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Abstract: Control theory has been instrumental for the development of a number of engineering
systems, including aerospace and transportation systems, robotics and intelligent machines,
manufacturing chains, electrical, power, and information networks. In the past decade, the
ability of engineering biomolecular networks has become a reality in the rising field of synthetic
biology. Biomolecular networks are composed of repression and activation interactions among
genes, proteins, and small signaling molecules, and have the potential of implementing arbitrarily
complex functions. While modular analysis and design is a promising approach to engineer
complex networks, it is still subject of debate whether a modular approach is viable in
biomolecular systems. The dynamics of these networks are highly nonlinear and therefore
addressing this question requires the use of tools from nonlinear control theory. Here, we review
some of the techniques that we have been developing in order to analyze and design biomolecular
networks modularly.

1. INTRODUCTION

The past decade has seen tremendous advances in the fields
of systems and synthetic biology to the point that de novo
creation of simple biomolecular networks, or “circuits”,
that control the behavior of living organisms is now
possible (Baker et al. [2006]). A near future is envisioned
in which re-engineered cells will perform a number of
useful functions from turning waste into energy, to killing
cancer cells in ill patients, to detecting pathogens in the
environment. To meet this vision, one key challenge must
be tackled, namely designing biomolecular networks that
can realize substantially more complex functionalities than
those currently available (Atkinson et al. [2003], Elowitz
and Leibler [2000], Gardner et al. [2000]). This ability is
still missing.

A promising approach to designing or analyzing complex
networks is to connect simple modules whose behavior can
be isolated to some extent from that of the surrounding
modules. The key assumption in this approach is that
the behavior of a module does not change upon intercon-
nection. This is often taken for granted in fields such as
electrical engineering, in which amplifiers enforce modu-
lar behavior by suppressing impedance effects. Whether
a modular approach is viable in biomolecular networks
is still subject of intense debate (Hartwell et al. [1999],
Purnick and Weiss [2009]). Here, we address this funda-
mental question by illustrating how impedance-like effects
are found in biomolecular systems, just like in many engi-
neering systems. These effects, which we call retroactivity
(Del Vecchio et al. [2008]), can be severe and alter the
behavior of a module upon interconnection, undermining
modular behavior. By employing tools from singular per-
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turbation theory, we provide an operative quantification of
retroactivity as a function of biomolecular parameters and
network topology (Gyorgy and Del Vecchio [2012]). Specif-
ically, we determine interconnection rules that account for
retroactivity by calculating equivalent retroactivities, just
like Thevenin’s theorem does for electrical circuits (Agar-
wal and Lang [2005]). This way, we recover the predictive
ability of a modular approach to design.

When designing systems, it is often desirable that the
behavior of a module in isolation is not altered when it
is connected to other modules. In order to reach this ob-
jective, we have proposed to interconnect modules through
insulation devices, which buffer modules from retroactivity
effects (Jayanthi and Del Vecchio [2011]). By merging dis-
turbance rejection and singular perturbation techniques,
we provide an approach that exploits the distinctive struc-
ture of biomolecular networks to design biomolecular in-
sulation devices. We illustrate the application of this ap-
proach through an implementation based on protein cova-
lent modification cycles (Jiang et al. [2011]). Specifically,
we illustrate that covalent modification cycles, ubiquitous
in natural signal transduction, can be re-engineered to
function as insulation devices for synthetic biology appli-
cations.

In Section 2, we introduce the modular composition prob-
lem through a motivating example. In Section 3, we in-
troduce the retroactivity concept and illustrate how to
apply singular perturbation theory to obtain an operative
quantification of retroactivity effects. Section 4 formulates
the problem of designing insulation devices as a distur-
bance attenuation problem and tackles it by using singular
perturbation theory.
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Fig. 1. (a)-(b) show the activator-repressor clock topology and the
time behavior of the activator and repressor concentrations. (c)-
(d) show that when a load is connected to the clock, sustained
oscillations disappear. In all simulations, we have chosen Ka =
Kr = 1, αA = αR = 100, α0,A = 0.01, α0,R = 0.004, δA = 1,
δR = 0.5, n = 2, and m = 4 (model (1). In (d), we also have
kon = koff = 50 and pT = 5 (model where A dynamics modify
to (2)).

2. MOTIVATING EXAMPLE

As a motivating example, consider the biomolecular
activator-repressor clock of Atkinson et al. [2003] showed
in Figure 1(a). This oscillator is composed of an activator
A activating itself and a repressor R, which, in turn, re-
presses the activator A. Both activation and repression oc-
cur through transcription regulation (Alon [2007]). Specif-
ically, denoting in italics the concentration of species, the
model of this clock can be written as

Ȧ =
αA(A/Ka)

n + α0,A

1 + (A/Ka)n + (R/Kr)m
− δAA,

Ṙ =
αR(A/Ka)

n + α0,R

1 + (A/Ka)n
− δRR,

(1)

in which δA and δR represent protein decay (due to dilution

and degradation). The functions
αA(A/Ka)

n+α0,A

1+(A/Ka)n+(R/Kr)m
and

αR(A/Ka)
n+α0,R

1+(A/Ka)n
are Hill functions (Alon [2007]), in which

the first one increases with A and decreases with R while
the second one increases with A. It was shown in Del
Vecchio [2007] that the key mechanism by which this
system displays sustained oscillations is a Hopf bifurcation
with bifurcation parameter the relative time scale of the
activator dynamics with respect to the repressor dynam-
ics. Specifically, as the activator dynamics become faster
than the repressor dynamics, the system goes through a
supercritical Hopf bifurcation and a periodic orbit appears
(Figure 1(b)).

When one wants to consider the clock as a signal gen-
erator to be used to, for example, time or synchronize
downstream systems, ideally one would take one of the
proteins of the clock, say protein A, as an input for a
downstream system (Figure 1(c)), in which A will acti-
vate the expression of another protein D, for example.
In this case, one needs to add to the clock dynamics the

u y

sr

Σ

Fig. 2. System concept with retroactivity (Del Vecchio and Sontag
[2009]).

description of the physical means by which information is
transmitted from the upstream system to the downstream
one. In any biomolecular system, information is transmit-
ted through (reversible) binding reactions. In this case, A
will reversibly bind with the promoter p controlling the
expression of protein D to form a complex C. Letting pT
denote the total concentration of this promoter and kon
and koff the association and dissociation rate constants,
we have that the A dynamics modify to

Ȧ =
αA(A/Ka)

n + α0,A

1 + (A/Ka)n + (R/Kr)m
− δAA

− konA(pT − C) + koffC,

Ċ = konA(pT − C)− koffC,

(2)

while the differential equation for R remains the same.
Since A is an activator of D, we will also have that
Ḋ = kC − δDD, in which k and δD are the production
rate constant and the decay rate constant, respectively. As
a result of this interconnection, the clock stops functioning
(Figure 1(d)). This effect has been called retroactivity to
extend the notion of loading or impedance to non-electrical
systems, and in particular to biomolecular systems (Del
Vecchio et al. [2008]). It is due to the fact that the
communicating species, A in this case, when busy in the
reactions of the downstream system cannot participate in
the reactions of the upstream system and hence the clock
behavior is affected. More details on how biomolecular
clocks are influenced by retroactivity can be found in
Jayanthi and Del Vecchio [2012]. In the next sections,
we illustrate a systems theory framework to explicitly
model retroactivity to make the problem of retroactivity
amenable of theoretical study.

3. RETROACTIVITY

In order to model retroactivity, we propose to model
systems as shown in Figure 2. Specifically, we explicitly
add retroactivity as signals traveling from downstream to
upstream. Signal s is the retroactivity to the output and
models the fact that whenever the output y of Σ becomes
an input to a downstream system, this system affects
the upstream system dynamics because of the physics of
the interconnection mechanism. Similarly, r is called the
retroactivity to the input and models the fact that when-
ever Σ receives signal u, it changes the dynamics of the
sending system. Related system concepts include that of
Paynter [1961] and that of Polderman and Willems [2007].
Differently from Paynter [1961], our framework does not
require that signals r and u (s and y) are generalized effort
and flow variables and hence that their product is the
power flowing through the port. Differently from Polder-
man and Willems [2007], we keep a directionality to these
signals as we seek to identify upstream-to-downstream
as the direction in which we think information is being
transmitted. From a practical point of view, this is useful
because a module is usually characterized by forcing input
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Fig. 3. Effect of retroactivity on the dynamics of A when subject
to constant production rate K(t) = 1.

signals and measuring the consequent output signal. So,
there is an intrinsic directionality already associated with
the information transfer within a module.

Because of retroactivity, the connected behavior of a mod-
ule differs from the behavior of the same module in iso-
lation (s = 0). We seek to predict how the behavior of
a module will change upon interconnection as a function
of the biochemical parameters characterizing the intercon-
nection. As an example, consider the dynamics of A in the
clock when the clock is connected to downstream systems:

Ȧ = K(t)− δAA− konA(pT − C) + koffC,

Ċ = konA(pT − C)− koffC,
(3)

in which, we have denoted K(t) =
αA(A/Ka)

n+α0,A

1+(A/Ka)n+(R/Kr)m
as

its specific form is not relevant for the current discussion.
In this system, we have that s = konA(pT − C) − koffC
is the retroactivity to the output and it is conceptually
similar to a flow. How is this flow affecting the A dynamics
when compared to the isolated one Ȧ = K(t) − δAA? To
answer this question, we can exploit the natural time-scale
separation between protein production and decay (δA), in
the order of minutes to hours, and binding/unbinding rates
(koff), in the order of seconds/subseconds (Alon [2007]).
By defining the small parameter ǫ = δA/koff and the slow
variable as z = A+C, system (3) can be taken to standard
singular perturbation form (Khalil [2002]). One can show
that the slow manifold is locally exponentially stable (Del
Vecchio et al. [2008]), so that the reduced system takes the
form

Ȧ = (K(t)− δAA)

(

1

1 +R(A)

)

, R(A) =
pT /Kd

(A/Kd + 1)2
,

(4)
in which Kd = koff/kon is the dissociation constant of the
binding between A and the promoter p. The expression
of R(A) provides an operative quantification of retroac-
tivity as function of the relevant parameters. Specifically,
retroactivity increases when pT increases (the load in-
creases) and/or Kd decreases (the affinity of the binding
increases), which is physically intuitive. Furthermore, since
R(A) > 0, we have that equation (4) implies that the
dynamics of A slow down in the connected system config-
uration. AsKd becomes smaller, this “slow down” becomes
close to a finite-time delay (Figure 3). Since retroactivity
slows down the dynamics of the output species, it is natural
that the clock in Section 2 stops oscillating if the load is
sufficiently high. In fact, the addition of the load causes
the activator dynamics to slow down compared to the
repressor dynamics and hence the system moves to the
“left” of the supercritical Hopf bifurcation so that the equi-
librium point becomes stable. At this point, one may ask

Module B 

uA

yA

Fig. 4. Network A connects to network B.

the question of how the clock behavior would be affected if
as communicating species one chooses the repressor. Since
retroactivity slows down the dynamics of the repressor,
one should expect that a non-oscillating clock can be
turned into an oscillating clock for sufficiently high load
as the system moves through the Hopf bifurcation. This
was formally shown in Jayanthi and Del Vecchio [2012].
The effects of retroactivity on the behavior of biomolecular
systems have been experimentally verified both in vivo
(Kim et al. [2010], Jayanthi et al. [2013]) and in signaling
systems in vitro (Jiang et al. [2011]).

The operative quantification of retroactivity can be ex-
tended to the interconnection of any two general networks
(Figure (4)). In particular, given the isolated modules dy-
namics ẋA = fA

0 (xA, uA) and ẋB = fB
0 (xB , uB), in which

xA, xB , uA, uB are vectors with dim(yA) = dim(uB), one
can demonstrate that the dynamics of connected module
A will have the form

ẋA = (I + (I +RA)−1SB)−1(fA
0 (xA, uA)+

(I +RA)−1MBfB
0 (xB , yA)),

(5)

in which RA, SB, and MB are state-dependent matrices,
which depend only on measurable parameters, such as
promoter amounts and dissociation constants, and on the
interconnection graph (see Gyorgy and Del Vecchio [2012]
for more details). Matrix RA is called internal retroactivity
and quantifies the effect of intramodular connections on
the dynamics of module A in isolation. MatrixMB is called
the mixing retroactivity and quantifies the “coupling”
between the isolated dynamics of module A and the
isolated dynamics of module B. Specifically, when MB =
0, the isolated dynamics fB

0 of module B do not appear in
the dynamics of module A, so that the two dynamics are
not “mixed”. From a physical point of view, this mixing
occurs when nodes in module B have parents from both
module B itself and module A, so that transcription factors
from A and B interfere with each other while binding to
promoter sites in module B. When MB = 0, the dynamics
of module A are simply given by

ẋA = (I + (I +RA)−1SB)−1fA
0 (xA, uA), (6)

so that the dynamics of module A are a “matrix-scaled”
version of the dynamics of A in isolation. This is why
matrix SB is called the scaling retroactivity and quantifies
the loading effect that module B has on module A due
to transcription factors in A binding to promoter sites in
module B. When also SB = 0, the dynamics of module
A are the same as in isolation. From a conceptual point
of view, the internal retroactivity RA plays a similar
role to the equivalent (according to Thevenin’s theorem)
output admittance of module A in the electrical case,
while SB plays a similar role to the input admittance of
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module B. This analogy is purely conceptual since the
structure of the two systems (gene network and electric
network) is fundamentally different especially since one
(the electrical network) is linear while the other (gene
network) is nonlinear.

4. INSULATION

From a design point of view, it is often desirable that the
behavior of the upstream system does not change when it
is connected to a downstream one. However, we have seen
that retroactivity causes a potentially dramatic change
in the dynamics of the upstream system. If one cannot
design the downstream system to have low scaling and
mixing retroactivity, a viable option is to design a device
that once placed between module A and B insulates them
from retroactivity effects. We call this device an insulation
device and we formally specify its properties by requesting
that it is a system Σ as in Figure 2, in which (a) r ≈ 0
and (b) the effect of s on y is completely attenuated. The
second requirement is particularly interesting since it can
be formulated as a disturbance attenuation problem, as we
next explain.

One well established technique for disturbance attenuation
is high-gain feedback. We illustrate how this idea applies
to our problem by considering again the dynamics of A in
the isolated Ȧ = K(t)− δAA and connected Ȧ = (K(t)−
δAA)(1/(1+R(A)) upstream system configuration. In this
case, the idea of high-gain feedback is to apply a negative
feedback gain G and, in order not to attenuate the signal
A(t), to apply a similarly large gain G′ = αG for some
α > 0 to the input K(t). In this case, the dynamics of the
isolated and connected system become

Ȧ=G′K(t)− δAA−GA (isolated)

˙̄A= (G′K(t)− δAĀ−GĀ)

(

1

1 +R(Ā)

)

(connected),(7)

so that when G increases, we have that |A(t) − Ā(t)| →
O(1/G) (Del Vecchio and Sontag [2009]), which implies
that the effect of retroactivity on Ā(t) is attenuated as G
increases. What type of biomolecular system can imple-
ment an input amplification and a similarly large negative
feedback? Consider a phosphorylation cycle (Figure 5), in
which protein A, before becoming active and an output
of the system, is converted to A∗ through an enzymatic
reaction with a kinase K (the input of the system) and
converted back through another enzymatic reaction with
a phosphatase K (Klipp et al. [2005]). The basic idea is
that amplification of the input K should occur through
the forward cycle reaction while the negative feedback
should occur through the reverse cycle reaction. In order to
understand how this can be explained mathematically , we
consider a simple model of the cycle, in which enzymatic
reactions are modeled through one-step reaction models:

K + A
k1−→ K+A ∗ and P + A ∗

k2−→ P + A, in which we let
AT denote the total amount of cycle protein. Along with
this equations, we need to model also the binding reaction
of A ∗ with sites in the downstream system so that, after
applying singular perturbation as performed before, we
obtain

A*A

KInput

P

Output

Upstream

System

C

Downstream

System

Fig. 5. A phosphorylation cycle is a protein modification mechanism
in which an inactive protein A is converted by a kinase K to an
active form A∗, which is converted back to A by a phosphatase
P.

Ȧ∗ = (k1ATK(t)(1−A∗/AT )− k2PA∗)

(

1

1 +R(A∗)

)

.

(8)
Comparing this equation with equation (10), we see that
the gain on the input is given byG′ = k1AT , while the neg-
ative feedback gain is given byG = k2P . As a consequence,
we can conclude that when AT and P are large, the be-
havior of A∗ should be minimally affected by retroactivity.
This illustrates that phosphorylation cycles can function as
insulation devices and, hence, provides another reason why
these cycles are ubiquitous in natural signal transduction:
they can enforce unidirectional signal propagation, which
is certainly desirable in any (human-made or natural)
signal transmission system. Note, however, that severe
compromises may arise between retroactivity attenuation
and noise amplification, which are particularly relevant
in biological systems due to their intrinsic stochasticity
(Jayanthi and Del Vecchio [2009]).

The hypothesis that phosphorylation cycles function as
insulation devices when both the amounts of cycle protein
and phosphatase are sufficiently large is appealing and
can be experimentally tested. However, model (8), while
providing a good intuition behind the mechanisms respon-
sible for robustness to retroactivity, is overly simplified and
hides many important details that may be relevant to the
overall cycle robustness. Specifically, covalent modification
cycles (phosphorylation is a special case of these) can be
modeled considering the enzymatic reactions as two-step
processes and can even include all of the details of the
units that makeup a protein, some (or all) of which can
be modified by the enzymes (Ventura et al. [2010]). In
the latter case, the dynamical model of the system in the
box in Figure 5 can even have 30 to 50 state variables.
Hence, a mathematical framework to study insulation from
retroactivity is needed that can handle models of arbitrary
dimension.

In order to reach this goal, we have developed a tech-
nique to analyze and design retroactivity attenuation,
which holds for arbitrarily complex biomolecular networks
(Jayanthi and Del Vecchio [2011]). The basic idea exploits
separation of time scales and the specific structure of
interconnection between biomolecular modules, and it can
be illustrated in the following simplified treatment. For
system Σ in Figure 2, we seek to determine conditions
under which the dynamic response of y to u is minimally
affected by retroactivity s. In order to do so, we write the
model of the system in its isolated configuration (s = 0)
and in its connected configuration (s 6= 0) and quantify
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the difference between the trajectories of the isolated and
connected systems. Specifically, letting u be a vector vari-
able and assuming for simplicity that y ∈ R

n is the state
of Σ, we can write the dynamics of the isolated system as

u̇= f0(t, u) + r(u, y), ẏ = G1f1(u, y), (9)

in which G1 > 0 is a positive constant. Similarly, we can
write the dynamics of the connected system as

˙̄u = f0(t, ū) + r(ū, ȳ), ˙̄y = G1f1(ū, ȳ) +G2Ms(ȳ, v)

v̇ =−G2Ns(ȳ, v), (10)

in which G2 > 0 is also a positive constant and M
and N are matrices (called stoichiometry matrices (Klipp
et al. [2005]). Here, v is a vector variable that models
the dynamics of the downstream system to which Σ is
connected. The distinctive structure of the interconnection
comes in the fact that matrices M and N are such that
there is a non-singular n × n matrix B and a matrix T
such that BM − TN = 0. This is because the entries of s
physically represent the rate of reversible binding between
two species and it always affects with opposite signs the
species involved in the binding, one of which belongs to the
upstream system and the other belongs to the downstream
system. The constant G2 models the fact that binding
reactions are among the fastest reactions in biomolecular
networks, so that G2 ≫ 1. Now, assume that we can take
G1 ≫ 1 probably not as large as G2 but still sufficiently
larger than 1. This can be achieved, for example, by
letting y be driven by protein modification reactions, such
as phosphorylation or allosteric modification, which are
usually much faster than protein production and decay
processes (Klipp et al. [2005]). In this case, we can re-
write the dynamics of the connected system (10) by using
the change of variables z = Bȳ + Tv, ǫ1 = 1/G1, and
ǫ2 = 1/G2 as

˙̄u= f0(t, ū) + r(ū, ȳ)

ǫ1ż = Bf1(ū, ȳ), ǫ2v̇ = −s(ȳ, v),

which is in standard singular perturbation form with two
small parameters. Under the assumption that the slow
manifold is locally exponentially stable (see Jayanthi and
Del Vecchio [2011] for the technical conditions) the above
system can be well approximated by one in which ǫ1 = 0
and ǫ2 = 0. This leads to ȳ = γ(ū) (the locally unique
solution of f1(ū, ȳ) = 0), which is the same solution as
found in the isolated system (9) when ǫ1 = 0. As a
consequence, we can conclude that ‖y(t) − ȳ(t)‖ = O(ǫ1)
for 0 < tb ≤ t < T for some tb > 0 and T > 0,
independently of the value of G2. This result implies that
if the time scale of Σ is sufficiently faster than the time
scale of the input and suitable stability conditions are
satisfied, then Σ attenuates the effects of retroactivity s
on the response of y to u.

In view of this result, we can consider a more realistic
model of the phosphorylation cycle and exploit the nat-
ural time scale separation between phosphorylation and
gene expression (controlling K(t)) to show retroactivity
attenuation. We consider a two-step reaction model for the

phosphorylation reactions, given by K+A
β1

−⇀↽−
β2

C1
k1−→ A∗+

K and P + A∗
α1−⇀↽−
α2

C2
k2−→ A + P with conservation laws

PT = P + C2, AT = A + A∗ + C1 + C2 + C, along
with the binding of A∗ with downstream sites p, that is,

A∗ + p
kon−−⇀↽−−
koff

C. The resulting differential equation model

is given by

K̇ = k(t)− δK − β1ATK

(

1−
A∗

AT
−

C1

AT
−

C2

AT
−

C

AT

)

+(β2 + k1)C1

Ċ1 =−(β2 + k1)C1 + β1ATK

(

1−
A∗

AT
−

C1

AT
−

C2

AT

−
C

AT

)

Ċ2 =−(k2 + α2)C2 + α1PTA
∗

(

1−
C2

PT

)

Ȧ∗ = k1C1 + α2C2 − α1PTA
∗

(

1−
C2

PT

)

+koffC − konA
∗(pT − C)

Ċ =−koffC + konA
∗(pT − C). (11)

To take this system in the form (10), we can define
the gain G1 by considering the separation of time scales
between gene expression and protein phosphorylation, so
that G1 := β1AT

δ ≫ 1, b2 := β2

G1
, a2 := α2

G1
, a1 := α1PT

G1
,

and κi := ki

G1
for i = 1, 2. Similarly, we can define

the gain G2 by considering the separation of time scales
between gene expression and binding reactions, so that
G2 := koff

δ ≫ 1 and Kd := koff

kon
. By using the change of

variables z = K + C1 and ensuring that AT ≫ pT so that
C/AT ≪ 1, we can re-write the system as

ż = k(t)− δ(z − C1)

Ċ1 =G1

[

−(b2 + κ1)C1 + δ(z − C1)

(

1−
A∗

AT
−

C1

AT

−
C2

AT

)]

Ċ2 =G1

[

−(κ2 + a2)C2 + a1A
∗

(

1−
C2

PT

)]

Ȧ∗ =G1

[

κ1C1 + a2C2 − a1A
∗

(

1−
C2

PT

)]

+G2

[

δC −
δ

Kd
A∗(pT − C)

]

Ċ =−G2

[

δC −
δ

Kd
A∗(pT − C)

]

which is in the form of system (10) with u = z, y =
(C1, C2, A

∗)′, v = C, s = koffC − konA
∗(pT − C), M =

(0, 0, 1)′, N = 1, and r = 0. At this point, the main
result applies with B = I and T = (0, 0, 1)′, so that as
G1 increases, the response of A∗ to K becomes insen-
sitive to retroactivity s. This fact is illustrated by the
simulation results of Figure 6. Note that while increasing
AT contributes to attenuating the retroactivity to the
output, it has the down-side of increasing the retroactivity
to the input of the cycle, leading to a design tradeoff
(Rivera-Ortiz and Del Vecchio [2013]). This technique is
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Fig. 6. Simulation of the phosphorylation cycle in (11) with low
gain G1 and high gain G1 when K(t) is a periodic signal.
Specifically, we have δ = 0.01, AT = 5000, PT = 5000,
α1 = β1 = 2 × 10−6G1, and α2 = β2 = k1 = k2 = 0.01G1, in
which G1 = 10 (upper panel), and G1 = 1000 (lower panel).
The downstream system parameters are kon = 100, koff = 100
and, thus, G2 = 10000. Simulations for the connected system
(s 6= 0) correspond to pT = 100 while simulations for the
isolated system (s = 0) correspond to pT = 0

applicable to large models and was used for designing
the experiments on a covalent modification cycle in vitro
(Jiang et al. [2011]) and for designing a buffer between an
in vitro biomolecular oscillator and a load (Franco et al.
[2011]). In natural signal transduction systems, phospho-
rylation cycles often appear in cascades. It has been shown
in (Ossareh et al. [2011]) that the length of a cascade
contributes to insulation from retroactivity, highlighting
another reason why cycles are found in cascades.

5. CONCLUSIONS AND DISCUSSION

In this review paper, we have illustrated how problems of
loading are found in biomolecular systems just like they are
found in many engineering systems. Loading effects, called
retroactivity, alter the behavior of a module upon intercon-
nection and hinder modular composition of networks. Dif-
ferently from electrical circuits, which can be analyzed to
a large extent through linear systems theory, biomolecular
network models are highly nonlinear and hence their study
requires nonlinear systems theory. We have illustrated
how using singular perturbation theory we can analyze
and quantify retroactivity effects by obtaining equivalent
system representations, just like Thevenin’s theorem does
for electrical circuits. We have illustrated how the design of
systems that are robust to retroactivity, called insulation
devices, can be formulated as a disturbance attenuation
problem. This problem can be solved by exploiting the
structure of the interconnection found in biomolecular
networks and employing singular perturbation theory after
a suitable change of variables. Insulation devices can be
used in synthetic biology applications to connect systems
to each other, while keeping the isolated system behavior.
Experimental studies have validated this design approach.
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