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Abstract We address the problem of finding an optimal feedback control for feeding a fed-batch
bioreactor with one species and one substrate, from a given initial condition to a given target
value in a minimal amount of time. Mortality rate for the biomass and nutrient recycling are
taken into account in this work. The optimal synthesis (optimal feeding strategy) has been
obtained by Moreno in 1999 when both mortality and recycling are considered negligible, in the
case of Monod and Haldane growth function. Our objective is to study the effect of mortality
and recycling on the optimal synthesis. We provide an optimal synthesis of the problem using
Pontryagin maximum principle, which extends the result of Moreno in the impulsive framework
with mortality and recycling effect.
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1. INTRODUCTION

Our objective in this work is to find an optimal feeding
strategy for the minimal time problem of a fed-batch
bioreactor. The novelty is that we assume that the biomass
has a mortality rate k > 0 and that nutrients can be
regenerated from a fraction α ∈ (0, 1) of dead biomass
with a recycling rate k′ := αk < k.

Following Moreno [1999], the model that we consider is
described by a three-dimensional system. When both
parameters k and k′ are zero, the system admits a con-
servation law (the total mass of the system), hence, it can
be gathered into a two-dimensional one, see Moreno [1999].
Finding an issue to the optimal synthesis can be performed
using a combination of Greens’ Theorem in the plane (see
Miele [1961]) and Pontryagin maximum principle (see e.g.
Boscain and Piccoli [2004]). When the growth function µ
is of type Monod or Haldane, and when both mortality and
recycling are negligible, the optimal synthesis obtained by
Moreno [1999] goes as follows. In the case of Monod
growth function, the optimal strategy is bang-bang (we
call it also fill and wait). In the case of Haldane growth
function, the optimal synthesis consists in reaching the
concentration s corresponding to the maximal value of
µ, and keeping the substrate concentration equal to this
value until reaching the maximal volume of the reactor
(singular arc). The previous results have been extended
in the impulsive framework to the case where the growth
function is of type Monod or Haldane (see Gajardo et al.
[2008]), and to the case where the growth function has
two local maxima defining two different singular arcs (see
Bayen et al. [2012]).

Our aim in this work is to find an issue to the minimal
time problem when both parameters k and k′ can be non-
zero. In this case, the total mass of the system is strictly
decreasing, therefore the system cannot be reduced to a
two-dimensional one as previously, which will significantly
change the analysis in comparison with Gajardo et al.
[2008], Bayen et al. [2012]. When k is a very small
parameter (i.e. when the mortality is small with respect to
the growth), we can expect the optimal synthesis to have
similarities to the one obtained in Moreno [1999]. Actually,
our main result is Theorem 15 and goes as follows. When
the growth function is of type Monod, then the optimal
strategy is of type bang-bang (that is, fill and wait), see
Theorem 14, and when the growth function is of type
Haldane, then the optimal strategy is the singular arc
strategy, see Theorem 13.

The paper is organized as follows. In section 2, the model
without impulsive control is introduced, and we recall a
standard invariance result on the system. In section 3, we
consider the problem with mortality rate in the impulsive
framework (we first neglige the recycling coefficient), and
we prove the optimality of the singular arc strategy for
Haldane growth function. As a consequence, we obtain
that the bang-bang strategy is optimal for Monod growth
function (see Theorems 13 and 14). Finally, we provide
the optimal synthesis of the problem with both mortality
and recycling coefficients, which is a consequence of the
previous results (where only mortality is considered).
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2. PRESENTATION OF THE MODEL

We consider the following controlled system describing a
perfectly mixed reactor operated in fed-batch (see Moreno
[1999], Gajardo et al. [2008]) with a mortality rate k > 0
for the biomass and a recycling rate k′ := αk (0 < α < 1)
of the substrate:

ẋ =
(
µ(s)− k − u

v

)
x,

ṡ = [−µ(s) + k′]x+
u

v
(sin − s),

v̇ = u.

(1)

Here x is the concentration of biomass, s the concentration
of substrate, and v the volume of water in the tank. If vm
is the volume of the tank, the volume v is allowed to take
values in (0, vm]. The parameter sin > 0 is the input
concentration of substrate. The control u represents the
input flow rate, and the set of admissible controls is

U := {u : [0,∞)→ [0, um] | u(·) meas.},
where um represents the maximum value of the input flow
rate. Without any loss of generality, we can assume that
um = 1. The growth function that we consider throughout
the paper is either Monod or Haldane:

• For a growth function µ of type Monod, we have:
µ(s) = µ s

k1+s
.

• For a growth function µ of type Haldane, we have:
µ(s) = h0s

h2s2+s+h1
where hi > 0 and the unique

maximum of µ is achieved at s =
√

h1

h2
.

Next, we will assume that k is small enough in order to
guarantee that for certain value of the substrate concentra-
tion, the growth of biomass is possible. More precisely, we
require the following assumptions on the growth function
throughout the paper.

Hypothesis 2.1. If µ is of type Monod, then we assume
that k is such that:

k < µ. (2)

In this case, we call s̃1 the unique substrate concentration
s satisfying µ(s̃1) = k′.

Hypothesis 2.2. If µ is of type Haldane, then we assume
that k is such that:

k < µ(s). (3)

In this case, there exist exactly two substrate concentra-
tions s̃′1 < s < s̃′2 such that µ(s̃′1) = µ(s̃′2) = k′. In the
following, we also assume (in the case of Haldane) that the
input substrate concentration sin satisfies:

s̃′2 ≥ sin. (4)

The next proposition is fundamental in order to guarantee
the well-posedness of solutions.

Proposition 1. (i) In the case where µ is of type Monod,
the domain

Em := R∗+ × [s̃1, sin]× R∗+, (5)

is invariant by (1).
(ii) In the case where µ is of type Haldane, and under
assumption (4), the set

Eα := R∗+ × [s̃′1, sin]× R∗+, (6)

is invariant by (1).

Hereafter, when α = 0 (that is k′ = 0), we denote by E :=
E0 = R∗+× [0, sin]×R∗+ the invariant set given by (6). The
proof of the Proposition is based on the following lemma
(which is a simple consequence of Gronwall’s Lemma).

Lemma 2. Consider the ordinary differential equation
(ODE):

ẏ = f(t, y), (7)

where f : R × R → R is a Caratheodory function local
Lipschitz continuous with respect to y. Assume that
f(t, 0) ≥ 0 for all t. Then, R∗+ is invariant by (7).

Consider now a target T which is defined as follows:

T := R∗+ × [0, sref ]× {vm}, (8)

where sref is a given reference (low) concentration. In the
rest of the paper, we assume that sref is such that:

• If µ is of type Monod, we assume that sref > s̃1.
• If µ is of type Haldane we assume that sref > s̃′1.

It follows that the target is controllable from any initial
condition in Em (in the Monod case) or Eα (in the Haldane
case). Indeed, a simple way to drive the system to the
target is to let u = 1 until reaching vm, and then we take
u = 0 until sref (if necessary). When u = 0, we have that
s(t) is strictly decreasing and converges to the equilibrium
s̃1 (when µ is of type Monod) or s̃′1 (when µ is of type
Haldane). As sref > s̃1 (resp. sref > s̃′1) in the case
of Monod (resp. in the case of Haldane), the trajectory
necessarily reaches the target in finite time.
We are now in position to state the optimal control
problem. Our aim is to minimize the amount of time tf (u)
with respect to u ∈ U in order to steer (1) from an initial
condition (x0, s0, v0) ∈ R∗+ × R∗+ × R∗+ to the target T :

inf
u∈U

tf (u) s.t. (x(tf (u)), s(tf (u)), v(tf (u))) ∈ T . (9)

If k = 0, the system (1) can be gathered into a two-
dimensional one (see e.g. Moreno [1999], Bayen et al.
[2013]) by considering the conserved quantity

M := v(x+ s− sin) = v0(x0 + s0 − sin). (10)

When k > 0 and α > 0, we cannot reduce the system into
a two-dimensional system. Indeed, we have:

Ṁ = −k(1− α)xv < 0, (11)

hence M is strictly decreasing, and the same reduction is
not possible for system (1).

3. OPTIMALITY RESULTS FOR THE IMPULSIVE
SYSTEM

Following Bayen et al. [2012], Gajardo et al. [2008], we
consider an extension of the minimal time problem both
with mortality and recycling coefficients allowing impulse
controls in (1). From a practical point of view, this
assumption corresponds to a maximum input flow rate
um � sups∈[0,sin] µ(s). This framework allows also to
compute easily the value function corresponding to the
different strategies, and also to split the biological part
and the dilution part in (1). We will prove the following
result:

• For Monod growth function, the ”fill and wait” stra-
tegy is optimal.
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• For Haldane growth function, the ”singular arc”
strategy is optimal.

The proof of these results relies essentially on the case
α = 0 (see subsection 3.5 when α 6= 0).

3.1 Statement of the problem

We first make a brief review of the impulsive framework
(see e.g. Bayen et al. [2012], Gajardo et al. [2008]). We
consider the initial system (1) with an additional control
r which plays the role of an impulse control:

ẋ =
(
r[µ(s)− k]− u

v

)
x,

ṡ = −rµ(s)x+
u

v
(sin − s),

v̇ = u.

(12)

The set of admissible controls is defined as follows (the
subscript i is for impulsive):

Ui := {u = (r, u) : [0,∞[→ Ω | meas.},
where Ω = ({0, 1} × [0, 1]) \ {(0, 0)}. The control u is
the input flow rate as in (1) and r represents an impulse
control. An instantaneous addition of volume v+ − v−
(i.e. a jump from volume v− to volume v+) is achieved by
taking r = 0 on some interval of time [τ−, τ+] for system
(1), and any measurable control u satisfying the condition:∫ τ+

τ−

u(t)dt = v+ − v−, (13)

see Gajardo et al. [2008] for more details. In particular,
there is no uniqueness of u as long as integral (13) is equal
to v+ − v−. An addition of volume v+ − v− corresponds
to a dilution of the substrate and the biomass:

s+ =
v−
v+
s− +

(
1− v−

v+

)
sin, x+ =

v−
v+
x−, (14)

where s−, x− are the concentrations before dilution, and
s+, x+ the ones after dilution. Hereafter, we also say that
the system has an impulse whenever r = 0 on some time
interval. For ξ = (x, s, v) ∈ E and a control u ∈ Ui,
let tξ(u) be the first entry time in T . In the impulsive
framework, the minimum time problem, for an initial
condition ξ0 ∈ E, can be gathered into:

inf
u∈Ui

∫ tξ0 (u)

0

r(τ)dτ, (15)

s.t. (x(tξ0(u)), s(tξ0(u)), v(tξ0(u))) ∈ T ,
see Gajardo et al. [2008] for more details on the parame-
trization of the minimum time problem with impulsive
controls. Similarly as for (??), one can prove that the
target is controllable from any initial condition in E
(by making an impulse of volume vm − v0 and letting
u = 0 until sref if necessary). We can also prove by
Fillipov’s Theorem (see Lee and Markus [1967]) that there
exists an optimal control for (15) in the class of relaxed
controls taking values within the convex set Ω′ := [0, 1]×
[0, 1]\{(0, 0)}. In the following, we apply Pontryagin
maximum principle with control in Ω′. We will see in
the sections 3.4 and 3.3 that an optimal feedback control
u necessarily satisfies r ∈ {0, 1}.

3.2 Pontryagin maximum principle in the impulsive case

In this part, we apply Pontryagin principle (PMP)
on the impulsive system which gives necessary condi-

tions on optimal trajectories. The Hamiltonian H :=
H(x, s, v, λx, λs, λv, λ0, r, u) associated to the system is

H :=r [(λx − λs)µ(s)x− kxλx + λ0] (16)

+ u

[
λv +

λs(sin − s)− λxx
v

]
.

Let u an optimal control and ξ := (x, s, v) its associated
trajectory. Then, there exists tf > 0, λ0 ≤ 0 and
λ := (λx, λs, λv) : [0, tf ] → R3 such that (λ0, λ(·)) 6= 0,

λ satisfies the adjoint equation λ̇ = −∂H∂ξ (ξ, λ, λ0,u) for

a.e. t ∈ [0, tf ], that is:
λ̇x = −r(λx − λs)µ(s) + rkλx +

u

v
λx,

λ̇s = −r(λx − λs)xµ′(s) +
u

v
λs,

λ̇v =
(sin − s)λs − xλx

v2
u,

(17)

and such that we have the maximization condition:

u(t) ∈ argmaxv∈Ω′H(ξ(t), λ(t), λ0,v), (18)

for a.e. t ∈ [0, tf ]. The transversality condition reads as:

λ(tf ) ∈ −NT (ξ(tf )),

where NT (ξ) denotes the normal cone to T at the point
ξ(tf ) (see e.g. Vinter [2000]). In particular, as x(tf ) is free,
we obtain λx(tf ) = 0. We assume in the following that
optimal trajectories are normal trajectories, that is λ0 6= 0,
hence we take λ0 = −1 (the fact that λ0 is non-zero can be
proved as in Bayen et al. [2012]). An extremal trajectory is
a quadruplet (ξ(·), λ(·),u(·), tf ) satisfying (12)-(17)-(18).
As we deal with a minimal time problem, the Hamiltonian
is zero along an extremal trajectory. Let φ1 (resp. φ2) the
switching function associated to the control r (resp. u):φ1 := (λx − λs)µ(s)x− kxλx − 1,

φ2 := λv +
(sin − s)λs − xλx

v
.

The value of an extremal control is given by the sign of φ1
and φ2. For a.e. t ∈ [0, tf ], we have by (18):{

φ1 ≤ 0 and φ2 = 0 =⇒ r = 0,

φ2 ≤ 0 and φ1 = 0 =⇒ u = 0,
(19)

and we have also:

r(t)φ1(t) + u(t)φ2(t) = 0, (20)

for a.e. t ∈ [0, tf ], hence φ1 and φ2 are always negative.
When u = 0 on some time interval, we can take without
loss of generality r = 1 as (r, u) 6= (0, 0) (see Bayen
et al. [2012]). When φ1 = φ2 = 0 on some time interval,
then, we say that the trajectory has a singular arc. By
differentiating, we obtain:{

φ̇1 = −uψ,
φ̇2 = rψ,

where

ψ :=
x(sin − s)

v
(λs − λx)µ′(s). (21)

When the derivative of the growth function µ admits a zero
(typically in the case where µ is of Haldane type), an op-
timal control can be singular. The following lemma shows
that the characterization of singular arcs is essentially the
same as the problem with k = 0.

Lemma 3. Let I = [t1, t2] a singular arc. Then, we have
s(t) = s for t ∈ [t1, t2] where s is such that µ′(s) = 0.
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Proof. We have φ1(t) = φ2(t) = 0 for all t ∈ I. By
differentiating, we obtain (λs(t) − λx(t))µ′(s(t)) = 0 for
all t ∈ I. Let us prove that λs − λx does not vanish
on some time interval J := [t′1, t

′
2]. Otherwise, we would

have λs(t) − λx(t) = λ̇s − λ̇x(t) = 0 for all t ∈ J . This
condition together with the adjoint system implies that
λx(t) = 0 for all t ∈ J . On the other hand, the expression
of the Hamiltonian along the singular arc gives −kxλx +
1 = 0 contradicting the fact that λx is vanishing on J .
Consequently, we have µ′(s(t)) = 0 for all t ∈ I, which
proves the Lemma. 2

To study properties of singular arcs (in the Haldane case),
we define:

α :=
µ(s)

sin − s
, β := µ(s)−k > 0, x := (sin−s)

[
1− k

µ(s)

]
.

By using the fact that ṡ = 0 along a singular arc, we obtain
the next proposition.

Proposition 4. Let us consider a singular arc with r = 1 on
some time interval [t0, t1] starting at some point (x0, s, v0).
Then, if v1 := v(t1), the concentration of biomass and the
singular control us to steer the system from a volume v0
to a volume v ∈ [v0, v1] are given by:

x(v) =
v0
v
x0 +

[
1− v0

v

]
x, us(v) = αxv. (22)

Moreoever, the corresponding time t1 = t1(v1, x0, v0) is
given by:

t1(v1, x0, v0) = t0 +
1

β
ln

(
x0v0 + x[v1 − v0]

x0v0

)
. (23)

Next, we assume the following condition that will ensure
the controllability of the singular arc with a control r = 1
for (12) (see also Dochain and Rapaport [2011], Bayen
et al. [2012]):

Hypothesis 3.1. Initial conditions in E are such that:

µ(s)

[
M0

sin − s
+ vm

]
≤ 1, (24)

where M0 = v0(x0 + s0 − sin).

Notice that along a trajectory, we have M = v(x+s−sin),
where M is strictly decreasing by (11). Together with (22),
we obtain for 0 < v ≤ vm:

us(v) = α [M + v(sin − s)] ≤ α[M0 + vm(sin − s)] ≤ 1,

where the second inequality follows from Hypothesis 3.1.
It follows that this hypothesis guarantees that the singular
control satisfies the bound us ≤ 1.

3.3 Optimality result for Haldane growth function

We assume in this subsection that µ is of Haldane type,
and that s > sref . We will prove that the singular arc
strategy (see Definition 3.1) is optimal for any value of k
using Pontryagin maximum principle. The proof relies on
the exclusion of extremal trajectories.

The next lemma gives properties of the trajectory during
an impulse of volume and is fundamental in the following.

Lemma 5. Consider an extremal trajectory starting at
some point (x0, s0, v0) ∈ E with v0 < vm. Assume that
we have r = 0 on some time interval [0, t1], where t1 is a
switching point. Then, we have:

[λ0x − λ0s][µ(s(t1))− µ(s0)] ≥ 0, (25)

where λ0 := (λ0x, λ
0
s, λ

0
v) is the initial adjoint vector.

Proof. One can see that on [0, t1], we have λ̇x = v̇
vλx,

λ̇s = v̇
vλs, thus λx = v

v0
λ0x and λs = v

v0
λ0s. This gives

φ1 = (λ0x − λ0s)x0µ(s)− 1− kx0λ0x. (26)

As r = 0 on the interval [0, t1], we have φ1(0) ≤ 0 and
φ1(t1) = 0 (as t1 is a switching point). The lemma follows
from (26). 2

We now prove that it is not possible to have an impulse
from a point in (x0, s0, v0) ∈ E with v0 < vm and s0 > s
to the maximal volume.

Lemma 6. Assume that an extremal trajectory satisfies
r = 0 from a point (x0, s0, v0) ∈ E with v0 < vm
and s0 > s until the maximum volume vm. Then, the
trajectory is not optimal.

Proof. Suppose that we have r = 0 until vm and let t1
the time where the trajectory reaches the maximal volume.
We then have u = 0 on [t1, tf ] where tf > t1 is such that
s(tf ) = sref (first entry time into the target). We have
φ1 = 0 on the interval [t1, tf ], therefore

λx − λs =
1 + kxλx
µ(s)x

.

From the adjoint equation, we get that λ̇x = − 1
x , so λx is

decreasing, and using λx(tf ) = 0, we obtain that λx ≥ 0
on [t1, tf ]. Consequently, λx−λs is non-negative on [t1, tf ],
thus λx(t1)− λs(t1) ≥ 0. By (25), and from the fact that
µ(s0)− µ(s(t1)) > 0, we obtain

λ0x − λ0s < 0,

where λ0 := (λ0x, λ
0
s, λ

0
v) is the initial adjoint vector. Recall

from Lemma 25 that along the impulse, we have λx −
λs = v

v0
[λ0x − λ0s]. Thus, at time t1, we get λx(t1) −

λs(t1) = vm
v0

[λ0x − λ0s] < 0, which is a contradiction. 2

Similarly, we show that a trajectory which has a switching
point from an arc u = 0 to an impulse at a substrate
concentration strictly greater than s, is not optimal.

Lemma 7. Let us consider an extremal trajectory starting
at some point (x0, s0, v0) ∈ E with v0 < vm, s0 > s.
Assume that it satisfies u = 0 on [0, t0] and r = 0 on [t0, t1]
where s(t0) > s. Then, the trajectory is not optimal.

Proof. As we have φ2 < 0 on [0, t0), we get that φ̇2(t0) =

limt→t0
φ2(t)−φ2(t0)

t−t0 ≥ 0. We obtain from (21) that φ̇2 = ψ,

thus λs(t0) − λx(t0) ≤ 0 (recall that µ′(s(t0)) < 0 as
s(t0) > s). From the impulse at time t0 and from Lemma
5, we obtain that necessarily λx(t0)− λs(t0) < 0 which is
a contradiction. 2

We now investigate the case where an extremal trajectory
has a switching point at a substrate concentration lower
than s and for a volume value strictly less than vm.
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Lemma 8. Consider an extremal trajectory starting at
some point (x0, s0, v0) ∈ E with v0 < vm, s0 < s. Assume
that it satisfies u = 0 on [0, t0] and r = 0 on [t0, t1]. Then,
the trajectory is not optimal.

Proof. We have φ2 < 0 on the interval (0, t0) and

φ2(t0) = 0, therefore φ̇2(t0) ≥ 0. On the interval [0, t0],

the switching function φ2 satisfies φ̇2 = ψ, therefore we
get λs(t0) − λx(t0) ≥ 0. From Lemma 5, we obtain that
λx(t0)−λs(t0) > 0 (because µ is increasing on [0, s]), hence
λs(t0)− λx(t0) < 0, which is a contradiction. 2

Notice that this Lemma implies that the substrate concen-
tration cannot decrease until s = s with a control u = 0
at a volume value v0 < vm. We now prove that it is not
optimal for a trajectory to leave the singular arc before
reaching the maximal volume. Hereafter, S[t1,t2], I[t1,t2],
and NF[t1,t2] denote a singular arc, an arc r = 0 (Impulse),
and an arc u = 0 (No Feeding) on some time interval
[t1, t2].

Proposition 9. Consider an extremal trajectory starting at
some point (x0, s, v0) ∈ E at time 0 with v0 < vm and
which contains a singular arc on some time interval [0, t1].
If the trajectory is optimal, then it is singular until the
maximal volume.

Proof. Without any loss of generality, we may assume
that the trajectory is singular until the time t1 and that
v(t1) < vm. From Lemma 8, the trajectory cannot
switch to u = 0 at time t1, therefore, if it is optimal,
we necessarily have that r = 0 (a dilution) in a right
neighborhood of t1. If we have r = 0 until the maximal
volume, we know from Lemma 6 that the trajectory is
not optimal. Similarly, if the impulse does not reach the
maximal volume, but if the extremal trajectory contains a
sequence I[t1,t2]NF[t2,t3]I[t3,t4] with 0 < t1 < t2 < t3 < t4,
v(t3) < vm and s(t3) > s, then we know from Lemma 7
that the trajectory is not optimal.

We deduce that the extremal trajectory necessarily con-
sists of sequences of singular arcs followed by a dilution
r = 0 and an arc u = 0 until s. This means that there
exists t2 > t1 such that r = 0 on [t1, t2] with s(t2) > s, and
that at time t2, we have u = 0 until the singular arc which
is reached at time t3. Therefore, the only possibility for
the trajectory is to contain a concatenation of sequences
of type S[0,t1]I[t1,t2]NF[t2,t3] until reaching the maximal
volume vm (by a singular arc from Lemma 6).

We now prove that the existence of such a sequence implies
a contradiction, which will prove that it is optimal for a
trajectory to be singular until the maximal volume. Let
ϕ := λx − λs.

Claim 10. A sequence I[t1,t2]NF[t2,t3] such that s(t1) =
s(t3) = s satisfies ϕ < 0 on [t1, t3].

Let us prove Claim 10. From Lemma 5, we have ϕ(t1) < 0
and ϕ(t2) < 0. Now, as u = 0 on [t2, t3], we have φ1 = 0
and ϕµ(s)x = 1 + kxλx on this interval. Combining with
the adjoint equation gives:

ϕ̇ = xµ′(s)ϕ− 1

x
. (27)

Assume that there exists τ ≤ t3 such that ϕ is vanishing.
We can assume that ϕ < 0 on [t2, τ) so that ϕ̇(τ) ≥ 0. On
the other hand, (27) implies that ϕ̇(τ) = − 1

x(τ) < 0, and

we have a contradiction, which proves the claim.

Claim 11. If a sequence S[t3,t4] satisfies ϕ(t3) < 0, then we
have ϕ(t4) < 0.

Let us prove Claim 11. On the interval [t3, t4], we have
φ1 = φ2 = 0 and µ′(s) = 0 which gives:

ϕ̇ =
us
v
ϕ− 1

x
, (28)

where us is the singular control (recall (22)). From (28)
and Gronwall’s Lemma, we obtain that ϕ(t3) < 0 implies
ϕ(t4) < 0, as was to be proved.

To conclude the proof of the proposition, note that
from our assumption, there exists at least one sequence
S[0,t1]I[t1,t2]NF[t2,t3] as above. Combining Lemma 5,
Claims 10 and 11, yields that ϕ(t1) < 0, ϕ(t2) < 0 and
ϕ(t3) < 0. By repeating this argument on each such
sequence if necessary, we obtain that there exists a time
t > 0 such that s(t) = s, v(t) = vm, and ϕ(t) < 0. Now,
the transversality condition at the terminal time implies
that

ϕ(tf ) =
1

µ(sref )x(tf )
> 0,

which contradicts ϕ(t) < 0 and Claim 10 (recall that
Claim 10 together with ϕ(t) < 0 implies ϕ(tf ) < 0). This
concludes the proof. 2

Let C1 the dilution curve which passes trough the point
(s, vm) in the plane (s, v), and whose equation is given by

γ1(s) := vm
sin−s
sin−s . The singular arc strategy is defined as

follows.

Definition 3.1. Let (x0, s0, v0) ∈ E.
(i) If v0 ≥ γ1(s0), the singular arc strategy consists of an
impulse to v = vm, followed by an arc u = 0 until sref .
(ii) If s0 ≤ s, and v0 < γ1(s0), the singular arc strategy
consists of an impulse from s0 to s, followed by a singular
arc until reaching v = vm and then an arc u = 0 until sref .
(iii) If s0 ≥ s, the singular arc strategy consists of an arc
u = 0 until reaching s, a singular arc until v = vm and
then an arc u = 0 until sref .

Theorem 12. For any point (x0, s0, v0) ∈ E, the optimal
feeding policy is the singular arc strategy.

Proof. Let (x0, s0, v0) ∈ E with v0 < vm. First, assume
that s0 < s. If, v0 > γ1(s0), Lemma 8 implies that r = 0
until vm. If v0 < γ1(s0), Lemma 8 implies that r = 0
until reaching the singular arc. Otherwise, we would have
a switching point to an arc u = 0 at some time t0 with
v(t0) < vm, s(t0) ≤ s. As v(t0) < vm, the trajectory
necessarily contains a switching point to r = 0 at some
time t1 > t0, and we can apply Lemma 8 to exclude this
possibility. Now, Proposition 9 implies that the trajectory
is singular until v = vm.
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Assume now that s0 > s. From Lemma 7, we have u = 0
until the singular arc. From Proposition 9, the trajectory
remains singular until vm, which ends the proof. 2

Theorem 12 implies the following result.

Theorem 13. In the Haldane case, the feedback control law
uSA given by

uSA(s0, x0, v0) :=


(0, u), if s0 < s, v0 < vm,

(1, us(v)), if s = s, v0 < vm,

(1, 0), if v0 = vm or s0 > s,

(29)

is optimal.

Proof. The result is a rephrasing in term of feedback
control of Theorem 12. Note that in (29), u is any
measurable control taking values in [0, 1] such that its
integral on the period of the dilution is equal to vm − v0
(see Definition 13). 2

3.4 Optimality result for Monod growth function

We now consider the case where the growth function is of
type Monod. Using similar arguments as in the Haldane
case, we can prove that the strategy ”fill and wait” (see
Definition 3.2) is optimal for any value of k > 0.

Consider a point (x0, s0, v0) and let (x′0, s
′
0, vm) the point

which is obtained by an instantaneous dilution until the
maximal volume vm (see Eq.(14)).

Definition 3.2. From any point (x0, s0, v0) ∈ E, the stra-
tegy fill and wait (FW) is r = 0 until v = vm, and then
u = 0 until s ≤ sref if s′0 > sref .

Theorem 14. In the Monod case, the feedback control law
uFW given by

uFW (s0, x0, v0) :=

{
(0, u), if v0 < vm,

(1, 0), if v0 = vm and s0 > sref ,

(30)

is optimal.

The proof of this result relies on similar arguments as in
the Haldane case, and we have not detailed the proof for
brevity.

3.5 Fed-batch bioreactor with mortality and recycle

In this section, we investigate the case where both coeffi-
cients k and k′ are non-zero. In the impulsive framework,
(1) becomes:

ẋ =
(
r[µ(s)− k]− u

v

)
x,

ṡ = r[−µ(s) + k′]x+
u

v
(sin − s),

v̇ = u.

(31)

Now, by setting ν(s) := µ(s)− k′, (31) becomes:
ẋ =

(
r[ν(s)− k′′]− u

v

)
x,

ṡ = −rν(s)x+
u

v
(sin − s),

v̇ = u,

(32)

where k′′ = k − k′ > 0. In view of Proposition 1, we can
apply the result of Theorem 14 and 13 to the system (32)

on the domain Em ⊂ E (in the case of a Monod growth
function) or Eα ⊂ E (in the case of a Haldane growth
function). Indeed, both domains Em and Eα remain
invariant for (32). Moreover, if µ is of type Monod, then
ν is increasing on [s̃1,+∞], and if µ is of type Haldane,
ν is increasing on [s̃′1, s], and decreasing over [s, sin]. So,
we can apply the optimality result on these sets with ν in
place of µ. We thus obtain the following theorem.

Theorem 15. (i) When µ is of type Monod, the strategy
fill and wait is optimal in the domain Em.
(ii) When µ is of type Haldane, the singular arc strategy
is optimal in the domain Eα.

4. CONCLUSIONS

In this work, we have extended the result of Moreno [1999]
in presence of mortality and nutrient recycling. Thanks
to Pontryagin maximum principle, we could characterize
similarly the optimal feedback control in this framework.
We can conclude that the optimal feedback control law
which is either Bang-Bang (for Monod growth function)
or singular (for Haldane growth function) is robust in
presence of mortality and recycling effects. In fact, when
these parameters are not exactly known, this result shows
that the optimal synthesis obtained in Moreno [1999]
still holds. We hope that this kind of analysis could be
extended to more general situations, in particular when
the recycling effect includes a delay.
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Copyright © 2013 IFAC 163


