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Abstract: The finite-horizon optimal control problem with input constraints consists in
controlling the state of a dynamical system over a finite time interval (possibly unknown)
minimizing a cost functional, while satisfying hard constraints on the input. For linear systems
the solution of the problem often relies upon the use of bang-bang control signals. For nonlinear
systems the “shape” of the optimal input is in general not known. The control input can be
found solving an Hamilton-Jacobi-Bellman (HJB) partial differential equation (pde): it typically
consists of a combination of bang-bang arcs and singular arcs. In the paper a methodology to
approximate the solution of the HJB pde arising in the finite-horizon optimal control problem
with input constraints is proposed. This approximation yields a dynamic state feedback law.
The theory is illustrated by means of an example: the minimum time optimal control problem
for an industrial wastewater treatment plant.
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1. INTRODUCTION

Given a system with known initial state and with hard
constraints on the amplitude of the control input, the aim
of the finite-horizon optimal control problem is to deter-
mine the control signal which minimizes the cost functional
while satisfying the control constraints. Various practical
problems, such as the minimum time and the maximum
range optimal control problems, can be formulated in this
framework. For linear systems the finite-horizon optimal
control problem with input constraints has a well-known
solution which relies upon the use of bang-bang controls,
see e.g. the recent book of Liberzon [2012]. For nonlinear
systems the solution can be found solving the associated
HJB pde. However, it might be difficult or even impossible
to solve the equation analytically.
In Sassano and Astolfi [2012] and Sassano and Astolfi
[2013] a new method to solve, approximatively, classes of
optimal control problems has been developed. The method
relies upon the use of dynamic state feedback and does
not require the solution of any pde. The goal of this
work is to extend the results in Sassano and Astolfi [2013]
providing approximate solutions for general finite-horizon
optimal control problems with a more general class of
cost functionals and in the presence of input constraints.
The extension of the ideas in Sassano and Astolfi [2013]
is not straightforward. First of all, since different costs
are considered, it is not possible to exploit the solution
of the associated algebraic Riccati equation (ARE) in the
construction of an approximate solution of the problem.

Then the non-differentiability of the value function which
is inherent to problems in which there is a hard constraint
on the input leads to a feedback that may not be every-
where differentiable.

We illustrate the theory solving the approximate minimum
time optimal control problem for a bioreactor. The paper
is organized as follows. In Section 2 the formulation of the
problem is given together with some additional definitions.
In Section 3 the main result is presented, i.e., a dynamic
control law that approximatively solves the optimal con-
trol problem. In Section 4, the case study is discussed, and
in Section 5 conclusions are drawn.

2. PRELIMINARIES

2.1 Problem formulation

Consider an input-affine, nonlinear, system described by
the equation1

ẋ = f(x) + g(x)u, (1)

where x(t) ∈ R
n is the state of the system and u(t) ∈ R

m

is the control input subject to the constraints

umin ≤ uj(t) ≤ umax, j = 1, 2, ...,m, ∀t ∈ R, (2)

with umin < umax. The mappings f and g are assumed
sufficiently smooth. With minor loss of generality we

1 For simplicity, the arguments of the functions are dropped when-

ever this does not cause confusion.
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assume umin = −1 and umax = 1. Finally, consider the
additional equation

Cx(T ) = 0, (3)

with C ∈ R
r×n constant, which is used to model r con-

straints on the final state.
Aim of the constrained finite-horizon optimal control prob-
lem is to find a control input u that minimizes the cost
functional

J(x(t), u(t)) =

∫ T

0

[φ(x(t)) + γ(x(t))u(t)]dt, (4)

where φ : Rn → R, γ : Rn → R
1×m while satisfying the

constraints (1), (2) and (3). Note that T may or may not
be a priori assigned. Hence, the optimal control problem
has running cost

L(x, u) = φ(x) + γ(x)u, (5)

and terminal cost
T (x(T )) = 0. (6)

The dynamic programming solution of this problem is
based on the solution of the HJB pde

φ(x) + Vt + Vxf(x)− |γ(x) + Vxg(x)| = 0, (7)

where

|γ(x) + Vxg(x)| =

m∑

j=1

|γj(x) +

n∑

i=1

Vxi
gij(x)|, (8)

subject to the condition V (x, T ) = 0.

In what follows, similarly to Sassano and Astolfi [2013], we
define a regional version of the problem.

Problem 1. Consider the system (1), the constraints (2),
(3) and the cost (4). The regional dynamic constrained
finite-horizon optimal control problem consists in finding
an integer ñ ≥ 0, a dynamic control law described by
equations of the form

ξ̇ = α(x, ξ, t),

u = β(x, ξ, t),
(9)

with ξ(t) ∈ R
ñ, α : Rn × R

ñ × R → R
ñ and β : Rn ×

R
ñ × R → R

m smooth mappings with |βi(x, ξ, t)| ≤ 1 for
all i ∈ [1,m], and a set Ω ⊂ R

n ×R
ñ such that the closed-

loop system

ẋ = f(x) + g(x)β(x, ξ, t),

ξ̇ = α(x, ξ, t),
(10)

satisfies the conditions
J((x0, ξ0), β) ≤ J((x0, ξ0), ũ),

Cx(T ) = 0,

for any ũ and any (x0, ξ0) for which the trajectory of the
system (10) remains in Ω for all t ∈ [0, T ]. �

The solution of this problem is still hard to determine.
Hence, we define an approximate version of the regional
dynamic finite-horizon optimal control problem.

Problem 2. Consider the system (1), the constraints (2),
(3) and the cost (4). The approximate regional dynamic
constrained finite-horizon optimal control problem consists
in finding an integer ñ ≥ 0, a dynamic control law
described by the equations (9), a set Ω ⊂ R

n × R
ñ and

functions ρ1 : Rn ×R
ñ ×R → R+ and ρ2 : Rn ×R

ñ → R+

such that the regional dynamic constrained finite-horizon

optimal control problem is solved with respect to the
running cost

L(x, ξ, u) = φ(x) + γ(x)u + ρ1(x, ξ, t), (11)

and the terminal cost

T (x(T ), ξ(T )) = ρ2(x(T ), ξ(T )). (12)

�

Remark 1. The non-negativity of ρ2 is required to avoid
that the terminal cost may become unbounded. This
assumption can be relaxed requiring that ρ2 be bounded
from below.

To simplify the forthcoming development we discuss the
underlying linearized problem. Let xℓ and uℓ be the

linearization point and define A =
∂f

∂x
(xℓ), F =

∂φ

∂x
(xℓ),

hsℓ = f(xℓ) + g(xℓ)uℓ, hcℓ = φ(xℓ) + γ(xℓ)uℓ, B = g(xℓ)
and G = γ(xℓ). Consider the linear system described by
the equation

ẋ = Ax +Bu+ hsℓ, (13)

and the cost functional

Jℓ(x(t), u(t)) =

∫ T

0

[Fx(t) +Gu(t) + hcℓ]dt, (14)

subject to the constraints (2) and (3). The dynamic
programming solution of this problem relies on the solution
of the HJB pde

Fx+ hcℓ + Vℓτ + Vℓx(Ax+ hℓ)− |VℓxB +G| = 0,

subject to Vℓ(x, T ) = 0, where Vℓx and Vℓτ are the partial
derivatives of the value function Vℓ.

In what follows we assume that the underlying linearized
problem has been solved and Vℓ has been computed.
Although solving the linearized problem is in general
difficult, there are some significant cases in which this is
possible, e.g. the minimum time optimal control problem.

2.2 Algebraic solution and value function

Similarly to Sassano and Astolfi [2013], we consider the
extended state (xT , τ)T , with τ̇ = 1 and assume that the
HJB equation (7) can be solved algebraically, as detailed
hereafter.

Definition 1. Let Σ : Rn × R → R
n×n, with xTΣ(x, τ)x

positive for all (x, τ) ∈ R
n × R, and σ : Rn × R → R+.

A continuously differentiable mapping W (x, τ) = [Vℓx +
∆x(x, τ), Vℓτ +∆τ(x, τ)], ∆x : Rn×R → R

1×n, ∆τ : Rn×

R → R, is an algebraic Ŵ solution of (7) if

0 = φ+ [Vℓτ +∆τ (x, τ)] + [Vℓx +∆x(x, τ)]f

− |[Vℓx +∆x(x, τ)]g + γ|+ xTΣx+ τ2σ. (15)

�

Using the algebraic Ŵ solution of the equation (15), define
the function

V (x, τ, ξ, s) = Vℓ(x, τ) + ∆x(ξ, s)x+∆τ (ξ, s)τ

+
1

2
||x− ξ||2R +

1

2
b||τ − s||2, (16)

where ξ ∈ R
n, s ∈ R, b > 0, R = RT > 0 and

||v||2R = vTRv.
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Remark 2. We use a different notion of algebraic solution
than the one in Sassano and Astolfi [2013]. Therein, the
solution of the ARE associated to the linear problem is
exploited to ensure that the function V is locally positive
definite. Since in our case the cost functional is not
quadratic, it is not possible to use the ARE. To guarantee
that the function V is locally positive definite we also
exploit the solution of the associated linearized problem,
but compute the “correction” terms in a different way.

3. DYNAMIC CONTROL LAW

Consider the nonlinear system (1), the constraints (2), (3)
and the cost functional (4). Let

Λ(ξ, s) = Ψ(ξ, s)R−1, λ(ξ, s) = ψ(ξ, s)R−1,

where Ψ(ξ, s) ∈ R
n×n and ψ(ξ, s) ∈ R

1×n are the
Jacobian matrices of the mapping ∆x(ξ, s) and ∆τ (ξ, s)
with respect to ξ. Let P (x), Φ(x, ξ, s), ℓ(x, τ, s), H(x, ξ, s),
Π(x, τ, s),W1(x, ξ, s),W2(x, s), D1(x, ξ, s) and D2(x, s) be
continuous mappings such that

f(x) = P (x)x,

∆x(x, s)−∆x(ξ, s) = (x− ξ)TΦ(x, ξ, s)T ,

∆τ (x, s)−∆τ (x, τ) = ℓ(x, τ, s)(s− τ),

∆τ (ξ, s)−∆τ (x, s) = (x− ξ)TH(x, ξ, s)(x− ξ),

∆x(x, s)−∆x(x, τ) = xTΠ(x, τ, s),

∂∆x(ξ, s)

∂s
−
∂∆x(x, s)

∂s
=W1(x, ξ, s)(x − ξ),

∂∆x(x, s)

∂s
=W2(x, s)x,

∂∆τ (ξ, s)

∂s
−
∂∆τ (x, s)

∂s
= D1(x, ξ, s)(x − ξ),

∂∆τ (x, s)

∂s
= D2(x, s)x.

We are now ready to state the main result of the paper.

Proposition 1. Consider the system (1), the constraints (2)

and (3), and the cost (4). LetW be an algebraic Ŵ solution
of (15). Let R = RT > 0 and b > 0 be such that the
function V defined in (16) is positive definite. In addition
suppose there exists a set Ω ⊆ R

n × R× R
n × R in which[

L1 L2

LT
2 L3

]
<

[
Σ 0
0 σ

]
, (17)

and
|L4| ≤ |L4 + (x− ξ)TRg|, (18)

for all (x, τ, ξ, s) ∈ Ω, where

L1 = ΠP + ηW2 + ΛY T + Y ΛT + ΛHΛT ,

L2 = Y λT + ΛHλT +
η

2
DT

2 +
η

2
ΛDT

1 ,

L3 = λHλT −
η

2
D1λ

T −
η

2
λDT

1 ,

L4 = (Vℓx +∆x(x, τ))g + γ,

Y =
1

2
(R − Φ)TP +

η

2
W1,

and η = 1−
ℓ

b
. Suppose finally that

∂

∂ui

[
d

dt
(Vxgi + γi)

]
6= 0, if {Vxgi + γi} = 0. (19)

Then there exists k̄ such that for all k > k̄ the function V
satisfies the HJB inequality

HJBI , φ+Vxf + Vτ + Vξ ξ̇+ Vsṡ− |Vxg+ γ| ≤ 0, (20)

for all (x, τ, ξ, s) ∈ Ω, with ξ̇ = −kV T
ξ and ṡ = η. Hence

ṡ = η,

ξ̇ = −k(ΨTx−R(x− ξ) + ψT τ),

ui =

{
− sign{Vxgi + γi}, if {Vxgi + γi} 6= 0,

uisingular
, if {Vxgi + γi} = 0,

(21)

with uisingular
such that the derivative with respect

to time of {Vxgi + γi} is identically equal to zero,
solves Problem 2 with ρ1 = −HJBI ≥ 0 and ρ2 =
V (x(T ), τ(T ), ξ(T ), s(T )). �

Remark 3. Similarly to Sassano and Astolfi [2013], it is
possible to define the gain k in the dynamics of ξ as a
function of (x, ξ, τ, s) to reduce the absolute value of µ1,
hence the additional running cost ρ1 in (11).

Remark 4. The gain k may be selected to satisfy condition
(18) as explained hereafter. Suppose that there exists a set
Ω in which VξV

T
ξ is nonzero, then selecting

k(x, τ, ξ, s) = (VξV
T
ξ )−1

[
xT (x− ξ)T τ

]
M

[
x

(x − ξ)
τ

]
−µ3

(22)
yields µ1 = −µ3, thus providing a solution to Problem 2
with the additional running cost ρ1 = 0. Note that there is
no condition on the sign of the gain k, since in this context
stability requirements are not imposed.

Remark 5. Note that the left hand side of (17) is zero at
zero. Then, if Σ(0, 0) = Σ̄ > 0 and σ(0, 0) = σ̄ > 0, by
continuity, there exists a region Ω̄ containing the origin
such that (17) is satisfied for all (x, τ, ξ, s) ∈ Ω̄.

4. EXAMPLE: MINIMUM TIME OPTIMAL
CONTROL OF A BIOREACTOR

In this section the theory is illustrated by means of a
classical example: the minimum time optimal control prob-
lem for a bioreactor. Proposition 1 is used to design a
dynamic control law solving an approximate problem. In
the example we compare the optimal control law (which
can be explicitly computed) with the control law obtained
from the optimal solution of the linearized problem and
the dynamic control law obtained from the solution of the
approximate problem.

Several results have been obtained in the control of biore-
actors, see e.g. Moreno [1999], Antonelli and Astolfi [2000],
Betancur et al. [2006], Rapaport and Dochain [2011] and
references therein. In Moreno [1999] an optimal policy for
a class of bioreactors has been proposed, while in Rapaport
and Dochain [2011] the optimal policy has been developed
for a more general class of bioreactors and it has been
demonstrated that the optimal policy may contain singular
arcs.
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A simple model that globally describes the dynamic behav-
ior of a bioreactor is given by the differential equations, see
Moreno [1999],

ṡ = θ(s, v) + π(s, v)u,

v̇ = u,
(23)

where

θ(s(t), v(t)) = −µ(s(t))

[
sin − s(t) +

ρ(z0)

yv(t)

]
,

π(s(t), v(t)) =
sin − s(t)

v(t)
,

µ(s) =
µ0s

ks + s+
s2

ki

, (24)

and ρ(z0) = v0(x0 + ys0)− ysinv0. The variables x(t) and
s(t) describe, respectively, the biomass and the substrate
concentrations in the tank, v(t) the volume of water in the
tank and u(t) the input water flow. In addition y is the
constant yield coefficient, sin the constant substrate con-
centration in the input flow, ks the affinity constant, ki the
inhibition constant and µ0 the constant maximum specific
growth rate. The function µ(s) models the microbiological
growth rate, which is described using the Haldane law (24).
The control u takes values in the interval [0, umax], with
umax > 0, and the variables x, s and v take non-negative
values. Furthermore, when the maximum level of water
in the tank vmax is reached the control u is set to zero.
Differently from Moreno [1999], sin is assumed constant.
The purpose of the bioreactor is to control the concentra-
tion s of the substrate in the tank below a specified level
smin, before the volume reaches vf , where 0 < v(0) < vf ≤
vmax. The cost functional to be minimized is the reaction
time T , i.e., in (4) we have φ(x) = 1 and γ(x) = 0. Thus,
this is a minimum time optimal control problem.
The first step to develop the dynamic control law consists
in computing the solution of the minimum time optimal
control problem for the linearized system. The linearized
system around (sf , vf ) is described by equations of the
form

ẋ1 = −ax1 + bx2 + cu+ d,

ẋ2 = u,
(25)

where x1 = s − sf , x2 = v − vf and a, b, c and d are
constants. Note that d is zero if the state (sf , vf ) is an
equilibrium point. To compute the value function for the
linear problem, the system is integrated and the time t
is eliminated, since the value function is exactly the time
needed to reach the final state. From general results on
linear systems it is known that the optimal control has at
most one switching time and the control input assumes
only the extreme values. With these observations only two
non-trivial situations are possible: the control input is 0
until the switching time and umax until the final time,
or, the control input is umax until the switching time
and 0 thereafter. A simple analysis reveals that the first
candidate optimal control does not yield positive switching
times, whereas the second candidate optimal control yields
a positive switching time for all states. Let Vℓ be the value
function of the linearized problem and Vℓs and Vℓv its
partial derivatives with respect to s and v, respectively.
Note that

1 + Vℓvumax + Vℓsṡℓ = 0, (26)

where ṡℓ is the first of the equations (25) with u = umax.
Consistently with Definition 1 the solution for this problem
relies on the solution of the algebraic equation

1 + (Vℓv +∆v)umax + (Vℓs +∆s)[θ + πumax] = 0. (27)

One Ŵ solution is given by

∆s = −Vℓs,

∆v =
Vℓsṡℓ

umax

.

According to (16) the modified value function is

V (s, v) = Vℓ(s, v) +
Vℓs(ξ1, ξ2)ṡℓ(ξ1, ξ2)

umax

v − Vℓs(ξ1, ξ2)s

+
1

2
R1(s− ξ1)

2 +
1

2
R2(v − ξ2)

2. (28)

Assuming that there exist R1 > 0 and R2 > 0 such that
V (s, v) is locally positive definite, we compute the partial
derivatives of V , namely Vξ1 , Vξ2 , Vs and Vv. Proposition 1
yields the dynamic control law 2

ξ̇1 = −kVξ1 ,

ξ̇2 = −kVξ2 ,

u =

{
[1− sign (Vsπ + Vv)]

umax

2
, if Vsπ + Vv 6= 0,

usingular , if Vsπ + Vv = 0,
(29)

with usingular such that the derivative with respect time
of Vsπ+Vv is identically equal to zero (note that condition
(18) holds).
The closed-loop system (23)-(29) has been simulated with
the parameters (see Moreno [1999] and Buitrón [1993]):
vf = 50m3, sf = 1mgl−1, umax = 0.013888889m3s−1,
Ks = 2mgl−1, Ki = 50mgl−1, µ0 = 0.00002s−1, y = 0.5
and sin = 300mgl−1. The initial conditions (s0, v0) have
been selected in the regions 45 ≤ s0 ≤ 55mgl−1 and
4.5 ≤ v0 ≤ 5m3. The biomass concentration x0 has been
selected as x0 = 13000+3400(5− v0)mgl

−1 to recover the
case studied in Moreno [1999]. The gain of the dynamic
control law has been defined as

k =





k1 =
1 + Vsθ + (Vsπ + Vv)u

V 2
ξ1

+ V 2
ξ2

,
if V 2

ξ1
+ V 2

ξ2
6= 0,

and k1 > 0,

k2 =
10

1 + V 2
ξ1

+ V 2
ξ2

, otherwise.

(30)
The selection k = k1 is in accordance with Remark 4 and
guarantees that Proposition 1 holds with ρ1 = 0. Finally,
the initial condition for the dynamic extension has been
set to (ξ1(0), ξ2(0)) = (1, v0) and R1 = R2 = 340.

Simulations have been carried out with the optimal control
law u∗, the optimal control law for the linearized system
uℓ and the dynamic control law uD. As already discussed
the optimal control law for the linearized problem gives a
batch-strategy: the reactor is filled as fast as possible and
the reaction phase is stopped when s(t) reaches sf .
Fig. 1 shows the time histories of the control signals u∗(t),
uℓ(t) and uD(t) for the initial state (s0, v0) = (50, 5).
Note that the dynamic control approximately recovers the

2 The different definition of u is to adapt the proposition, developed

when there is a symmetric bound on the control, to this problem in

which the bound is asymmetric.
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Fig. 1. Time histories of the control signals u∗ (solid line),
uℓ (dotted line) and uD (dashed line) for (s0, v0) =
(50, 5).
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Fig. 2. Time history of the gain k (solid line) for the initial
condition (s0, v0) = (50, 5).
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Fig. 3. Time history of the additional running cost ρ1 for
the initial condition (s0, v0) = (50, 5).
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Fig. 4. Ratio between the final time TD, resulting from
the application of the dynamic control law, and the
optimal final time T ∗ for s0 ∈ [45, 55] and v0 ∈ [4.5, 5].

optimal strategy. The final time for the optimal policy is
7071 seconds, for the dynamic control is 7154 seconds, and
for the batch-strategy is 18524 seconds. Note the presence
of the singular arc for both the optimal and the dynamic
control law. Fig. 2 displays the time evolution of the gain k.
Note that k is initially equal to k2 and at approximatively
900 seconds it switches to k1, as demonstrated by the
discontinuity in the graph. This behavior is consistent with
the one shown in Fig. 3 where the value of ρ1 is positive
when k = k2 and identically equal to zero when k = k1.

Fig. 4 shows the ratio
TD

T ∗
for a range of initial conditions.

Note that the dynamic control law yields performance
similar to the optimal one and that it significantly out-
performs the batch-strategy which gives an average ratio
of 2.6.

5. CONCLUSION

The finite-horizon optimal control problem with input
constraints for input-affine nonlinear systems has been
studied. The problem has been solved by means of a
dynamic extension yielding a combination of bang-bang
signals and singular arcs. Simulations on a model of an
industrial wastewater treatment plant have shown the
performances of the dynamic control law, which are similar
to the optimal strategies.
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