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Abstract: In this paper the application of the comparison principle for Hamilton-Jacobi
equations to a particular nonlinear control system is discussed. Two classes of approximations
of the reachability sets for this system are constructed. Numerical examples of the reachability
set approximations and the solutions to control synthesis problem are given to illustrate the

proposed approach.

1. INTRODUCTION

The computation of reachability sets which consist of
all system states reachable with some of the available
controls is a key problem in the mathematical theory of
controlled processes (Krasovski [1964, 1971], Kurzhanski
et al. [2002], Chernousko [1994], Lygeros et al. [1999],
Krogh and Stursberg [2003], Patsko et al. [2003]). In
particular, due to them it is possible to solve the problem
of control synthesis.

It is known that the reachability problem may be reduced
to the investigation of appropriate problems of dynamic
optimization. Here we introduce the value function V (¢, z)
as satisfying in some generalized sense a corresponding
Hamilton-Jacobi equation, such that the reachable set
X[t] = X(t, to, XY) from initial states z(tg) = 2° € X°
is a level set of V(¢,x) (Kurzhanski et al. [2001]). Hence
the reachability problem may be solved by finding the
value function. For general nonlinear systems this may be
done by some numerical methods for solving the Hamilton-
Jacobi equation (e.g. Sethian [1999], Osher and Fedkiw
[2002]). However, these methods are not applicable to
the problems of high dimension as the amount of com-
putations needed to preserve the same accuracy grows
exponentially with dimension. On the other hand, for
linear systems many methods of reachability set approx-
imation were developed. They represent reachability sets
as unions or intersections of simpler standard-shape do-
mains, such for example, as ellipsoids (Kurzhanski et al.
[2002]) or parallelotopes (e.g. Kostousova [1998]). These
methods have the possibility to parallelization as the es-
timates in those methods are computed independently.
This property allows to solve control synthesis problems
of quite high dimension (see control synthesis example for
500-dimensional linear system in Daryin and Kurzhanski
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[2013]). In fact, these standard-shape estimates could be
obtained via comparison principle (Kurzhanski [2006]).
The comparison principle method could be thought as
general approach of deriving such estimates. However, for
nonlinear systems the problem of deriving such estimates
is much more complicated as we have to consider the
properties of specific classes of nonlinear systems to obtain
suitable families of estimates that produce good approxi-
mations for reachability sets.

Here we apply comparison principle to construct reacha-
bility sets for a concrete five-dimensional nonlinear con-
trol system. It is so called dynamic unicycle system. The
properties of three-dimensional simplified analogue of this
system, so called kinematic unicycle system, has been
studied in Murray et al. [1994], A. De Luca et al. [1998]. Its
reachability sets were constructed in Patsko et al. [2003].

In this paper we obtain two families of estimates to the
value function of reachability problem for this system: one
family of nonsmooth estimates (both lower and upper)
and one family of more rough quadratic estimates that
corresponds to external ellipsoidal estimates of the reach-
ability set. Then we use these two families of estimates
to construct internal and external approximations of the
reachability and to solve the problem of control synthe-
sis. For the first family we represent the estimate as a
function fi(z) + f2(¢) with separated variables = being
four-dimensional and ¢ being one-dimensional. Using the
comparison principle we obtain ordinary differential equa-
tions for the parameters of fi. To find fo we numerically
solve one-dimensional Hamilton-Jacobi equation that is
much simpler than the original HJB equation in the five-
dimensional phase space. For the second family we use the
comparison principle to obtain quadratic lower estimates
of the value function. In fact, using the latter estimates we
can construct not only the reachability set approximations
but also the reachability tube approximations as those
estimates for different values of ¢ are computed recursively.
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It should be noted than the given scheme allows to obtain
similar families of ellipsoidal estimates for other nonlinear
systems. However, some part of the estimates (depending
on the nonlinear control system under investigation) may
eventually degenerate or become too rough. It should
mentioned also that the given approach may be developed
further to be used in the problems of team control for
groups of unicycles, but this is beyond the scope of this
paper and may be one of the topics for future research.

2. COMPARISON PRINCIPLE

In this section let us state the comparison principle in
the form that will be used in the following. This is a
slight generalization of the comparison principle given in
Kurzhanski [2006]. Consider two Hamilton-Jacobi equa-
tions with the Hamiltonians H(t,z,p) and H(t,z,p) re-
spectively. We suppose that conditions of the uniqueness
theorem for these equations are satisfied (e.g. Crandall et
al. [1984], Subbotin [1995], Bardi and Capuzzo Dolcetta
[1997], Fleming and Soner [20006]). Let w(¢,z) and w(t, )
denote the respective viscosity solutions of these two equa-
tions with the same initial condition w(to,z) = h(z).
In the following & = Z(t) and p = p(t) will denote the
components of characteristic system

ab:Hp(tax7p)7 i)’](to):y,
D= _Hm(t7x>p)7 p(tO) = haz(y)

Suppose we have either

H(t,z,p) < H(t,z,p), V(3p) e D wlt,z) (1)

or

H(t,x,p) <H(t,x,p), Y(¢.p) € DTitz), (2

where D~ and D% denote sub- and superdifferetials re-
spectively (e.g. Clarke et al. [1998]). Then the inequality

w(t,x) < w(t,x) (3)

holds for all t > ¢¢. If besides that the functions w(t, z) and
w(t, x) are twice continuously differentiable at every point
of the curve Z(t), the functions H(t,z,p) and H(t,xz,p)
are continuously differentiable in (z,p), and the following
equality holds

H (t,z(t),p(t))
then we have

w (tvi(t)) =w (tvj(t)) )

Remark 1. Instead of conditions (1) or (2) we will actually
use a simpler condition H(t,z,p) < H(t,z,p) for all
(t,x,p) as in Kurzhanski [2006].

Remark 2. If the equality (2) is satisfied then Z(t) and
D(t) are also components of characteristic system for the
equation with the Hamiltonian H(t, z, p).

=H(t,2(1),p(t))

vVt € [to,tl}.

Next, consider a control system
"t:f(tvxvu) (4)

with the set of initial states X°. The set of all admissible
controls is

U(t) = L>=([to, t}; U)
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where U is a convex compact. The reachability set for this
system is a set

X[t] = {a| Ju(-) eU(t):

Consider the functional
J(u()) = h(z(to)), x(t) =z, u(-) € U(t)

such that X° = {z| h(z) < 0}. Here (1) = z(7;t, 2, u(-)).

Then the value function

Vit = min {7 ()] (0) =}

solves the Cauchy problem for the Hamilton-Jacobi-
Bellman equation

Vi + H(t,z,V,) =0, V(tg,z) = h(x). (5)

z(tyto, 2, u(-)) ==, 2° € X0},

There is connection between the value function and the
reachability set (Kurzhanski et al. [2001]):

X[t] = {z| V(t,z) <0}.

Applying comparison principle with w(¢,x) = V (¢, z) we
obtain a function w™ (¢, x) such that

wt(t,z) < V(t, )

and hence
X[t CXT[t] = {z| wh(t,z) <0}.

Similarly applymg comparison  principle  with
w(t,x) = V(t,x) we obtain a function w™ (¢, ) such that
Vit,z) <w™(t,x)

and hence
{z | “(t,z) < O} Cx[t

3. DYNAMIC UNICYCLE SYSTEM

In this section we apply the comparison principle above
to the dynamic unicycle control system whose three-
dimensional simplified kinematic version was discussed in
Murray et al. [1994], A. De Luca et al. [1998], Roublev
[2010]:

jjl = T2,

Lo = U COS ,

1"3 = T4, (6)
Tq4 = vsiny,

= au

with u being a control parameter, and v, a being positive
constants. Here the compact set U is [—1,1]. The initial
set is of the form

X0 = {(2,0) | hi(z) + haly) <0} (7)

where hy(z) =
ha(ip) is continuous. Here X9 =

(z— 2% X%z — %) and the function
(X9T > 0.

This control system is connected to the dynamic model
for a car-like robot. Namely, z; and x3 are the cartesian
coordinates of the rear wheel, x5 and x4 are the corre-
sponding velocities, v is the absolute value of velocity, ¢ is
the steering angle, and « is the maximum absolute value
of the angular velocity.

Here for the value function we have the HJB equation (5)
with the Hamiltonian

H(z,¢,p) = p122 + P34 + vp2 coS @ + vpy sin @ + o |ps| .
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We propose to look for lower and upper estimates of the
value function in the following simple form:

w(t, z,¢) = w'(t,z) + w’(t, ).
Then the Hamiltonian (¢, z, ¢, p) corresponding to that
estimates should have the variables (z,p,) and (¢, p,)
separated in the same way (here p = [pI, p,]7). To obtain
lower estimates of the value function we estimate the
Hamiltonian H(z, ¢, p) from the above ensuring that the
equality holds when x = Z(t), ¢ = @(t) and p = p(¢).
For the functions w! and w? we obtained the following
equations:

1 1 1 1 - 1 o5
Wi + Wy, T + Wy, Ta + VW5, COS Y + VW, SIN P+

1
5 (wh, = p2)” + 5o (wh, —pa)” =0

and
w? 4 vy (cos ¢ — cos @) + vy (sin @ — sin @) +

(9)

1 1 J
+§v (cos ¢ — cos @)2 + 3V (sinp — sin 95)2 +a |wi| =0

with the initial conditions

U}1<t0,.'11) = hl(l‘), w2(t0ag0> = h2(30)
We look for the solution to the first equation in the
following form:

w'(t,z) = (z — 2" (t), K(t) (x — 2" (t))) + p(t).
It is easy to obtain the equations for the parameters P(¢),
(1), p(t):
K =—(KA+ATK +4KBK),

ok N . 1 .
it = Ax* 4 r(t), u:fiv(p%pi),

where [e1, ..., e4] is the identity matrix and

1
A=ciel +esel, B= iv(egeg + eqel).

The equation (9) is one-dimensional HIB-type equation.
We propose two possible ways to deal with it. First, it
could be solved by using one of the possible numerical
schemes (e.g. Subbotin [1995]). The solution to this equa-
tion is generally continuous but nonsmooth function so
that the function w(t, z,¢) will be also nonsmooth. Sec-
ond, the solution of (9) could be approximated by applying
comparison principle again. In both cases we will have the
following estimate

X[t) € X*[t] = {(z,9) | w(t,z, ) <0}

Next we will obtain ellipsoidal estimates for this system by
applying comparison principle to (9). To do so we estimate
the trigonometric functions in the second equation as
follows

cosd < a(¢ — )% +2b(¢ — ) + ¢,

—sing/(2(¢— 7)), £
a=<1 _ ,
53 ¢) =7
b=a(p—m), c=cosp, ¢e€0,2n]
This inequality turns to equality for ¢ = ¢. Trigonometric
functions — cos ¢, sin¢@, —sin¢ may be estimated from
the above in the same way. Applying these inequalities we

obtain the equation that is quadratic in (¢, ps). Then the
whole equation for w(t, x, ¢) becomes quadratic in (z, ¢, p)

where
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so that its solution will be a quadratic function provided
ha(p) is a quadratic function:

ha(p) = (e — ¢°)% = 1.
In that case the level sets of w(t,x, ) are ellipsoids. The
equation of theirs shape matrices has the form

K(t) = AK(t) + K(t)A" + K(#)C()K(t) +4B(t)  (10)
where B(t) and C(t) are positive definite matrices that
depend on the chosen characteristic (Z(t), p(t)):

A=eed +ezel, B= lv(egeg + eqel) + L_a%eg,

2 2|ps|
C = v(A1ay + Aaas)esel , A = o —cos @, Aa = py —sin @.
Here [e,...,e5] is the identity matrix. For a particular
choice of (Z(t), p(t)) equation (10) may not have a solution
on the interval of consideration. However, if the solution
exists it defines an ellipsoid that touches the reachability
set. This in particular implies that Z(¢) lies on the convex
hull of the reachability set X[t].

For the upper estimates of the value function we obtained
very similar equations to those for the lower estimates:

(11)

1 1 1 1 = 1 w5
Wy + Wy, T2 + Wy, Ta + VW, COS Y + VW, SIN O—
1 _ 2 1 _ 27
—5v (wh, = p2)* = v (wh, —pa)” =0,

w? 4 vps (cos o — cos @) + vy (sin p — sin @) —
12
3V (cos p — cos @) — 3V (sin —sin @)* + |w?p‘ = 0( )

where w(t, z, p) = w!(t,z) + w?(t, ) as previously. These
equations could be solved in the same way to obtain
nonsmooth upper estimates of the value function. This
gives us the inclusion

X[t ={(z, o) | w(t,z,0) <0} C Xt].

For both lower and upper nonsmooth estimates the equal-

ity

V(£ 2(t), o(t)) = w(t, 2(t), ¢(1))
holds when V (¢, z, ¢) and w(t, x, ¢) are twice continuously
differentiable on the curve z(t).

Let us proceed with the problem of control synthesis. We
consider the same dynamic unicycle system (6) but instead
of the initial condition (7) we have the terminal condition

z(t1) € M ={(z,9) | ha(z) + ha(p) <0}

Similarly to the reachability set one could define the
backward reachability set for this system:

Wt = {z| Ju(-) eU(t): a(t;ty,z" u(-)) =z, ' e M},
Here U(t) = L*°([t, t1]; U). The estimates for the backward
reachability sets are constructed in the same way as for the
forward rechability sets. One may formally substitute w?,
w! for —w! and —w? respectively into the equations (11),
(12) to obtain w™ (¢, x, ¢) whose zero level set W™ [t] is an
internal estimate of W[t]. Knowing that estimate one may
construct control strategy u(t, «) that ensures the inclusion
x(t1) € M as soon as z(t) € W™ [t] using extremal aiming
methods (e.g. Krasovski and Subbotin [1988]). For that
purpose define the sets:

WOt z)=A i —wl|,
(t,x) rg mnin |z — wll
SOt,z)={s"=w’ —z: w’ e Wot,2)}.
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Reach set

Fig. 1. The projection of internal and external approxima-
tions of the reachability set at t; = 1.5

Reach set

Fig. 2. The evolution of the projections of internal and
external approximations of the reachability set

Then the control strategy is defined by
u(t,z) € Argmax[us(t, z)].
uelU

where s¥ € SO(t, ).

4. NUMERICAL EXAMPLES

In the first example (see Fig. 1 and 2) we took 10 internal
and 10 external estimates to construct internal and exter-
nal approximations of the reachability set. In the second
example (see Fig. 3 and 4) we intersected 10 ellipsoidal
tubes to obtain external approximation of the reachability
tube. In the control synthesis example we took a starting
point x(0) = 20 = [11.25,2.68, —27.49, —5.02, —2.55]7 and
the internal estimate W~ [t] which contains z° at ¢ = 0.
Then we synthesize the control u*(t) corresponding to that
estimate and the point 2° (see Fig. 5 and 6).

5. CONCLUSION

Although the comparison principle approach by itself does
produce a general algorithm of reachability set approxi-
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Reach tube

t

Fig. 3. The reachability tube and its ellipsoidal approxi-
mation

Reach set

Fig. 4. The reachability set and its ellipsoidal approxima-
tion at t1 = 1.

-5}

-10}

-15F

Fig. 5. The projection of the trajectory in the control
synthesis example
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mation, it provides a way of dealing with various specific
classes of nonlinear systems while preserving certain ad-
vantages that ellipsoidal or parallelotope approaches have
in linear control theory. However, in nonlinear problems
there are new difficulties to deal with as the form of the
value function estimate and hence the form of reachability
set estimate are to be chosen accordingly to the system
under consideration.
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