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Abstract: The minimum-time problem frequently arises in the design of control for actuators, and
is usually solved assuming to know the correct model of the system. In industrially important cases,
however, important parts of the dynamics, like friction forces or disturbances by exosystems, are hardly
known or even unknown. Against this background, this paper presents an iterative approach to achieve
the minimum-time control for a nonlinear, single input second-order system with constrained input and
partly unknown dynamics, effectively removing the requirement of perfect knowledge of the system
and its parameters to achieve the minimum-time solution in application. First it is shown that, under
reasonable assumptions about the unknown part of the dynamics, the optimal control exists for the
presented class of systems and that it is a bang-bang control, with at most one switch. Then this property
is exploited in the proposed algorithm, that finds the single optimal switching time by an iterative
method, without involving any kind of identification of the unknown system parts.

1. INTRODUCTION

One of the more natural optimization objectives is the mini-
mization of the time needed to complete a specific task, and one
can find this requirement in various situations. In a technical
context this can be translated for instance into the problem
of opening/closing a valve as fast as possible, or more gener-
ally to drive an actuator to a specified position in minimum-
time. While the basic structure of such systems may not be
challenging, the fact, that important parts of the dynamics like
friction or disturbances by exosystems are hardly known or
even unknown, is challenging, as it prevents to find the (exact)
optimal control for the minimum-time problem. This motivates
to investigate the minimum-time problem of a nonlinear second
order system, where some parts of the dynamics are unknown.

Apart from the mentionend area of actuators, the minimum-
time problem can also be found in various additional technical
applications, from wastewater treatment Moreno [1999], where
the time needed to treat pollutants is minimized, over the field
of robotics, that sparked a lot of publications (Slotine and Yang
[1989], Sontag and Sussmann [1986], Bobrow [1988], Huang
and McClamroch [1988], Shin and McKay [1985], Chernousko
et al. [1989]), to special applications like the change of the
linked-flux in a PMSM in minimum-time in Li and Xu [2001].

A similar system structure is treated in the work of Shen and
Andersson [2010] as it treats the minimum-time problem of
a second-order system, but with the difference of the system
being assumed to be linear, time invariant and stable. The
proposed optimal-time solution is then found by exploiting this
linear setup and the availability of an analytic solution of the
differential equations. They set up a system of equations to
calculate the optimal switching time and the resulting final time,

and propose to solve these equations by a numerical algorithm,
which is motivated by some geometrical considerations in the
phase plane. The comparison of the theoretical result with the
application to a real plant showed that small model-mismatches
(the plant was identified before) have a negative effect on the
determined optimal control.

Another way to treat the minimum-time problem for second
order systems is used in Rapaport and Dochain [2011] and
Moreno [1999] in the minimum-time problem of biological
reactors. They use a method based on Miele [1962], where
the relative optimality of two trajectories in the reachable
set can be compared using Green’s Theorem. In the problem
setting of Rapaport and Dochain [2011] the resulting minimum-
time control is either bang-bang or bang-bang with singular
arcs, depending on the properties of the involved biological
reactions.

The system class treated in this work is similar to the classical
double integrator with some additional dynamics. Contrary
to some similar examples in Lee and Markus [1967], other
referenced work and other available work on optimal control
in general, we do not rely on the perfect knowledge of the
system, but assume an important part of the system dynamics
to be unknown. The assumptions which have to be made about
the unknown system part are quite natural for a technical
system and do not prevent the application of the proposed
iterative method, that achieves the minimum-time control using
information gathered by various experiments done with the
system.

We present the system and the problem formulation in section 2,
show the existence (section 3) and the bang-bang property (sec-
tion 4) of the optimal control, and use that to derive an iterative
algorithm in section 5 to achieve the optimal control. At the end

9th IFAC Symposium on Nonlinear Control Systems
Toulouse, France, September 4-6, 2013

WeB3.5

Copyright © 2013 IFAC 211



we present a simulation example in section 6, including a com-
parison with the results of a numerical solver for a plausibility
check, and in section 7 we draw some conclusions and give an
outlook to possible extensions of the problem setting.

2. PROBLEM FORMULATION

We want to investigate the minimum time transition problem
for a single input second order system

ẋ1 (t) = x2 (t) (1a)
ẋ2 (t) =−F (x2 (t) , t)+bu(t) (1b)

where the control input u is limited to the interval U

u ∈U , U : = [u,u] , u < 0,u > 0
and the function F is unknown. The initial condition is arbitrary
but fixed, x(t0) = x0 ∈X0 and the objective is to achieve a state
transition in minimum time to the origin x

(
t f
)
= (0,0)T. It is

assumed that by a suitable control u the system state can be
brought back into x0 and there exist time instants tk such that

x(tk) = x0

F (x2, t− tk) = F (x2, t) ∀k ∈ N0, t ∈ [tk, tk+1)

holds. This makes the state transition from x0 to the origin
a repeatable process, with tk being the starting time for an
iteration k. This allows us to consider the system (1) being
defined at iteration k relatively to the starting time tk, using as
time parameter tk = t − tk. For simplicity of notation we will
omit using the iteration index k whenever possible and continue
to write t instead of tk.
To solve the minimum time problem, we seek to minimize the
cost function J by a proper sequence u∗ (t):

u∗ (t) = arg min
u(t)∈U

J, J =
∫ t f

0
d t. (2)

We make the following assumptions about F :
A 1. The function is strictly increasing with x2:

∂F (x2, t)
∂x2

> 0

A 2. For every x2 ∈ R the force F is bounded from above resp.
from below for x2 ≤ 0 resp. x2 ≥ 0. This prevents losing control
authority over the system, when u is limited to the interval U :

−F (x2, t)+bu > 0, x2 ≤ 0
−F (x2, t)+bu < 0, x2 ≥ 0

A 3. F is continuous in x and t and continuously differentiable
in x.

Note that the system defined in (1) contains an unknown term F
that is time variant, but for the application of an iterative method
the system has to be repeatable. Therefore the function F is
time variant within one iteration but time invariant from one
iteration to the next iteration – it shows the same time variance
in iteration k+ 1 as in k. Systems that can be casted into this
scheme are systems with unknown disturbances from exosys-
tems that are resetable or systems with periodic disturbances
with a period of 1/n · (tk+1− tk) ,n ∈ N.

It is important to stress that A1 only applies to functions F that
do depend on x2 (an example would be F = 0, for which the
system is the double integrator and for which the results in this
paper holds too, though an analytic solution is available), and
that A2 guarantees that there exists a control û(t) ∈ U , such
that for any x0 ∈X0 the origin will be reached at a time t f > 0.

3. EXISTENCE OF OPTIMAL CONTROL

The theorem of Filippov [1962] gives conditions under which
an optimal control exists for systems

ẋ = f (t,x,u) (3)
with x and f being n-dimensional vectors and the control input
u ∈ U (t,x). The optimal control is a function u(t) ∈ U (t,x)
such that the solution x(t) of (3), with x(0) = x0, u = u(t)
attains the point x∗ in the least possible time. The following
conditions must hold:
C 1. The vector function f (t,x,u) is continuous in t,x,u and is
continuously differentiable in x
C 2. The following inequality holds for all t,x and all u ∈
U (t,x),

xT f (t,x,u)≤C
(
|x|2 +1

)
with |·| being the length of a vector.
C 3. U (t,x) shall be closed and bounded, and upper semi-
continous in t and x with respect to inclusion.

When u describes U (t,x), f (t,x,u) describes a set R(t,x),
which is needed by following theorem:
Theorem 1. (Filippov [1962]). Suppose that conditions C1 –
C3 stated above are satisfied, and that the set R(t,x) is convex
for every t and x. Also suppose that there exists at least one
measureable function ũ ∈U (t, x̃) such that the solution x̃(t) of
(3), with u = ũ(t), and initial condition x̃(0) = x0, attains x∗
for some t∗ > 0. Then there also exists an optimal control, i.e.
a measurable function u(t) ∈U (t,x(t)) for which the solution
x(t) of (3), with initial condition x(0) = x0, attains x∗ in the
least possible time.

Using A3, system (1) satisfies condition C1, and condition C3
holds, as U is independent of t,x and it is a compact and convex
set. Condition C2 is with system (1):

x1 x2 + x2 (−F (x2, t)+bu)≤C
(
x2

1 + x2
2 +1

)
. (4)

Under A2 the left hand side of (4) can be expressed as
x1 x2 + x2 (−F (x2, t)+bu)≤ x1 x2 + |x2| |b(u−u)|

and substituting |b(u−u)| by a constant C̃ allows us to express
(4) as

Cx2
1 +Cx2

2 +C− x1x2−C̃ |x2| ≥ 0.
Denoting the left hand side of the inequality h(x1,x2), we can
see that h(x1,x2 = 0) = C

(
x2

1 +1
)
, which is strictly positive.

For each of both cases, (x1,x2)∈R×R− and (x1,x2)∈R×R+

we can find a single minimum of h(x1,x2) by setting the first
derivative of h to zero, which is

∇h(x1,x2) =

(
0
0

)
=

{(
2Cx1− x2,−x1 +2Cx2 +C̃

)T
, x2 < 0(

2Cx1− x2,−x1 +2Cx2−C̃
)T

, x2 > 0

The minimum is at (x1,m,x2,m) =
(
− C̃

4C2−1 ,−
2CC̃

4C2−1

)
respec-

tively (x1,m,x2,m) =
(

C̃
4C2−1 ,

2CC̃
4C2−1

)
for (x1,x2) ∈ R×R− re-

spectively (x1,x2) ∈ R×R+. For both,

h(x1,m,x2,m) = C̃2 (−4C3 +C
)
+C

(
4C2−1

)2

and is strictly positive for any

C > max
(

1,
√(

C̃+1
)
/4
)
. (5)
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Calculating the Hessian confirms that both local extremals are
global minima within their respective domains,

H (h) =

[
2C −1
−1 2C

]
, (x1,x2) ∈ R×R\{0}

as H is positive definite on the domain R×R− and R×R+

for any C satisfying inequality (5), and it shows that h(x1,x2) is
strictly convex in both domains, R×R− and R×R+. Therefore
inequality (4) holds and condition C2 is satisfied.

The convexity condition on the set R(t,x) means, see Cesari
[1965], that for every (t,x) the set f̃ (t,x,U (t,x)) is a con-
vex subset of the n + 1-dimensional Euclidean space, with
f̃ (t,x,u) = ( f0 (t,x,u) , f (t,x,u))T where f0 defines the cost
function J =

∫ t2
t1 f0 (t,x,u)d t. As of (2) f0 = 1 and from

(1) f (t,x,u) =

(
x2

−F (x2, t)+bu

)
, we can see that R(t,x) =

f̃ (t,x,U ) is a convex set for every t,x, as U is convex. As
the conditions C1-C3 are satisfied as well, this shows, by the-
orem 1, that there exists an optimal control for the minimum
time transition problem of system (1).

4. NATURE OF OPTIMAL CONTROL

The Hamiltonian of the optimization problem is (Stengel
[1994], Bryson and Ho [1975]),

H = 1+λ1x2 +λ2 (−F (x2, t)+bu)
and the evolution of the lagrangian multipliers is defined by
λ̇ =− ∂H

∂x , giving

λ̇1 = 0 (6a)

λ̇2 =−λ1 +λ2
∂F
∂x2

(6b)

We cannot get u∗ (t) from the condition Hu =
∂H
∂u

!
= 0 as Hu

is independent of u:
Hu = λ2b

We can use in this case Pontryagin’s minimum principle (Pon-
tryagin et al. [1962], Stengel [1994]) to show the switching
behaviour of the optimal solution u∗ (t)

H (x∗,u∗,λ ∗, t)≤H (x∗,u,λ ∗, t)
1+λ

∗
1 x∗2−λ

∗
2 (F (x∗2, t)+bu∗)≤ 1+λ

∗
1 x∗2

−λ
∗
2 (F (x∗2, t)+bu)

→ λ
∗
2 u∗ ≤ λ

∗
2 u

u∗ (t) =

{
u λ ∗2 > 0

u λ ∗2 < 0
(7)

From (7) the optimal solution u∗ is changing sign if λ2 changes
sign. For λ ∗2 = 0 (7) does not provide any information about u∗
and the control input can become any value in the interval U .
For the optimal solution u∗ being of bang-bang type, the time
interval where λ ∗2 = 0 has to be infinitely short. This is not the
case if λ̇ ∗2 and higher derivatives are zero in this time intervals.
Note that from (6a) λ ∗1 = const., and that by (6b), we have:

λ̇
∗
2 =−λ

∗
1 +λ

∗
2

∂F
∂x2

(x∗2, t)

By setting λ2 = 0 it is obvious that the first derivative of λ2 is
only zero, if λ ∗1 = 0. But if λ ∗1 = 0, the adjoint value λ ∗2 will

never become zero for any λ ∗2 (0) 6= 0:

λ̇
∗
2 = λ

∗
2

∂F
∂x2

(x∗2, t) =

{
> 0 λ2 (0)> 0

< 0 λ2 (0)< 0

because of A1. The only case where λ2 is zero for a non-
infinitely short time interval, is if λ1 = 0 and λ2 (0) = 0, which
results in λ2 (t) = 0,∀t ∈

[
0, t f

]
. In this case the Hamiltonian

becomes
H = 1

but we know that for the time optimal solution
H
(
t = t f

)
= 0

must hold, by which we know that λ (t) = (0,0)T can not
be the optimal solution. From that we conclude that for the
time optimal solution λ ∗2 is only zero for infinitely short time
intervals and u∗ is of bang-bang type.

To fix the number of necessary switches we have a look at
the adjoint equations (6). As already mentionend above from
(6a) we know that λ1 = const.,∀t ∈

[
0, t f

]
. The evolution of λ2

decides the number of switches because of (7), a change in the
sign of λ ∗2 causes a switch in u∗.

We can distinguish four different possible evolutions of λ2,
depending on the value of λ1 and the initial value of λ2:

I.) λ ∗1 > 0,λ ∗2 (0)< 0
In this case λ̇2 < 0 and λ2 (t)< 0, ∀t ∈

[
0, t f

]
. No switch

in u∗ will occur.
II.) λ ∗1 < 0,λ ∗2 (0)> 0

In this case λ̇2 > 0 and λ2 (t)> 0, ∀t ∈
[
0, t f

]
. No switch

in u∗ will occur.
III.) λ ∗1 > 0,λ ∗2 (0)> 0

If the condition λ2
∂F
∂x2

< λ1 holds for a sufficient long time
interval, λ2 will become negative, and a switch in u∗ will
occur. After that we will have the same situation as in case
I and no further switch will occur.

IV.) λ ∗1 < 0,λ ∗2 (0)< 0
If the condition λ2

∂F
∂x2

> λ1 holds for a sufficient long time
interval, λ2 will become positive, and a switch in u∗ will
occur. After that we will have the same situation as in case
2 and no further switch will occur.

With that analysis it has been shown that at most one switch
is sufficient for the time optimal state transition from an initial
state to the origin. To solve the problem of minimum time state
transition of an actuator with partly unknown dynamics it is
sufficient to find out if the switch is necessary and what the
switching time is. Due to the unknown part of the dynamics we
propose to solve this by an iterative process.

5. ITERATIVE SOLUTION

The proposed algorithm is composed by two main parts – the
first part detects the necessary sequence of input values, using
the information about the initial condition and, if necessary, a
first experiment. The second part uses a bisection method to
find iteratively the optimal switching time t∗. For derivation and
better presentation of the iterative algorithm we will restrict F
to time invariant functions F (x2) for now, and will have a look
at the cases of F (x2, t) afterwards. Figure 1 shows schemat-
ically the time optimal trajectories of a hypothetical system in
the state plane for different initial conditions x(1)0 ÷x(6)0 . The full

Copyright © 2013 IFAC 213



x2

x1

Q1

Q2

Q3
Q4

x
(3)
0

x
(2)
0

x
(1)
0

x
(5)
0

x
(6)
0

x
(4)
0

Fig. 1. The switching curve (solid line) and typical time optimal
trajectories for different initial conditions x(1)0 ÷ x(6)0 of a
hypothetical system

state space R2 is segmented into the four quadrants Q1 . . .Q4.
The solid line is the switching curve Γ,

Γ =
{

x0 ∈ R2 | ∃t f ≥ 0s.t.x(t f ) = (0,0)T,x(t) = φ (0, t,x0,u)
}

∪
{

x0 ∈ R2 | ∃t f ≥ 0s.t.x(t f ) = (0,0)T,x(t) = φ (0, t,x0,u)
}

where φ (0, t,x(tk) ,u(t)) is the flow of system (1) from t = 0 to
t. Trajectories laying on the right hand side of the switching
curve are trajectories where u∗ (t) = u with t ∈ [0, t∗[ and
trajectories on the left hand side are the result of the input
sequence starting with u until the optimal switching time t∗.
When a trajectory hits Γ, the input has to be switched to the
second extremal value of u, by which the trajectory will follow
Γ to the origin.

Due to ẋ1 = x2 the switching curve only can be approached
via the quadrant Q4 or via Q2, trajectories starting in Q1 and
Q3 therefore first have to enter one of these two quadrants in
the state plane to be able to approach the switching curve. The
trajectories starting in Q2 but on the right hand side of the
switching curve, do have to traverse first Q1 and then enter Q4
to be able to approach the switching curve – approaching the
switching curve in Q2 is not possible due to the large initial
velocity. The same holds analogously for trajectories starting in
Q4 on the left hand side of the switching curve.

5.1 Optimal input sequence

The switching curve seperates the state plane into two regions
Γr,Γl ,

Γl =
{

x ∈ R2 |(x− xγ) ∈ Q3

xγ = arg min
xγ∈Γ

(
d
(
x,xγ

))}
∪ (Q2∩Γ)

Γr =
{

x ∈ R2 |(x− xγ) ∈ Q1

xγ = arg min
xγ∈Γ

(
d
(
x,xγ

))}
∪ (Q4∩Γ)

with d (a,b) being the Euclidean distance between two vectors
a,b∈R2. The optimal initial input value u∗(0) depends only on
whether x0 being in Γr or in Γl . As the main part of the system
dynamics is unknown, the switching curve is unknown. The

x2

x1

Q1

Q2

Q3
Q4

u = u

u = u

u = u

u = u

x
(3)
0

x
(1)
0

x
(6)
0

x
(4)
0

Fig. 2. Schematically the result of the first experiment run to
determine the position of the initial condition in the state
plane. This first experiment is only necessary if x0 ∈ Q2∪
Q4.

proposed algorithm sets the optimal input sequence according
to the following rules:

• If x0 ∈ Q1 ∪Q3: The membership of x0 to one of the sets
Γl ,Γr is entirely defined by the initial condition itself:

x0 ∈

{
Γr x0 ∈ Q1

Γl x0 ∈ Q3

• If x0 ∈ Q2 ∪Q4: The initial condition may be on either
side of the unknown switching curve. To determine the
relative position of x0 a first experiment run is used. The
experiment starts at x0 and stops at time tQ, which is the
time when the state trajectory leaves the initial quadrant,
x(tQ) /∈ Qinitial . Depending on the quadrant the trajectory
enters, the relative position of the initial condition can be
determined, see Figure 2. From that the following rules
can be found, which allows to determine the set the initial
condition belongs to:

If x0 ∈ Q2 : u(t) = u, 0≤ t ≤ tQ
x(t) ∈ Q2, 0≤ t < tQ
x(t) /∈ Q2, tQ ≤ t

If x0 ∈ Q4 : u(t) = u, 0≤ t ≤ tQ
x(t) ∈ Q4, 0≤ t < tQ
x(t) /∈ Q4, tQ ≤ t

x0 ∈

{
Γr x(tQ) ∈ Q1

Γl x(tQ) ∈ Q3

• If the set membership of x0 to either Γl or Γr is deter-
mined, the ideal input sequence can be defined as follows:

u∗ (t) =



{
u 0≤ t < t∗

u t∗ ≤ t ≤ t f

}
x0 ∈ Γr

{
u 0≤ t < t∗

u t∗ ≤ t ≤ t f

}
x0 ∈ Γl

(8)
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5.2 Optimal switching time

By (8) the ideal input sequence is defined, but the ideal switch-
ing time t∗ is unknown. As already shown in Figure 1 the
switch between the two extremal values of the input sequence
only occurs in Q2 or in Q4, depending on the relative position
of the initial condition to the switching curve. Therefore all
trajectories are brought into the according switching quadrant
first, that is, the first value of the ideal input sequence is applied
at least until the trajectory enters the switching quadrant. The
time tSQ denotes the time the switching quadrant is entered, that
is:

x(t) ∈ Q4 tSQ ≤ t ≤ t f ∀x0 ∈ Γr

x(t) ∈ Q2 tSQ ≤ t ≤ t f ∀x0 ∈ Γl

The ideal switching time t∗ is then
t∗ = tSQ + t∗S

where t∗S is the part of the switching time that needs to be found.

The ideal switching time may be found by an iterative process,
using an initial guess t0

S , applying the optimal input sequence
û(t) with the non-optimal switching time, and determining the
resulting state x

(
t f
)
, where x

(
t f
)

in the non-optimal case is
defined as the state at time t f , when the state trajectory leaves
the switching quadrant:

x0 ∈ Γr : x(t) ∈ Q4, tSQ ≤ t < t f

x(t) /∈ Q4, t f ≤ t
x0 ∈ Γl : x(t) ∈ Q2, tSQ ≤ t < t f

x(t) /∈ Q2, t f ≤ t

Using the information x
(
t f
)

in the non-optimal case, the
switching time tk+1

S for the k+1th repetition of the experiment
can be adapted, using a bisection method.

Algorithm 1 Bisection algorithm
k← 0
tk
S ← initial value

run experiment with tk
S

while d
(
xk
(
t f
)
,(0,0)T

)
> ε do

if xk
(
t f
)
∈ Q1 then

tlb← tk
S

if tub undefined then
tk+1
S ← 2tk

S
else

tk+1
S ← tlb+tub

2
end if

else {xk
(
t f
)
∈ Q3}

tub← tk
S

if tlb undefined then
tk+1
S ← tk

S
2

else
tk+1
S ← tlb+tub

2
end if

end if
k← k+1
run experiment with tk

S
end while

Algorithm 1 describes the bisection method for x0 ∈ Γr (x0 ∈ Γl
can be treated analogously), where k denotes the current itera-
tion. The time tlb respectively tub denote the lower respectively

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

S
ta

te

x
1

x
2

1.273 1.274 1.275 1.276

−5

0

5

10
x 10

−4

Fig. 3. The state trajectories x1,x2 over time, for initial condi-
tion x0 = (−0.6,0.8)T. The trajectories of all intermediate
iterations are plotted in dashed lines with the individual
final values marked by grey crosses, and the final iteration
is plotted in solid lines (x1 – black, x2 – grey). The inset
shows a detail at t = t f , showing the final state x

(
t f
)

marked by black crosses. The final error is due to the
termination criterion ε = 0.1 ·10−3.

the upper bound on t∗S . Those bounds are unknown at the ini-
tialzation stage of the algorithm, but after the experiment with
the initial switching time t0

S either tlb or tub are set to this initial
value, leaving one bound undefined. Depending on the outcome
of the initial experiment, the next iteration of the switching time
is either t1

S = 2t0
S or t1

S = t0
S/2, and the experiment will be re-

peated using t1
S . The doubling (or halving) of the switching time

tk
S continous until both boundary values tub and tlb are defined.

The subsequent iterations will halve the interval
[
tlb, tk

S

]
resp.[

tk
S , tub

]
. This iterative process is guaranteed to converge to the

value t∗S .

When treating the case F (x2, t) instead of F (x2), basically
the same considerations can be made in the derivation of the
algorithm, although there won’t be a single switching curve
for all x0 ∈ R2 but different ones for each x0. As we do not
rely on the fact that there is only a single switching curve, the
algorithm developed in this section also may be applied in the
time varying case.

6. SIMULATION RESULTS

The iterative algorithm was tested with the unknown (to the
algorithm) term being

F
(

x2

(
tk
)
, tk
)
= x2

3 +
1
2

x2
2 + x2−0.5sin

(
2π

tk +1

)
,

with b = 1,U = [−1,1] and different initial conditions. F uses
the notation tk to highlight that for this simulation example it
is assumed that the time variant part is resetted at every tk. The
results for a specific x0 are shown in Figure 3 and Figure 4.

The optimal switching time and optimal terminal time for
various intial conditions x0 are compared to a numerical so-
lution to the same minimum time problem calculated by
ACADO Houska and Ferreau [2009–2011] in Table 1. These
values are presented here only for a plausibility check, as
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Fig. 4. The development of the switching time over the itera-
tions k.

ACADO uses different methods and a different termination
criterion, and the results also depend on the particular settings
for the various parameters of the ACADO solver. But neverthe-
less Table 1 shows that the results of the bisection method are
plausible by achieving almost the same results, with the final
time always being less than or equal to the ACADO solution. It
has to be stressed that the presented algorithm did not use any
information about F while it was perfectly known to ACADO.

Table 1. Comparison of optimal switching and
final time, A→ ACADO, B→ Bisection method

Initial Condition Switching time t∗ Final time t∗f
x1,0 x2,0 A B A B
-0.8 -0.8 2.483 2.4838 3.289 3.2889
-0.6 0.8 0.8604 0.8600 1.2745 1.2745
0.3 -0.7 0.07466 0.0741 0.8295 0.8295
0.7 0.2 1.245 1.2437 1.6935 1.6935
0.1 -0.7 1.185 1.1850 1.539 1.5388
-0.1 0.8 0.5857 0.5853 0.8489 0.8488

7. CONCLUSION AND OUTLOOK

It has been shown that for a class of systems with partly un-
known dynamics the bang-bang control is the optimal solution
to the minimum-time problem, and that the optimal control can
be found using an iterative method and experimental data from
the system. In a future work we might extend this result to
systems with a dynamic associated with the input to the second
order system, which would allow to apply the method directly
to a broad range of applications. Another question that may
be worth some investigation is how to incorporate a (possibly
known) dependency of ẋ2 from the state x1 into our method.
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