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Abstract: We provide partial Lyapunov characterizations for a recently proposed generalization
of input-to-state and integral input-to-state stability (ISS and iISS, respectively). This gener-
alization relies on the notion of stability with respect to two measures originally introduced
by Movchan [1960]. We show that the two classical Lyapunov characterizations of ISS-type
properties, i.e., decrease conditions in an implication or dissipative form, correspond to ISS and
iISS, respectively. We also demonstrate via an example that, for the generalization considered

here, ISS does not necessarily imply iISS.

1. INTRODUCTION

Input-to-State Stability (ISS) introduced by Sontag [1989]
has proven to be a valuable tool in the study of systems
subject to disturbances. In particular, when it is possible to
analyze or design systems via a modular approach, many
tools such as small-gain theorems (Jiang et al. [1994]) and
different characterizations of the ISS property (Sontag and
Wang [1996], Sontag and Wang [1995]) are available.

The utility of ISS subsequently led to many derivative
concepts such as Input-to-Output Stability (Sontag and
Wang [1999]), incremental ISS (Angeli [2002]), and other
notions (see the survey by Sontag [2007] for some of these
other notions). In addition, to account for a nonlinear
detectability condition, Krichman et al. [2001] introduced
the notion of Input-Output-to-State Stability.

Ingalls et al. [2002] presented a first attempt at deriv-
ing a generalization that would subsume some of the
varied ISS-type properties into a single concept. There
they considered systems without inputs and produced a
Lyapunov characterization for partial detectability where
measurements (a function of the state) and a transient
term (dependent on a function of the initial condition)
provide an upper bound on errors (another function of the
state). By particular selections for the various functions
required in this concept of measurement-to-error stability,
one recovers the original property of output-to-state sta-
bility (Sontag and Wang [1997]).

In Kellett and Dower [2012] we proposed an alternate
approach to generalizing ISS in order to gather various
ISS-type notions in one framework. This approach relies
on the concept of stability with respect to two measures.
Stability with respect to two measures was first proposed
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by Movchan [1960] for systems without inputs. Similar to
the original ISS investigations of Sontag [1989], we ex-
tended a known stability concept to systems with external
inputs. A general treatment of stability with respect to two
measures can be found in Lakshmikantham and Liu [1993].
Teel and Praly [2000] made use of the modern application
of comparison functions in stability analysis to define KL-
stability with respect to two measures, and the generaliza-
tion of ISS in Kellett and Dower [2012] starts from this
stability concept and derives a Lyapunov characterization
of ISS with respect to a single measure.

This paper continues the work begun in Kellett and Dower
[2012]. In Section 1.1 we provide precise statements for
the systems and properties we will consider. In Section 2
we present a Lyapunov characterization for ISS with re-
spect to two measures. In Section 3 we define integral
ISS with respect to two measures and provide a Lyapunov
characterization that implies this property. In Section 3.2
we highlight a difficulty with demonstrating the converse
result. In Section 4 we formulate conditions that guar-
antee the equivalence of the Lyapunov characterization
of ISS with respect to two measures and the Lyapunov
characterization of iISS with respect to two measures. We
also provide an example that demonstrates the interesting
result that ISS with respect to two measures does not
always imply integral ISS with respect to two measures.
While initially surprising, this result is consistent with
the recent result of Angeli [2009] that, in the case of
incremental ISS, incremental integral ISS in fact implies
incremental ISS. We conclude in Section 5.

1.1 Mathematical Preliminaries and Definitions

Consider the system
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d
Z3(t) = f(a(t), u(t)),

where z € G C R™ and u € R™. In what follows, we denote
by U the set of admissible (measurable and essentially
bounded) input functions. Note that, by a slight abuse of
notation, we will generally use u € R™ and u € U where u
being a vector or function, respectively, will be clear from
context. We denote the essential supremum of the function
u € U by |uf|e. We denote solutions to (1) by ¢ : R>g x
G x U — R™ We make the standing assumptions that
f(-,+) is locally Lipschitz in x € G, locally uniformly in
u € R™, and that system (1) is forward complete on G; i.e.,
for every € G and u € U, solutions @(t, z,u) exist and
remain in G for all ¢ > 0 (see Angeli and Sontag [1999]).
We make use of the standard function classes K, K, and
KL (see Hahn [1967] or Kellett [2012]). We will denote the
class of positive definite functions p : R>¢g — Rx>¢ by PD.

z(0) == (1)

2. INPUT-TO-STATE STABILITY WITH RESPECT
TO TWO MEASURES

In (Kellett and Dower [2012]), we proposed the following
generalization of ISS:

Definition 1. Let w; : G — R>q, 7 = 1,2 be continuous,
nonnegative functions. System (1) is said to be input-to-
state stable (ISS) with respect to (wy,ws) if it is forward
complete on G and if there exist functions § € KL and
~v € IC such that, for all ¢ > 0,

wi(¢(t, z,u)) < max{B(ws(x),1),7(Julo)}-  (2)

By appropriate selection of the measurement functions
w; : G — R>g we clearly subsume many ISS-type notions,
including standard ISS (w1 (z) = wa(z) = |z|), Input-to-
Output Stability (w1 (z) = |h(z)|, we(x) = |z|, where y =
h(zx) defines a system output), and a form of incremental
ISS (wl(l'l,l'g) = WQ(l'hl'Q) = ‘.’ﬂl — .’£2|)

It is straightforward to see that the above definition of ISS
with respect to two measures involving a maximum for
the upper bound is qualitatively equivalent to an upper
bound involving the sum of a transient and gain bound.
See [Dower et al., 2012, Section II.C] for a discussion of
qualitative equivalence.

Definition 2. Let w; : G — R>p, ¢ = 1,2 be continuous,
nonnegative functions. An implication-form, two measure,
1SS-Lyapunov function for (1) is a (smooth) function V :
G — R>( such that there exist a;, a2 € Ko and x € K so
that the following hold for all x € G, u € R™:

ar(wi(z)) < V(2) < ag(wa(z)) 3)
Vieg) 2 x(lu)) = (VV(2), f(z,u)) < =V(z). (4)

This definition matches that of a State-Independent Input-
Output Stable (SI-IOS) Lyapunov function when w;(-) =
[h(:)], i = 1,2 (see Sontag and Wang [2000]).

In (Kellett and Dower [2012]) we restricted attention to a
single measure; i.e., where w : G — R>¢ is continuous and
w1(-) = wa(+) = w(-). We make the following assumption
on commensurability of the two measurement functions in
order to provide a Lyapunov characterization of ISS with
respect to two measures.
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Assumption 1. There exists a function o, € K, such
that, for all z € G,

wa(2) < ay(wi (@) (5)

One consequence of ISS with respect to (wy,ws) and the
above assumption on the measurement functions is that
their zero-value sets coincide; i.e.,

{r €G:wi(x) =0} ={z € G: wa(x) =0}.
Theorem 3. Existence of an implication-form, two mea-
sure, ISS-Lyapunov function implies that system (1) is ISS
with respect to (wq,ws). Conversely, under Assumption 1,
if system (1) is ISS with respect to (w1,ws), then there
exists an implication-form, two measure, ISS-Lyapunov
function.

The proof follows that presented in (Kellett and Dower
[2012]) for a single measurement function which, in turn,
follows the original proof of Sontag and Wang [1995], where
especial care is required to account for possible noncom-
pactness of level sets of the measurement function. The
commensurability of the measurement functions proposed
in Assumption 1 adds some straightforward inequalities to
the proof in Kellett and Dower [2012], which we conse-
quently omit.

We note that if system (1) is augmented with an output
function h : G — R™ such that z(t) = h(¢(t,x,u)) and
if either of the measurement functions is defined to be
wi(-) = |h(-)|, then it is straightforward to see that ISS
with respect to (w1,ws) and Assumption 1 imply SI-IOS.

2.1 10S-Lyapunov functions

A natural question is: what converse-type result is pos-
sible in the absence of Assumption 17 That is, without
restricting the measurement functions to be comparable
as defined by (5), does ISS with respect to two measures
imply the existence of an implication-form, two measure,
ISS-Lyapunov function satisfying (3)-(4)?

An indication of the answer to this question comes from
Lyapunov-type results for Input-to-Output State Stability,
Sontag and Wang [2000]. With system (1) augmented by

an output

y = h(z) (6)
where h : G — RP is continuous, the system given by (1)
and (6) is termed Input-to-Output Stable (I0S) if there
exist § € KL and v € K such that

[h((t; 2, w)| < max{B(|z], 1), v([uloo)}
for all x € G and v € U. This can be seen as a special
case of ISS with respect to (w1, ws) when the measurement
functions are wy(x) = |h(z)| and we(x) = |z|.

Sontag and Wang [2000] defined IOS-Lyapunov functions
and showed that the existence of such functions is equiv-
alent to the IOS property. While the upper and lower
bounds (3) are consistent with those of an IOS-Lyapunov
function; i.e.,
ar(|h(z)]) < V() < as(lz]), VzeG,

Sontag and Wang [2000] demonstrated that, in general,
an 108 system does not admit an I0S-Lyapunov function
satisfying (4). Rather, the required decrease condition is

Vi(z) = x(ul) = (VV(z), f(z,u)) < =s(V(2),[z]), (7)
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for all x € G and u € U, where k € KL.

This can be seen through the example (presented in Sontag
and Wang [2000])

. . —2x9 +u
X1 :O7 x2:T’I%

where the output is taken to be the second state; i.e.,
h(x) = x5 . Intuitively, finding a Lyapunov function for
this system with a decrease condition of the form (4)
is impossible since the decrease rate would need to be
independent of x;. However, choosing, for example, an
initial condition z1(0) very large results in a decrease rate
of x5 that is very small.

)

On the basis of this discussion, we anticipate a more gen-
eral implication-form, two measure, ISS-Lyapunov func-
tion to be a function V' : G — R satisfying the bounds
(3) and a decrease condition similar to (7).

3. INTEGRAL INPUT-TO-STATE STABILITY WITH
RESPECT TO TWO MEASURES

3.1 Lyapunov Characterization

Analogous to the above defined ISS with respect to two
measures, we propose the following generalization of inte-
gral ISS, where again the maximum is qualitatively equiv-
alent to a summation:

Definition 4. Let w; : G — R>p, ¢ = 1,2 be continuous,
nonnegative functions. System (1) is said to be integral
input-to-state stable (iISS) with respect to (w1, ws) if it is
forward complete on G and there exist functions a € K,
B € KL, and v € K such that, for all t > 0, z € G, and
u€EU,

o (or(olt2,0) < max{3fea(e). 0, [t )ar} .

In the two measure context, we define a dissipative-form
ISS-Lyapunov function as follows:

Definition 5. Given continuous, nonnegative functions w; :
R™ — R>, ¢ = 1,2, a dissipative-form, two measure, 155-
Lyapunov function for (1) is a (smooth) function V : R® —
R>¢ such that there exist a1, a9 € Koo, p € PD,and o € K
so that, for all x € G, u € R™, the following hold:

ar(wi(z)) < V(2) < ag(wa(z)) (9)
(VV (@), f(z,u)) < =p(V(z)) + o(|ul). (10)

It is reasonably straightforward to show that the above
dissipative-form ISS-Lyapunov function implies integral
ISS with respect to two measures.

Theorem 6. If system (1) admits a dissipative-form, two
measure, [SS-Lyapunov function for fixed continuous, non-
negative functions w; : R™ — R>g, ¢ = 1,2, then it is ilSS
with respect to (w1, ws).

Proof: Applying a comparison principle [Angeli et al.,
2000, Corollary IV.3] ([Kellett, 2012, Lemma 12]) to the

differential inequality (10) yields suitable functions g €
KL and ¢ € K such that

V(o(t, z,u)) < B(V(x),t) +/O 26 ([u(s)|)ds.
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Making use of the upper and lower bounds (9), and with
o = 26 we then have

cmmwmaw»sm%wmmw+éawwmw.-

Similar to the previous generalizations of ISS and iISS, we
define 0-GAS with respect to two measures.

Definition 7. Let w; : G — R>p, ¢ = 1,2 be continuous,
nonnegative functions. System (1) is said to be zero-
input globally asymptotically stable (0-GAS) with respect
to (w1, ws) if it is forward complete on G and there exists
[ € KL, such that, for all t > 0, and z € G

wi(¢(t, z,0)) < Blwa(x),t). (11)

If wi(x) = wa(x) = |z| then the above is the usual
definition of 0-GAS. We make the obvious observation that
iISS with respect to (w1,ws) implies 0-GAS with respect
to (w1,ws). This follows directly from (8) along with the
comparison function properties that the inverse of a class-
Koo function always exists and is itself a class-K, function,
and also that the composition of a class-K ., function and
a class-XCL function is again a class-CL function.

8.2 The Converse of Theorem 6

One of the key steps in Angeli et al. [2000] to prove that
iISS implies the existence of an iISS-Lyapunov function
involves a characterization of 0-GAS. Unfortunately, a
simple example shows that this characterization will not
hold in the arbitrary measure case. To be precise, [Angeli
et al., 2000, Lemma IV.10] is:

Lemma 8. The system (1) is 0-GAS if and only if there

exist a smooth function V' : R" — R>g, o; € K for

i =1,2,3, and A\,d € K such that, for all z € R™ and
u € R™,

a(lz]) < V() < as(lz]), and (12)

(VV(2), f(z,u)) < —as(|z]) + A(|2z])d(|ul). (13)

However, the 0-GAS characterization required to general-
ize the proof in Angeli et al. [2000] to obtain the converse
to Theorem 6 would involve a decrease condition of the
form
(VV(x), f(z,u)) < —as(V () + MV (2))d(Ju]).  (14)
The following example shows that the argument of A
cannot, in general, be V(x).
Ezxample 1. Consider the following second-order system
i1 = —mful(1 — o(u)); (15)
where ¢ : R — [0,1] is smooth, has compact support on
[1,2], and attains a maximum of 1 at 1. Consider the
measurement functions wq(z) = we(z) = w(x) = |zal.
This system is clearly 0-GAS with respect to w(-). Suppose
we had an appropriate Lyapunov function; i.e., a smooth
function V : R? — R>( and functions aq,as, a3 € Koo
and A, d € K satisfying
o ([zz]) < V(z) < az(|aef), and

(VV (@), f(z,u)) < —as(V(z)) + MV (2))d(|u])-
For zo = 1 and u = 0 we see that (16)-(17) imply

(VV (@), fa,0) = — 2

8:172 IQ:l

< —a3(V(@)) + AV (2))6(0) < —ag o ay(1) <0,

To = —To + 21U
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for all z; € R. Let € = ag o a1(1) > 0. Consequently,
ov

>e, Vxp eR. 18
(%UQ zo=1 =€ 1 ( )
Then, for any z; € R satisfying
A 1))d(1

with u = 1 and x5 = 1, using the definition of ¢, (18),
(19), and the upper inequality of (16), we have

(VV(x), f(z,1)) = 5— (=1+z1) > e(=1+2)

o MW 5\ aon)
> —a3(V(z)) + AV (x))d(1).

Therefore, for v = 1, zo = 1, and z; € R sufficiently
large, it is impossible to find functions satisfying (16)-(17).
Consequently, proving the converse of Theorem 6 requires
an alternate approach to that in Angeli et al. [2000].

4. IMPLICATION AND DISSIPATION FORM
LYAPUNOV FUNCTIONS

4.1 Conditions for Equivalence

We now turn our attention to the relationship between
implication-form ISS-Lyapunov functions and dissipative-
form ISS-Lyapunov functions.

In the standard ISS/iISS framework, it is known that the
existence of an implication-form ISS-Lyapunov function
implies the existence of a dissipative-form ISS-Lyapunov
function ([Sontag and Wang, 1995, Remark 2.4]) and the
converse holds when the function p € PD of (10) is in fact
of class-K and is ultimately larger than the gain function
([Ito, 2006, Remark 4]). This latter result can be shown to
hold true in the general two measure case, and we formalize
this result here.

Proposition 9. Given a dissipative-form, two measure,
ISS-Lyapunov function satisfying (9)-(10) such that p €
K satisfies supysqp(s) > sup,soo(s) there exists an
implication-form, two measure, ISS-Lyapunov function
satisfying (3)-(4).

Note that the same function V : G — R>g will not, in
general, serve as both a dissipative-form and implication-
form, two measure, ISS-Lyapunov function.

Proof: Following the argument of the proof in [Riffer et al.,
2010, Proposition 2.2], we can construct a dissipative-form
two measure ISS-Lyapunov function where the decrease
function is of class-Ko,. This, in turn, provides us with
an implication-form, two measure, ISS-Lyapunov function
where the right-hand side of the decrease condition (4)
is not explicitly —V'(z). Following the argument in [Praly
and Wang, 1996, Lemma 11] to obtain the desired expo-
nential decrease (i.e., (4)) completes the proof. |

In order to address the case where the implication-form
implies the dissipative-form we require a definition. We
denote a sequence of points z,, € G converging to a point
on the boundary of G by z,, — 0G>. If G is unbounded,
then z, — 0G> subsumes the case |z,| — 0.

Copyright © 2013 IFAC

Definition 10. Let A C G be compact. A continuous
function V' : G — Rxq is a proper indicator for A on G if
V(z) =0 if and only if x € A and lim,_,gg= V(z) = 0.

We may now state a sufficient condition for the existence of
a dissipative-form, two measure, ISS-Lyapunov function.

Proposition 11. Let A C G be a compact set and let
V. : G — Rxp be an implication-form, two measure,
ISS-Lyapunov function satisfying (3)-(4). Furthermore,
suppose V : G — Ry is a proper indicator for the
compact set A on G. Then there exists a dissipative-form,
two measure, ISS-Lyapunov function satisfying (9)-(10).

Note that, as a consequence of the upper and lower class-
Ko bounds (3), a two measure ISS-Lyapunov function will
be a proper indicator for a compact set if the measurement
functions are equal (i.e., wi(z) = wa(z) = w(z)) and if
this single measurement function is a proper indicator for
a compact set. This case was proved in Kellett and Dower
[2012]. The proof of Proposition 11 is a simple modification
of the proof of [Kellett and Dower, 2012, Proposition 1].

4.2 The Impact of Compactness

A natural question following Proposition 11 is whether or
not the assumption of having a proper indicator for a com-
pact set is necessary. In this section, we provide an example
system that admits an implication-form, two measure, ISS-
Lyapunov function but for which no dissipative-form, two
measure, [SS-Lyapunov function exists.

Ezample 2. Define the system

&1 =z1|ul(1 — p(u)) (20)
&o = —xg + u+ z16(z2) (1) (21)

where ¢ : R — [0, 1] is smooth, has compact support on
[1,2], and attains a maximum of 1 at 1, and x : R — [0, 1]
is smooth with support on (—3,3) and satisfies k(z2) = 1
for |zo| < 2. Fix wi(z) = wa(z) = w(z) = |z2|. Note that
the set {(21,72) € R? : w(z) = |w2| = 0} is not compact.

Take V(z) = 123 and x(u) = 2|u| in (3) and (4). Then

the bounds (3) are trivially satisfied and (4) is

(VV (@), f(z,u)) = —a3 + z2u + w2w16(02)p(u)

3
< —ixg +u?+ xox1Kk(x2)p(u).

We see that when |z2| > x(|u|), the above becomes
(VV (), f(z,u)) < =V (z) + zoz16(x2)p(U).

By definition of ¢, when |u| ¢ [%, 3},  is identically zero
and consequently, in this range, we have

wlz) = x(lu)) = (VV(2), f(z,u) < =V(z). (22)

On the other hand, for |u| € [2,3] we see that the
condition w(x) > x(|u|) implies |x2f > 3. On this range of
X9, k is identically zero and this again implies (22). Con-
sequently, we see that V(z) = %x% is an implication-form,
two measure, ISS-Lyapunov function and, by Theorem 3,

system (20)-(21) is ISS with respect to w.

To see that no function W : R? — R satisfying (9)-
(10) can exist, we pursue a contradiction argument. In
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particular, we assume that such a W does exist and focus
on the line o3 = 1 where k(z2) = 1. Let £ > 0 satisfy
0 <e < p(W(x)) for all z = (x1,22) € R?, 29 = 1. That
such an € > 0 exists follows from the fact that p € PD
and ai(|zz]) = a1(1) < W(z) where oy € Ky is from
(9). First, consider v = 0 which implies ¢(u) = 0 and also
1 = 0. Then (10) implies W must satisfy

ow
o <
T2~ < —p(W(x)) (23)
which implies
ow > p(W(x)) >e>0. (24)
83?2 Zo=1

On the other hand, consider u = 2 which implies ¢(u) =1
and so £1 = 0 again. In this case, satisfying (10) requires
ow
—(—z2+ 2+ 1) < —p(W(x)) + 0(2)
81}2
which, for x; > —1, implies
W _ —pW(x) +0(2)
53:2 1+ I '

(25)

:E2:1

Therefore, combining (24) and (25), we see that the partial
derivative of the second component of W evaluated at
r9 = 1 must satisfy

ow —p(W(x))+0o(2)
0<e<p(W < — .
e<p(W(x)) < R T
However, since the right-hand side of the upper inequality
goes to zero as r; — 00, such a W cannot exist. In other
words, the system (20)-(21) does not admit a dissipative-
form, two measure, ISS-Lyapunov function.

212:1

Furthermore, it is possible to show that the system defined
by (20)-(21) is not integral ISS with respect to w. To see
this, fix a constant input value @ > 0 such that ¢(u1) = 1.
In this case, we see that system (20)-(21) is given by

. I

I = 51’1’&;
We immediately have ¢ (¢, z,%) = e®2 2. Note that, for a
fixed u, the right-hand side of the integral ISS estimate (8)
can be made arbitrarily small by choosing both w(z) > 0
and t > 0 to be sufficiently small. However, from the
definition of k, as long as |¢2(t, z,4)| < 2 we have

t
1 _
Go(t,z, 1) = e ‘ay +/ e (=7 <ﬂ + ixle“ ) dr.
0

Since we are free to choose the initial condition z; > —1,
we restrict attention to x1 > 0 In this case, for arbitrarily
large x1 > 0, it follows that ¢»(t,z,u) = 2 is possible for
arbitrarily small ¢ > 0 and arbitrarily small but positive
9, making it impossible to satisfy a bound of the form
(8). Consequently, we see that system (20)-(21) is ISS with
respect to w but is not integral ISS with respect to w.

. _ 1
To = —To + T+ §m1/<;(x2).

(SR

Remark 1. One possible consequence of the nonequiva-
lence of implication and dissipative-form ISS-Lyapunov
functions is that, in the general two measure case con-
sidered in this paper, ISS may not be equivalent to in-
tegral Input to integral State Stability (iliISS) as demon-
strated in the classical case in Sontag [1998]. In particular,
to demonstrate that ISS implies ililSS, Sontag used a
dissipative-form ISS-Lyapunov function which, as we have
just demonstrated, may fail to exist in the general case.
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It remains an open question as to whether or not the
equivalence of ISS and iliISS holds in this general case.

4.8 Incremental Stability

The above example demonstrating a system that is ISS
with respect to two measures but that is not integral
ISS with respect to two measures is initially surprising
since, in the classical case, ISS systems form a strict subset
of integral ISS systems. However, the example presented
above is consistent with recent results on incremental ISS
derived in Angeli [2009].

Angeli [2002] defined incremental ISS based on two copies
of a single system; i.e., for f: R™ x U — R" and
T, = f(zl,ul), xr1 € Rn, uy € U,
To = f(fEQ,UQ), XTo € Rn7 uy € U,
incremental ISS is the property that there exist functions
0 € KL and v € K such that solutions of the above system
satisfy

|p1(t, 21, u1) — P2(t, T2, uz)|
< max{B(|z1 — z2[,t),7(Jur — uzf). (27)
In other words, the difference between trajectories starting
from different initial conditions and subject to different
inputs is bounded by a transient term depending on the
distance between initial conditions and a steady-state term
that depends on the worst-case difference between the

input signals. An integral form of incremental ISS was
similarly defined in Angeli [2009].

(26)

The surprising result of Angeli [2009] is that incremental
integral ISS implies incremental ISS. However, it remains
an open question whether or not there is in fact a gap;
in other words, are incremental integral ISS systems a
strict subset of incremental ISS systems? The example
in the previous section provides an indication that this
may be true. In particular, the lack of compactness of
level sets of the measurement function is a crucial element
in constructing a system that is ISS with respect to
two measures but not integral ISS with respect to two
measures. This lack of compactness is also a fundamental
element of the incremental stability notions.

We note that the incremental ISS of (26) as defined by (27)
is close to, but not precisely the same as, ISS with respect
to two measures of (26) when the measurement functions
are wy (21, 2) = wa(21,x2) = |21 — x2|. In particular, (27)
looks at the worst-case difference between two different
input signals while (2) depends on the worst-case value of a
single input. Consequently, the states of (27) appear in the
same manner, but inputs must be considered differently.

Finally, [Angeli, 2009, Theorem 1] presents a converse
theorem for incremental integral ISS where a continuous
dissipative-form Lyapunov function is demonstrated but
the existence of a smooth Lyapunov function is cited as
an open problem. This provides a further indication that
the impediments mentioned in Section 3.2 with regards to
obtaining a (smooth) Lyapunov characterization of iISS
with respect to two measures are nontrivial.

5. CONCLUSIONS

In this paper we explored Lyapunov characterizations of
a generalization of ISS and iISS based on the concept of
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stability with respect to two measures. This generalization
subsumes many ISS-type notions including standard ISS,
Input-to-Output Stability, and a form of incremental ISS.
Partial Lyapunov characterizations are provided for both
ISS (Theorem 3) and integral ISS (Theorem 6).

Of particular interest is the fact that the Lyapunov char-
acterization of ISS with respect to two measures relies
on an implication-form ISS-Lyapunov function while that
for integral ISS relies on a dissipative-form ISS-Lyapunov
function. Additionally, we demonstrated that, in general,
neither type of ISS-Lyapunov function implies the other.
It is known that a dissipative-form ISS-Lyapunov function
implying an implication-form ISS-Lyapunov function re-
quires a strengthening of the decrease rate, and this carries
over to the two measure case. It is surprising, however,
that an implication-form ISS-Lyapunov function implying
a dissipative-form ISS-Lyapunov function relies on the
compactness of level sets of the ISS-Lyapunov function - a
property which does not hold in general.
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