
but we keep distinguishing g1 from h2 (which could also
be denoted g2) whose control is not preintegrated. Since
Σ(1,0) is locally static feedback linearizable, for any i ≥ 0
the distributions Di

p are involutive, of constant rank, and
there exists an integer ρ such that rkDρ

p = n + 1. It can
be proved (by an induction argument) that, for 1 ≤ i ≤ k,

Di
p = span { ∂

∂y1
, g1, · · · , adi−1f g1, h2, · · · , adifh2}.

Since the intersection of involutive distributions is an
involutive distribution, it follows that
Bk = Dk

p ∩ TM = span {g1, · · · , adk−1f g1, h2, · · · , adkfh2}
is involutive. It is immediate that Dk−1 ⊂ Bk ⊂
Dk, where both inclusions are of corank one, otherwise
Bk = Dk and Dk would be involutive, which con-
tradicts our hypotheses. The involutivity of Dk+1

p =

span { ∂
∂y1

, g1, · · · , adkfg1, h2, · · · , ad
k+1
f h2} implies that of

Dk +span {adk+1
f h2}. It yields D̄k = Dk +span {adk+1

f h2}
and rk D̄k = 2k + 3. This gives (A1). Recall that Bi =
Bi−1 + [f,Bi−1], for i ≥ k + 1. We have

Dk+i
p = span { ∂

∂y1
}+Bk+i, i ≥ 1.

Consequently, the involutivity of Dk+i
p implies that of

Bk+i, for i ≥ 1. Moreover, rkDρ
p = n + 1, implying that

rkBρ = n, i.e., Bρ = TM , which proves (A3) and (A4). It
remains to show that rk (D̄k + [f,Dk]) = 2k + 4. We have
Dk+1
p = span { ∂

∂y1
}+D̄k. Assume adk+1

f g1 ∈ D̄k. Hence for
any vector field ξ ∈ Dk, we have [f, ξ] ∈ D̄k, implying that
D̄k+[f, D̄k] = D̄k. Therefore, for the prolonged system we
obtain Dk+2

p = span { ∂
∂y1
} + D̄k + [f, D̄k] = Dk+1

p , thus
contradicting the existence of ρ such that rkDρ

p = n + 1

(since D̄k 6= TM) and implying that Σ(1,0) is not static
feedback linearizable. By Proposition 1, the system Σ
would not be x-flat of differential weight n + 3 and thus
rk (D̄k + [f,Dk]) = 2k + 4 and (A2) holds.
Sufficiency: Consider a control system Σ : ẋ = f(x) +
u1g1(x) + u2g2(x) satisfying (A1)− (A4) and transform it
via a static feedback into Σ̃ : ẋ = f̃(x)+ ũ1g̃1(x)+ ũ2gc(x),
where gc is defined by (A2). It is immediate to see that the
prolongation Σ̃(1,0) is static feedback linearizable. Indeed,
the linearizability distributions Di

p of Σ̃(1,0) are of the form

Di
p = span { ∂

∂y1
}+ E i, 1 ≤ i ≤ k − 1,

Di
p = span { ∂

∂y1
}+Bi, i ≥ k

where E i = Di−1 + span {adifgc} and by Proposition 8
are involutive, for 1 ≤ i ≤ k − 1. The involutivity of E i
and Bi implies that of Di

p. Moreover, rkBρ = n, thus
rkDρ

p = n + 1 and Σ(1,0) is static feedback linearizable.
According to Proposition 1, Σ is flat of weight n+ 3.
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