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Abstract: The trajectory tracking problem for a group of unicycle-type robots is addressed and
solved by means of a partial state feedback strategy based on the leader-followers scheme using
an observer to estimate the orientation angle of each mobile robot. The control law is based
on an extended kinematic model where the output function to be controlled is the mid-point
of the wheels axis of each robot. This choice leads to an ill defined control law when the robot
is at rest. To avoid such a singularity, a complementary control law is enabled when the linear
velocity of each robot is close to zero. It is shown that the combination of a classical dynamic
full information controller with an exponentially convergent vehicle attitude observer yields an
asymptotically stable closed-loop system. Real-time experiments show the performance of the
proposed control scheme.
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1. INTRODUCTION

During the last 20 years, the coordination of multiple
mobile robots has emerged as a new research area of mobile
robotics and multi-agent systems theory. The applications
include toxic residues cleaning, transportation and ma-
nipulation of large objects, searching and rescue, security,
simulation of biological entities behaviors, etc Arai et al.
[2002]. Current research issues include motion coordina-
tion, task assignment, communication, etc Fukunaga and
Kahng [1997]. Applications of multi-robot coordination
have been mostly developed for wheeled mobile robots,
specifically unicycle-type robots, shown in Fig. 1. Despite
the apparent simplicity of this device, controlling it yields
to different kinds of challenges de Wit et al. [1996]. First,
the system in Fig. 1 is underactuated and has nonholo-
nomic constraints, i.e., the velocities of the system satisfy
non integrable constraints. As stated in Brockett [1983]
such nonholonomic systems cannot be stabilized by con-
tinuously differentiable, time invariant, state feedback con-
trollers. Because of this restriction, some works consider
the front points of robots as outputs to control avoiding
singularities in the control law Desai et al. [2001]. However,
the resulting control laws do not influence directly the
orientation angles which remain as internal dynamics.
From a technological point of view, other kind of problems
arise. For instance, the estimation of the position and
attitude of a mobile robot is not a simple task Jakubiak
et al. [2002], Noijen et al. [2005]. Even if the position is
relatively easy to estimate, the estimation of the attitude
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is more involved. Different absolute and relative position
estimation approaches have been proposed over the past
decade. Amongst the absolute positioning methods, video
cameras and ultrasonic emitter-receiver arrangements are
frequently encountered. Concerning relative positioning
methods, dead reckoning is widely used because of its
simplicity. It provides an attitude estimation, but it is
unsuitable for long distances due to errors associated with
noise and slipping conditions Borenstein and Feng [1996].
In this paper, it is shown that the fusion of a full informa-
tion variable structure dynamic state feedback controller
with a globally exponentially stable attitude observer
yields a locally asymptotically stable solution to the trajec-
tory tracking problem for a group of unicycle-type robots.
The variable structure control scheme allows to overcome
the singularity that arises when the robots’ longitudinal
velocity is zero. The proposed attitude observer requires
information about the robots’ position only.
The paper is organized as follows: Section 2 presents
the kinematic model of unicycles and the problem state-
ment. Section 3 presents the control strategy that solves
the formation tracking problem with convergence of the
orientation angles. The main results of the paper are
the attitude observer design and the stability analysis of
the partial information dynamic state feedback controller.
These results are presented in Section 4. Section 5 shows
the performance of the proposed control strategy using an
experimental setup. Finally, in Section 6 some conclusions
are given.
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2. KINEMATIC MODEL AND PROBLEM
STATEMENT

Denote by N = {R1, . . . , Rn} a set of n unicycle-type
robots moving in the plane. The kinematic model of each
robot Ri, as shown in Fig. 1, is given by

Fig. 1. Kinematic model of unicycles

 ẋi

ẏi
θ̇i

=

[
cos θi 0
sin θi 0
0 1

][
vi
wi

]
, i = 1, . . . , n, (1)

where [xi, yi]
T
are the coordinates of the mid-point of the

wheels axis, θi is the orientation of the robot with respect
to the X−axis, vi is the longitudinal velocity of the mid-
point of the wheels axis and wi is the angular velocity.
The outputs of the system (1) are chosen as zi = [xi, yi]

T ,
i = 1, . . . , n and their dynamics are given by

żi =

[
ẋi

ẏi

]
= Ãi (θi)

[
vi
wi

]
, Ãi (θi) =

[
cos θi 0
sin θi 0

]
, (2)

where Ãi (θi) is the so-called decoupling matrix of every
robot Ri. The decoupling matrix is singular for every value
of θi. In order to overcome this problem, consider the
following dynamic extension for the kinematic model.

ẋi

ẏi
ξ̇i
θ̇i

 =

 ξi cos θi
ξi sin θi

ui

wi

 (3)

where ξi = vi is a new state and ui is a new control signal.
The dynamics of the output variables zi, i = 1, ..., n with
respect to the extended system (3) now is given by

z̈i = Ai (θi, ξi)

[
ui

wi

]
, Ai (θi, ξi) =

[
cos θi −ξi sin θi
sin θi ξi cos θi

]
.

(4)

Note that det [Ai (θi, ξi)] = ξi. Therefore, the new decou-
pling matrix Ai (θi, ξi) is non-singular whenever ξi ̸= 0.
Considering this restriction, it is possible to design a
strategy to control the output functions zi. The singularity
ξi = 0 will be dealt with in Section 3.
Based on the leader-followers scheme, consider Rn as the
group leader and the rest as followers. Let z∗i = [x∗

i , y
∗
i ]

T

be the desired position of Ri in a particular formation
pattern. In this work, we define

z∗i = zi+1 + c(i+1)i, i = 1, . . . , n− 1 (5)

z∗n =m(t)

where c(i+1)i = [p(i+1)i, r(i+1)i]
T ∈ ℜ2, i = 1, ..., n − 1,

denotes the desired relative position of Ri with respect to

Ri+1 and m(t) = [xd(t), yd(t)]
T

is a twice continuously
differentiable function that corresponds to the desired tra-
jectory of the leader.
Problem statement (Marching with orientation): The con-
trol goal is to design a control law[

ui(t)
wi(t)

]
= fi(zi(t), zi+1(t)), i = 1, ..., n− 1

for every follower robot and[
un(t)
wn(t)

]
= fn(zn(t),m(t))

for the leader robot such that

• lim
t→∞

(zi (t)− z∗i (t)) = 0, i = 1, . . . , n− 1,

• lim
t→∞

(zn (t)−m(t)) = 0,

• lim
t→∞

(θi (t)− θj (t)) = 0, ∀i ̸= j

Fig. 2 displays the position of the robots when they satisfy
the desired trajectory tracking and formation pattern. The
goal of the leader is to follow the path of marching whereas
the goal of the followers is to maintain a desired pattern
formation. Note that the marching control also requires
that the orientation angles converge to the same value.

Fig. 2. Marching with orientation control of unicycles

3. CONTROL STRATEGY

In this section, a marching strategy is presented for the
group of unicycles. After that, a complementary control
law is designed to commute to when the state trajectory
of the robots approaches a singularity. The results of
this Section have been presented in González-Sierra et al.
[2011] and González-Sierra et al. [2013]. They are briefly
recalled here for the reader’s convenience. We define the
following marching control law:

η1 :



[
ui

wi

]
= A−1

i (θi, ξi) [m̈− k1ėi − k0ei]

[
un

wn

]
= A−1

n (θn, ξn) [m̈− c1ėn − c0en]

(6)

where k0, k1, c0, c1 are scalar design parameters and

ei = zi − z∗i , i = 1, . . . , n− 1

en = zn −m(t)

are the error coordinates.
In (6), the control law of every follower robot Ri requires
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the marching path acceleration, the position and the
velocity of the robot Ri+1. The control law for the leader
robot requires position, velocity and acceleration of the
marching path.

Remark 1. Note that the leader is the only robot with
complete information about the position, velocity and
acceleration of the desired marching path. The follower
robots do not require to process complete information
about the path of marching and the positions of all
agents. Therefore, the proposed control law constitutes
a decentralized approach. In related works, for instance
Yamaguchi [2003], all agents must know the target position
of the leader, the marching trajectory and more than one
desired relative positions with respect to other robots.

Theorem 1. Consider the system (3) and the control law
(6). Suppose that ξi ̸= 0 ∀ t ≥ 0, k0, k1, c0, c1 > 0.
Then, in the closed-loop system (3)-(6), the follower robots
converge to the desired formation, i.e. lim

t→∞
(zi − z∗i ) = 0,

i = 1, ..., n − 1 whereas Rn converge to the marching
trajectory i.e. lim

t→∞
(zn (t)−m (t)) = 0. Moreover it holds

that lim
t→∞

(θi (t)− θj (t)) = 0, ∀i ̸= j.

3.1 Commutation Scheme

Recall that the control law η1, is ill-defined when ξi = 0.
To cope with this drawback, consider the output function

hi =

[
ξi
θi

]
, i = 1, . . . , n. (7)

The dynamics of these variables is simply given by[
ξ̇i
θ̇i

]
= M

[
ui

wi

]
, i = 1, . . . , n,M =

[
1 0
0 1

]
whereM is the non-singular decoupling matrix. Therefore,
it is possible to define the next feedback

η2 :

[
ui

wi

]
= ḣd − q0 (hi − hd) , i = 1, . . . , n (8)

where hd = [ξd, θd]
T
and q0 =diag(q01, q02) is a design pa-

rameter. Now we propose a commutation strategy between
controller (6) and (8) to avoid the singularity at ξi = 0.
The rule of commutation can be established by

η =

{
η1, when | ξi |≥ δ
η2, when | ξi |< δ

(9)

with δ > 0 as the commutation threshold. Finally, it is
necessary to define the desired trajectory of hd to apply
the control law (8) according to

ξd = ẋd cos θd + ẏd sin θd, θd = arctan

(
ẏd
ẋd

)
The control law (8) does not guarantee the tracking of the
marching control. It only attempts to preserve the conver-
gence of the orientation angles during the commutation
interval.

Theorem 2. Consider the switched closed-loop system
(3)-(8) using the control law (6), and the alternative
control law (8) and suppose q0 > 0 Then, it holds
that lim

t→∞
(hi − hd) = 0, i = 1, ..., n and consequently

lim
t→∞

(θi − θj) = 0, ∀i ̸= j.

4. ATTITUDE OBSERVER

In this section we present the attitude observer de-
veloped, first in Rodŕıguez-Cortés and Aranda-Bricaire
[2007], Velasco-Villa et al. [2012] for single mobile robot
and extended this results to a group of unicycle-type
robots in González-Sierra et al. [2012]. To begin with, we
need to establish the following standing assumption:

lim
t→∞

∫ t

0

ξi tan
−1 (ξi) dt = ∞ i = 1, . . . , n. (10)

and define the estimation errors, as follows

si1 = cos (θi)− γi1 − Γxi tan
−1 (ξi) (11)

si2 = sin (θi)− γi2 − Γyi tan
−1 (ξi) i = 1, . . . , n.

Proposition 1. Consider the unicycle mobile robot de-
scribed by equations (3). Consider now the system

γ̇i1 = −
[
γi2 + Γyi tan

−1 (ξi)
]
wi (12)

−Γξi tan
−1 (ξi)

[
γi1 + Γxi tan

−1 (ξi)
]
− Γxiui

1 + ξ2i

γ̇i2 =
[
γi1 + Γxi tan

−1 (ξi)
]
wi

−Γξi tan
−1 (ξi)

[
γi2 + Γyi tan

−1 (ξi)
]
− Γyiui

1 + ξ2i

where ui, wi and ξi are known signals. Assuming that (10)
holds, then there exists a positive constant Γ such that for

any initial condition [γi1 (0) , γi2 (0)]
T

the following holds
for i = 1, . . . , n

lim
t→∞

[
cos θi − γi1 − Γxi tan

−1 (ξi)
]
= 0, (13)

lim
t→∞

[
sin θi − γi2 − Γyi tan

−1 (ξi)
]
= 0

Proof González-Sierra et al. [2012].
Note that the dynamics of the observer (12) depends only
on known signals. In turn, if (13) holds, then cos θi, sin θi
and θi can be approximated by

cos θi ≈ c̄θi = γi1 + Γxi arctan (ξi)

sin θi ≈ s̄θi = γi2 + Γyi arctan (ξi)

θi ≈ θ̄i = arctan

(
γi2 + Γyi arctan (ξi)

γi1 + Γxi arctan (ξi)

)
4.1 Dynamic Patial State Feedback

In this subsection we present an asymptotically stabilizing
dynamic partial state feedback for the group of unicycle-
type robot. This is obtained combining the full information
controller (6) with the estimation algorithm presented in
Proposition 1.

Proposition 2. Consider the unicycle mobile robot dynam-
ics (3) in closed loop with the dynamic controller

σ1 :



[
ui

wi

]
= Āi

[
ẍd − k1 (ξic̄θi − ξi+1c̄θi+1)− k0ei1
ÿd − k1 (ξis̄θi − ξi+1s̄θi+1)− k0ei2

]
i = 1, . . . , n− 1[

un

wn

]
= Ān

[
ẍd − k1 (ξnc̄θn − ẋd)− k0en1
ÿd − k1 (ξns̄θn − ẏd)− k0en2

]
(14)
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Suppose that (10) holds and that ξi (t) ̸= 0 ∀t ≥ 0, with

Āi =

[
c̄θi s̄θi
−s̄θi
ξi

c̄θi
ξi

]
Ān =

[
c̄θn s̄θn
−s̄θn
ξn

c̄θn
ξn

]

where γi1 and γi2 are computed from equation (12); c̄θi,
s̄θi and θ̄i are the estimated variables. Then all tracking
errors of the closed-loop system are bounded and are such
that

lim
t→∞

ei = 0, lim
t→∞

ėi = 0, i = 1, . . . , n

Proof To begin with, let us define

ζ =



ζ11
ζ12
ζ21
ζ22
...

ζ(2n−1)1

ζ(2n−1)2

ζ(2n)1
ζ(2n)2


=



e11
e12
ė11
ė12
...

en1
en2
ėn1
ėn2


(15)

Note now that the closed-loop dynamics (3)-(14) expressed
in terms of the (ζ, s) coordinates becomes

ζ̇ = Kζ +Ψ(ζ, s) (16)

where

K =


K̄ K̃ 04 . . . 04 04
04 K̄ K̃ . . . 04 04
...

...
...

. . .
...

...

04 04 04 . . . K̄ K̃
04 04 04 . . . 04 K̄


K̄ =

[
02 I2

−K0 −K1

]
, K̃ =

[
02 02
K0 K1

]
04 is a 4×4 zero matrix, I2 is the 2×2 identity matrix of , 02
is a 2×2 zero matrix, K0 =diag{k0, k0}, K1 =diag{k1, k1}
and

Ψ (ζ, s) =



0
Ψ1 (ζ, s)

0
Ψ2 (ζ, s)

0
...

Ψn−2 (ζ, s)
0

Ψn−1 (ζ, s)
0

Ψn (ζ, s)


(17)

where

Ψi (ζ, s) = ϕ̄i − ϕ̄i+1 + φuiK1si − 2K1φui+1si+1

+φui+2K1si+2, i = 1, . . . , n− 2

Ψn−1 (ζ, s) = ϕ̄n−1 − ϕ̄n + φun−1K1sn−1 − 2K1φunsn

Ψn (ζ, s) = ϕ̄n + φunK1sn,

ϕ̄i = ϕi

(
m̈+K1φuisi −K1φui+1si+1

)
− ϕiK0ζ2i−1

−ϕiK1ζ2i, i = 1, . . . , n− 1

ϕ̄n = ϕn (m̈+K1φunsn)− ϕnK0ζ2n−1 − ϕn−1K1ζ2n

and

ϕi =

[
−si2φsi − si1φci si1φsi − si2φci
si2φci − si1φsi −si2φsi − si1φci

]
i = 1, ..., n

φun =

√(
ζ(2n)1 + ẋd

)2
+
(
ζ(2n)2 + ẏd

)2
φui =

√(
ζ(2i)1 + φui+1φci+1

)2
+
(
ζ(2i)2 + φui+1φsi+1

)2
φsn =

ζ(2n)2 + ẏd

φun

φsi =
ζ(2i)2 + φui+1φsi+1

φui

φcn =
ζ(2n)1 + ẋd

φun

φci =
ζ(2i)1 + φui+1φci+1

φui

Since the dynamics (3) in closed-loop with (6) is asymp-
totically stable there exists a positive definite Lyapunov
function

V1 = ζTPζ (18)

such that

V̇1 = −ζTQζ

along (3)-(6) with P and Q positive definite matrices.
Simple computations show that the time derivative of (18)
along the trajectories of the perturbed system (16) is

V̇1 = −ζTQζ + ζTPΨ(ζ, s) + ΨT (ζ, s)Pζ

The perturbation term (17) is bounded from above by,

∥ Ψ(ζ, s) ∥≤ Γ̄i1 (∥ s ∥) + Γ̄i2 (∥ s ∥) ∥ ζ ∥ (19)

where Γ̄i1, Γ̄i2 are class-κ functions differentiable at s = 0
and are defined by

Γ̄i1 (∥ s ∥) =



Γ11 (∥ s ∥)
Γ21 (∥ s ∥)

...
Γ(n−2)1 (∥ s ∥)
Γ(n−1)1 (∥ s ∥)
Γn1 (∥ s ∥)



Γ̄i2 (∥ s ∥) =


(6k1 + 2k0) ∥ s ∥ +4k1 ∥ s ∥2

...
(6k1 + 2k0) ∥ s ∥ +4k1 ∥ s ∥2
(5k1 + 2k0) ∥ s ∥ +3k1 ∥ s ∥2
(2k1 + k0) ∥ s ∥ +k1 ∥ s ∥2


Γi1 (∥ s ∥) = (2 ∥ m̈ ∥ +k1ν) ∥ s ∥ i = 1, . . . , n− 3

Γ(n−2)1 (∥ s ∥) = (2 ∥ m̈ ∥ +k1χ) ∥ s ∥
Γ(n−1)1 (∥ s ∥) = (2 ∥ m̈ ∥ +k1µ) ∥ s ∥

Γn1 (∥ s ∥) = (∥ m̈ ∥ +k1 ∥ s ∥∥ ṁ ∥ +k1 ∥ ṁ ∥) ∥ s ∥

with
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ν = ∥s∥ (∥żi+1∥+ 2 ∥żi+2∥+ ∥żi+3∥)
+ ∥żi+1∥+ 2 ∥żi+2∥+ ∥żi+3∥

χ= ∥s∥ (∥ṁ∥+ ∥żn−1∥+ 2 ∥żn∥)
+ ∥ṁ∥+ ∥żn−1∥+ 2 ∥żn∥

µ= 2 ∥s∥ (∥ṁ∥+ ∥żn∥) + 2 ∥ṁ∥+ ∥żn∥

The time derivative of (18) along (16) can be upper
bounded as follows

V̇1 ≤ −λmin (Q) ∥ ζ ∥2

+2λmax (P ) ∥ ζ ∥
(
Γ̄i1 (∥ s ∥) + Γ̄i2 (∥ s ∥) ∥ ζ ∥

)
Because Γ̄i1 ∥ s ∥ and Γ̄i2 ∥ s ∥ converge to zero, from
standard properties of cascaded systems (Proposition 4.11
of Kokotivić et al. [1997]) it can be concluded that position
errors converge to zero.
Recall that the control law (14) is ill-defined when the
longitudinal velocity ξi = 0. To overcome this difficulty,
we propose a commutation scheme between the partial
information dynamic control law (14) and a modified
version of the alternative control law (8). More precisely,
define

Ū =

{
σ1, when | ξi |≥ δ
σ2, when | ξi |< δ

(20)

where σ1 is equation (14) and

σ2 :

[
ui

wi

]
=

[
ξ̇d − q01 (ξ − ξd)

θ̇d − q02
(
θ̄i − θd

) ] (21)

5. REAL-TIME EXPERIMENTAL RESULTS

The Real-time experiments were carried out over an ex-
perimental setup composed of three unicycle-type mo-
bile robots manufactured by MobileRobots Inc, model
AmigoBot (Fig. 3), furnished on their top with different
size ellipses for identification. The position and orientation
of each robot is measured through a vision system com-
posed of a video camera manufactured by JAI, model CM-
030 able to provide 90 frames per second at a maximum
resolution of 640×480 and a Pentium 4-based computer for
image processing by means of an interface programmed in
Visual C#, using the libraries designed by Common Vision
Blox. This allows to discriminate the robots according to
the ellipses’ sizes and determine their position and orienta-
tion. A second computer calculates and sends the required
control signal for each robot through Wi-Fi. The control
law is calculated in Visual C++ using Aria libraries which
are used to communicate with the robots. Both computers
are linked through unidirectional RS-232. The parameters
of the robots are: wheel radius r = 6 cm and length of
wheels axis L = 28 cm. The workspace measures 2.4 x 1.8
m.

Fig. 4 shows the behavior on the plane of the closed-loop
system (3)-(20), for n = 3. It is interesting to observe,
at the beginning of the experiment, that the followers
attempt to track the leader even if it is not converging
to the desired trajectory . This is because the followers
do not have information about the desired trajectory. The
controller and observer parameters are: sampling period

Fig. 3. AmigoBot Robots

T = 60 ms, k1 = 3, k0 = 2, Γ = 60, q01 = 2,
q02 = 1. The initial conditions for the observer states
are γ11 (0) = γ21 (0) = γ31 (0) = 1, γ12 (0) = γ22 (0) =
γ32 (0) = 0 and the commutation threshold was selected
as δ = 0.02. The desired formation pattern is a triangle

described by c32 = [−0.3, 0.8]
T
, c21 = [−1, 0]

T
. The de-

sired marching path is a Lemniscata of Bernoulli given

by m (t) = [1.2 + 0.4 cos (ωt) ,−0.4 + 0.2 sin (2ωt)]
T
where

w =
2π

50
. The initial conditions are, for the leader robot

[x3, y3, ξ3, θ3] = [1.61,−0.34, 0, 0.012], and for the follow-
ers [x2, y2, ξ2, θ2] = [1.92,−1.12, 0, 0.05], [x1, y1, ξ1, θ1] =
[0.92,−1.14, 0,−0.012]. Fig. 5 and Fig. 6 show the esti-
mated orientation angles and the estimation errors, re-
spectively. Finally, Fig. 7 displays the controls ui and wi

needed to achieve the trajectory tracking.
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R
3 Initial Position End Position

Fig. 4. Trajectory of the robots

6. CONCLUSIONS

The formation tracking problem for a group of unicycle-
type robots has been addressed and solved in this work
using partial information about other robots and marching
trajectory. Assuming the knowledge of the position of the
robot only, a bank of attitude observers is proposed to
estimate the orientation of each vehicle. It is shown that
the combination of a classical dynamic full information
controller with an asymptotically convergent vehicle atti-
tude observer yields an asymptotically stable closed-loop
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Fig. 7. Control signals for the robots

system. Since partial information dynamic controller steers
the midpoint of the wheels axis of the robots, it is ill-
defined when longitudinal velocities vanish. To overcome
this obstruction, a commutation scheme based on the
estimated attitude is proposed. From the experimental
point of view, even though the sample period is relatively
large, namely T = 60 ms, the performance of the attitude
observer and the control law is rather satisfactory.
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P. Kokotivić, R. Sepulchre, and M. Jankovic. Constructive
nonlinear control. Springer-Verlag, London, 1997.

S. P. M. Noijen, P. F. Lambrechts, and H. Nijmeijer. An
observer-controller combination for a unicycle mobile
robot. Int J Control, 78(2):81–87, 2005.
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