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Large Scale chemical plant Models

Plant operations modelling:
• process with sensors and actuators ☯
• conventional controllers ☯
• external disturbances ☯
• operating window constraints -
• economical objectives -

Aspects of modelling:
• technology of modelling ☯
• mainly generic aspects ☯
• specific aspects: see Bayer and Shell applications
• work processes underexposed
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LSM: plant features

Feed
preparation

section

Chemical
conversion

section

Product
purification

section

• multiple modes of production + switching
• disturbances
• multiple units / section & many compartments / unit
• recycling & heat integration
• non-linear behaviour (units + plant wide integration)
• very wide range of relevant time scales (µs - days)
• several thermodynamic phases with many species

=> Large scale dynamic process models (103 - 105 DAE’s)
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LSM: Systematic model development

Requirements

Synthesis
• abstraction
• model equations

Analysis
• existence solution(s)
• solution method(s)

Validation
• parameter estimation
• model discrimination

Documentation
& transfer

Implementation
• coding
• verification

Model based design
of experiments
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LSM: functional requirements

Aim: accurate representation of physical behaviour:

• relevant time scales => how small ?
• feasible operational window:

* physical ranges of inputs,  states, outputs
• for realistic disturbance scenarios

Trade-off’s:
•complexity vs costs of development & validation
• complexity vs maintenance (costs)
• in closed loop: complexity vs accuracy
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LSM: Synthesis of modelling space

Abstraction:
from reality to a modelling space with bounds:
• objects: contents and walls of equipment, streams,

sensors, controllers, actuators, ..
• spatial resolution: mixed compartments, distributed in n-D.
• time resolution: continuous, discrete
• chemical species: discrete, continuous
• thermodynamic phases: V, L1, L2, S1, S2, ..
• chemical reactions: discrete, continuous;
• states of particles: size, stress, charge, ..
• …..
Key issue: how to find relevant level of detail
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LSM: Structure of unit models

∂ (m.a)/ ∂ t = ∑n F(n) .a(n) + Ψ(dif.)(a) + R(a)

Model equations:
• conservation / change: truly first principles
• thermodynamic states: a=a(P,T,c)
• transfer rate: Ψ= Ψ (∇P, ∇T, ∇c), F=F(∇P)
• source/sink rates R=R(P,T,c)
• phase equilibria µk

(α) = µk
(β) , T(α) = T(β) 

Ψ

F

µk
(α) = µk

(β) 
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LSM: Physical properties & thermo

Equations for:
• thermodynamic variables per species and per phase:
  density,  specific heat, entropy,  enthalpy, free enthalpy
• transport coefficients:
  viscosity, heat diffusion, species diffusion, surface tension

• Needed information:
  variables: Pk(pk

(0),P,T;park)=0  and  p(α)=P(α)(P,T,x, p (0))
  gradients: ∂ p / ∂ q = ∂ P(P,T,x) / ∂ q with  q ={ P, T, x}

• Issues:
models in “closed” software box
computational speed & accuracy of solution ?
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LSM: Transitions between models

Model domain 2:

M2(x2′, x2,∇ x2, u, p2) = 0

x2 ∈D2 {g2(x2) > 0}

Model domain 1:

M1(x1′, x1,∇ x1, u, p1) = 0

x1 ∈D1{g1(x1) > 0}

Transition: e.g. phase split
State event:  g1(x1) = 0 if approaching from D1
 g2(x2) = 0 if approaching from D2
Continuity: T(x1,∇ x1, x2,∇ x2, ) = 0

Trajectory in D1

Trajectory in D2

boundary
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LSM: Hybrid model & components

Hybrid models comprise first principles as well as
empirical components to deal with uncertainty or
complexity.

First principles
model

Empirical
model

y

u

v

+

+
prior

residual

Parallel structure: ad-hoc model error compensation
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LSM: Sequential hybrid model 

First principles
model

Empirical
model

y
u

v

Sequential structure: physically motivated extension

z(-)

Empirical modelling:
• static (non-linear) regression model; e.g. ANN, z = z(π, v, u, y)
• dynamic trend model: z(t) = z(π, v, u, y) with  π′ = 0; update of π
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LSM: Hybrid, empirical components

Requirements to empirical components in combination with
physical modelling:

• continuous and differentiable (bounded) in all variables

• comply with correct physical asymptotic behaviour:
- ∂x / ∂t , ∇x ≥ 0 for x ↓ 0 when x ≥ 0 ; e.g. not dc / dt = k.c - a  (a>0);
- no fluxes remain when forces vanish; equilibrium conditions

• no introduction of spurious roots
- e.g. rate = k1.c /(1+k2.c + k3.c2)
- second order term in denominator may enhance fitting accuracy but
   it creates a maximum in the rate, allowing for multiple solutions.
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LSM: Wiener / Hammerstein hybrid models

Linear
dynamics

Non-linear
static model

u y

• static fundamental model available (process simulators)
• plant dynamics accessible by plant tests (linear models)

Wiener structure:

Non-linear
static model

Linear
dynamics

u y

Hammerstein structure:
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LSM: Linking of unit models

Unit 1 Unit 2y1 y2

Physical consequences of coupling (mass / heat):

• recycles increase I/O time constants: T = ∑ i τi / (1 - ∏ i Ki )

• can induce non-linear, positive feedback:

   => multiple stationary states can occur

Connectivity conditions:  f ≡ y1 - y2 = 0
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LSM: Wrap - up

• Focus has been on model synthesis
• Structured approach is essential to reduce modelling errors
• Decomposition / aggregation at the finer scales ?
• Model synthesis more an art than a science

• Not covered: many other important aspects
• differential index problems
• scaling and initialisations of DAE’s
• global sensitivity analysis
• experimental validation aspects

Large scale plant model will now serve as ‘source’ model
for reduction to models suitable for on-line use in control
and optimisations
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Reduction of model complexity

Options for reduction:

• reduce the modelling space
- lumping of species, reactions, phases
- combining compartments, lumping by OCFE
- …

• simplify equations (structure):
- by linearisation;
- (non-linear) approximations of complex expressions;
  e.g for physical properties and kinetics

• reduce number of equations / order reduction
      - remove trivial linear connectivity equations and variables
      - order reduction



Model simplification: elimination connectivities

Modular modeling (e.g. in gPROMS)

 ⇒ large number of redundant equations of type X = Y

(e.g. connection of different trays in distillation column)
 ⇒ increased model size without additional physical information

Idea:

 ⇒ Determine redundant equations and variables by automatic

analysis of the system‘s incident matrix
 ⇒ Perform automatic mapping of variables in simulation 

/optimization software

Prototype
 ⇒ Implemented in sequential approach dynamic optimization

software 



Results of elimination

Application to distillation column I

• Model size reduced from 3496 to 2039

• Computation time in optimization
reduced by 53%

Simplification
procedure

Redundant
equations



Singular perturbation:
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Model reduction by projection

Truncation:
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Example of singular perturbation

Batch reactions:

(slow): B + C <=> D

(fast): A + D <=> B + E

Model:
cA′ =        - r2      r1 = k1(cB.cC  - cD / K1)
cB′ =  - r1 + r2 r2 = k2(cA .cD  - cB.cE / K2)
cC′ =  - r1 k2 = k1 / ε
cD′ =  + r1 - r2
cE′ =        + r2

Transform model to separate fast and slow modes
 ξ1′ = r1 cA = cA

0         - ξ2

cB = cB
0  - ξ1 + ξ2

 ξ2′ = r2  => ε. ξ2′ = r2 cC = cC
0  - ξ1

cD = cD
0  + ξ1 - ξ2

cE = cE
0         + ξ2

Singular perturbation:
ξ1′ = r1(ξ1,ξ2)    0 = r1(ξ1,ξ2)



Model reduction by projection (I)
Generic procedure

Uzxx =− *

1. Transform original state space into a state space
better revealing important process dynamics
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  2. Decomposition into two     
complementary subspaces

Substitution into original DAE system
and decomposition yields
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Model reduction by projection (II)

3. Deduction of a reduced model

a) Truncation
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• lower number of equations
  and variables than original
  model
• not steady-state accurate

b) Residualization )0( 2 =z&
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Model reduction by projection

• Problem
– How to compute this transformation matrix?

• Options
– Physical based lumping
– Gramian based input output balancing transformations
– Proper orthogonal decomposition

• Properties
– Reduces the number of differential equations

• Linear control problems are reduced with n-cubed

– Increases the complexity of the model
• Effort numerical integration will not be reduced if

structure was exploited by the solver
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• exothermic reaction

Column:
• constant molar overflow
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• 41 trays

Model reduction by Gramian based truncation



legend: original 45th order, linearized 45th order, reduced 4th order.
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Proper orthogonal decomposition (POD)

Starting point: Representative trajectory for given x0 and u(t)

1. Uniformly sample trajectory:  snapshot matrix
)](),...,(),([ 21 ptxtxtxX ∆∆∆=

)()( *
kk txxtx ∆=−with

3. a) Select p1 << p left singular vectors of X
⇒ associated with largest singular values ⇒ capture dominant dynamics
⇒ corresponds to truncation
b) Use all p singular vectors of X as basis
⇒ can apply residualization

2. Singular value decomposition of X yields basis ],...,,[ 21 pdddU=



Case study optimization

• Operated in semi-batch mode
• degree of freedom: reflux ratio R = L/D
• objective: minimize operation time tf
• endpoint constraints

• fixed amount of product Np(tf) = 2000 mol
• product composition xp(tf) = 0.01
• path constraint
• reactor hold-up 350 mol <= N(t) <= 600 mol

Test plant



Solution with truncated model (I)

• Apply projection and truncation to column model
• Original column model: 41 trays = states
• 5 levels of reduction:

nz = {30, 20, 18, 16, 8}

problem infeasible8

317.58958.987642516

397.68889.999542718

562.48921.933683020

758.18918.622733130

truncation

169.78918.618733141nominal

CPU
time [s]

obj. fun.
value

inte-
grations

ite-
rations

model
order

• Projection partly destroys sparsity
⇒ strongly increased CPU time

• Projection deteriorates optimality



Solution with residualized model

• Apply projection and residualization to
column model

• Original column model: 41 trays = states
• 3 levels of reduction:

nz = {30, 16, 8}

1025.88916.40674318

1083.28918.614773216

975.68918.618733130
residu-
alization

169.78918.618733141nominal

CPU
time [s]

obj. fun.
value

inte-
grations

ite-
rations

model
order

• Solution almost identical to nominal case
• Matrix fill-up independent of reduction level

⇒ CPU time in the same order of magnitude,
but much higher as nominal



Nonlinear Estimation I

• Problem
– Need state to initialize model
– Given measured data produce state-estimate

• Solution
– Least squares horizon estimation
– LTV approximation instead of true nonlinear
– Single step LTV gives Extended Kalman Filter (EKF)

• Features:
– Multi-rate measurements
– Constraints on process variables
– Delayed measurements
– Primitive line-search



Nonlinear Estimation II

• Problem
– Large number of parameters > nx+H*nw
– Ill-conditioning of estimation problem
– Tuning  estimation function difficult

• Solution
– Select only relevant input/output behaviour
– Reduce number of differential variables
– Uncertain feeds/energy flows to measured process

variables
– I/O balanced model-reduction

• Properties
– Well conditioned small problem
– Physical interpretation in dominant modes
– Online feasible / reliable from certain number of states

downwards



Model reduction for Estimation III

• Compute Jacobian of the model
),,(0
),,(

uyxg
uyxfx

=
=&

uDxCy
uBxAx

∆∆∆

∆∆∆

+=
+=&

uDzCy

uBzAz

∆∆∆

∆∆∆

+=

+=
~

~~&

uDzCy

uBzAz

b

bb

∆∆∆

∆∆∆

+=

+=
ˆ

ˆˆ&

• Derive linear model

• First reduction linear model with fixed
projection (e.g. remove connectivity)

• Second reduction on reduced linear
model by balanced truncation (online)

Significant computational savings obtained due to n3

effect in control computations



Available models for control and optimization
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Available models for control and optimization



Discussion

• Is it possible to reduce the model while retaining
structure?

• Can one reduce the number of equation
significantly?

• Can the application aspect be directly considered
in the reduction procedure?



Conclusions

• Model synthesis: systematic approach needed

• Model reduction for ChE DAE systems: mixed results
Reducing number of equations helps better than shifting the
balance between ODE’s and AE’s in DAE problems.
If algorithms exploit sparsity, order reduction is less effective.

• Modelling and model complexity reduction for 
integrated d-optimisation & control largely open
Key issues:
- combination of fundamental and empirical model components
- physical based lumping (species, phases, reactions)
- model complexity reduction
- real time adaptation of structure of reduced models
- consistency of reduced models for various tasks
- closed loop model validation
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