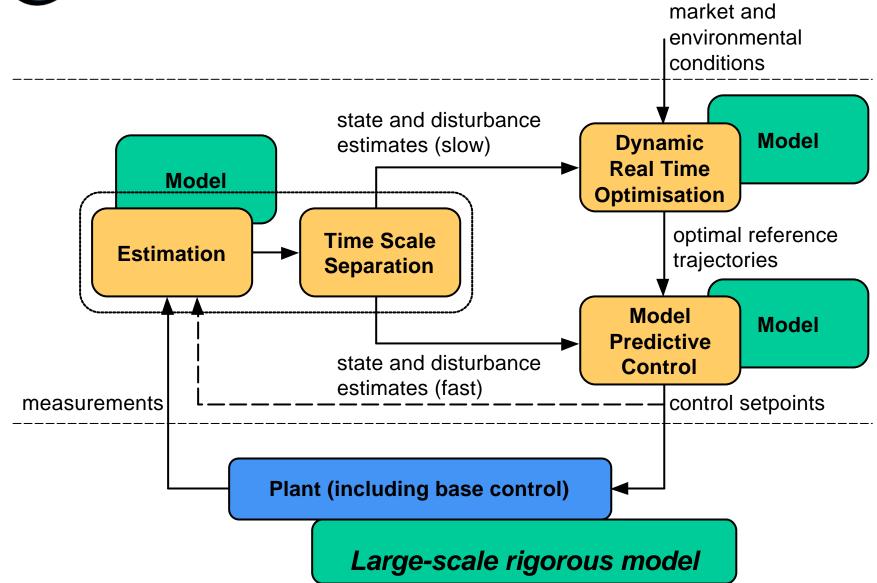


Hybrid modelling and model reduction for control & optimisation

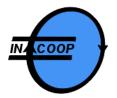
based on research done by RWTH-Aachen and TU Delft

presented by Johan Grievink

Models for control and optimization **TUDelft**



Contents



- * Large scale physical modeling
- * Hybrid components
- * Physical based complexity reduction
- * Mathematical complexity reduction
- * Application aspects for INCOOP tasks
- * Conclusions

Large Scale chemical plant Models

Plant operations modelling:

- process with sensors and actuators
- conventional controllers •
- external disturbances
- operating window constraints
- economical objectives

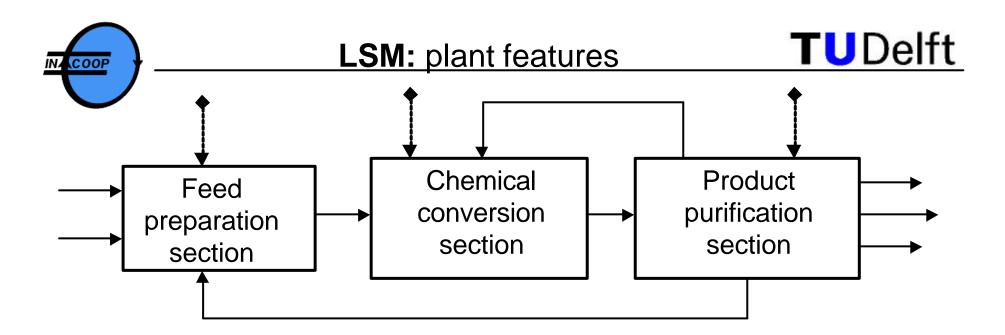
Aspects of modelling:

technology of modelling

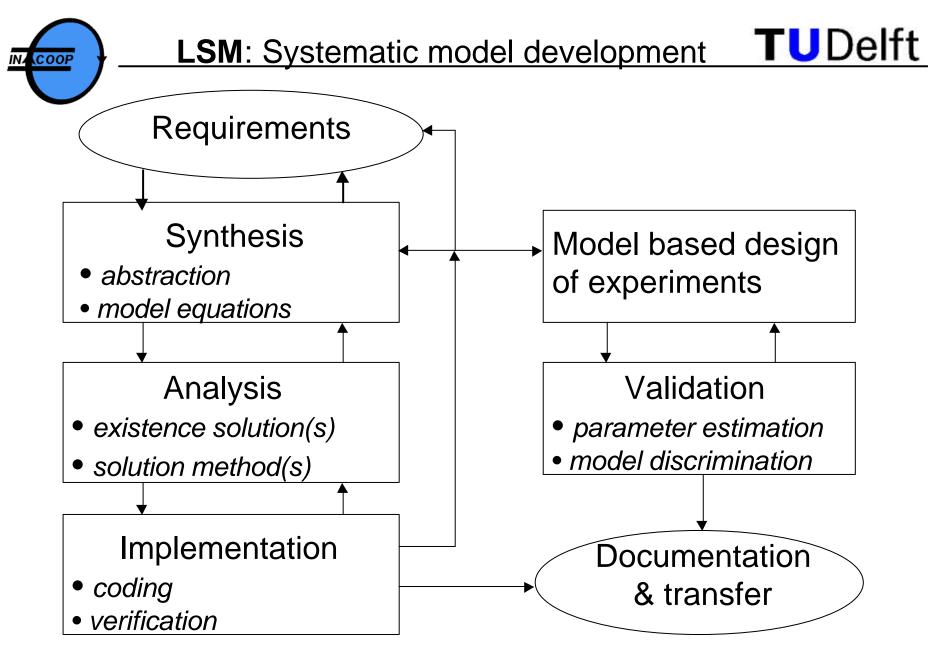
0

mainly generic aspects

- 0
- specific aspects: see Bayer and Shell applications
- work processes underexposed



- multiple modes of production + switching
- disturbances
- multiple units / section & many compartments / unit
- recycling & heat integration
- non-linear behaviour (units + plant wide integration)
- very wide range of relevant time scales (μs days)
- several thermodynamic phases with many species
- => Large scale dynamic process models (10³ 10⁵ DAE's)



LSM: functional requirements

Aim: accurate representation of physical behaviour:

- relevant time scales => how small?
- feasible operational window:
 - * physical ranges of inputs, states, outputs
- for realistic disturbance scenarios

Trade-off's:

- complexity vs costs of development & validation
- complexity vs maintenance (costs)
- in closed loop: complexity vs accuracy

LSM: Synthesis of modelling space

Abstraction:

from reality to a modelling space with bounds:

• objects: contents and walls of equipment, streams,

sensors, controllers, actuators, ...

• spatial resolution: mixed compartments, distributed in n-D.

• time resolution: continuous, discrete

• chemical species: discrete, continuous

• thermodynamic phases: $V, L_1, L_2, S_1, S_2, ...$

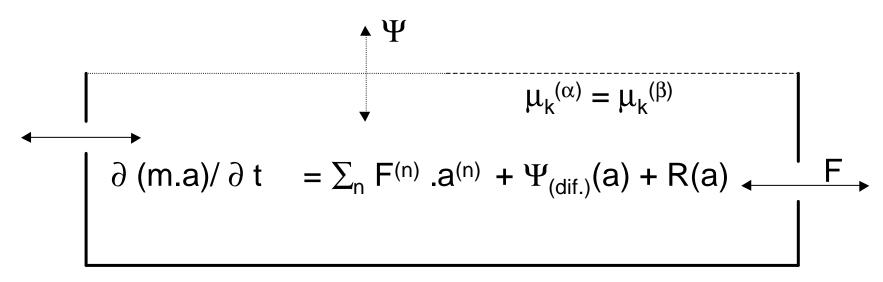
• chemical reactions: discrete, continuous;

• states of particles: size, stress, charge, ...

•

Key issue: how to find relevant level of detail

LSM: Structure of unit models



Model equations:

• conservation / change: truly first principles

thermodynamic states: a=a(P,T,c)

• transfer rate: $\Psi = \Psi \ (\nabla P, \ \nabla T, \ \nabla c), \ F = F(\nabla P)$

source/sink ratesR=R(P,T,c)

• phase equilibria $m_k^{(a)} = m_k^{(b)}$, $T^{(a)} = T^{(b)}$

LSM: Physical properties & thermo

Equations for:

- thermodynamic variables per species and per phase: density, specific heat, entropy, enthalpy, free enthalpy
- transport coefficients:
 viscosity, heat diffusion, species diffusion, surface tension
- Needed information:

variables: $P_k(p_k^{(0)}, P, T; par_k) = 0$ and $p^{(\alpha)} = P^{(\alpha)}(P, T, x, p^{(0)})$

gradients: $\partial p / \partial q = \partial P(P,T,x) / \partial q$ with $q = \{ P, T, x \}$

• Issues:

models in "closed" software box computational speed & accuracy of solution?

LSM: Transitions between models

Trajectory in D₁

boundary

Model domain 1:

$$M_1(x_1', x_1, \nabla x_1, u, p_1) = 0$$

$$x_1 \in D_1\{g_1(x_1) > 0\}$$

Model domain 2:

$$M_2(x_2', x_2, \nabla x_2, u, p_2) = 0$$

$$x_2 \in D_2 \{g_2(x_2) > 0\}$$

Trajectory in D₂

Transition: e.g. phase split

State event: $g_1(x_1) = 0$ if approaching from D_1

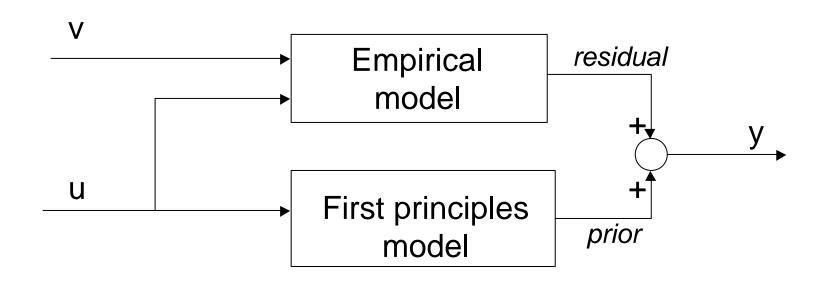
 $g_2(x_2) = 0$ if approaching from D_2

Continuity: $T(x_1, \nabla x_1, x_2, \nabla x_2,) = 0$

LSM: Hybrid model & components

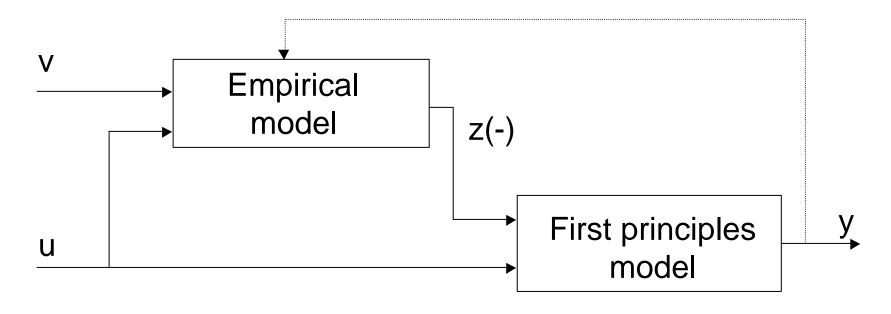
Hybrid models comprise first principles as well as empirical components to deal with uncertainty or complexity.

Parallel structure: ad-hoc model error compensation



LSM: Sequential hybrid model

Sequential structure: physically motivated extension



Empirical modelling:

- static (non-linear) regression model; e.g. ANN, $z = z(\pi, v, u, y)$
- dynamic trend model: $z(t) = z(\pi, v, u, y)$ with $\pi' = 0$; update of π

LSM: Hybrid, empirical components

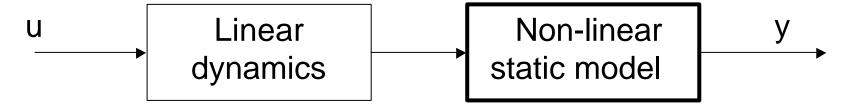
Requirements to empirical components in combination with physical modelling:

- continuous and differentiable (bounded) in all variables
- comply with correct physical asymptotic behaviour:
 - $-\partial x / \partial t$, $\nabla x \ge 0$ for $x \downarrow 0$ when $x \ge 0$; e.g. **not** dc / dt = k.c -a (a>0);
 - no fluxes remain when forces vanish; equilibrium conditions
- no introduction of spurious roots
 - e.g. rate = $k_1 \cdot c / (1 + k_2 \cdot c + k_3 \cdot c^2)$
 - second order term in denominator may enhance fitting accuracy but it creates a maximum in the rate, allowing for multiple solutions.

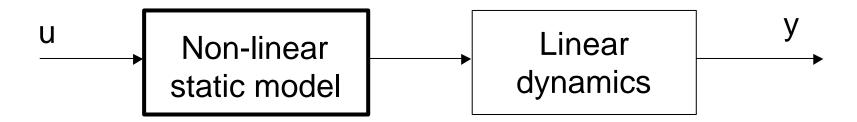
LSM: Wiener / Hammerstein hybrid models TUDelft

- static fundamental model available (process simulators)
- plant dynamics accessible by plant tests (linear models)

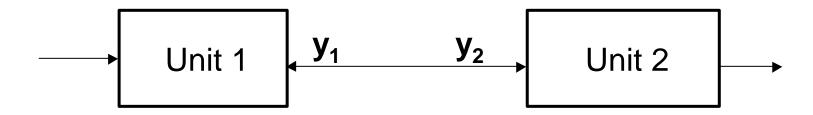
Wiener structure:



Hammerstein structure:



LSM: Linking of unit models



Connectivity conditions: $f \equiv y_1 - y_2 = 0$

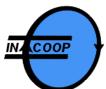
Physical consequences of coupling (mass / heat):

- recycles increase I/O time constants: $T = \sum_i \tau_i / (1 \prod_i K_i)$
- can induce non-linear, positive feedback:
 - => multiple stationary states can occur

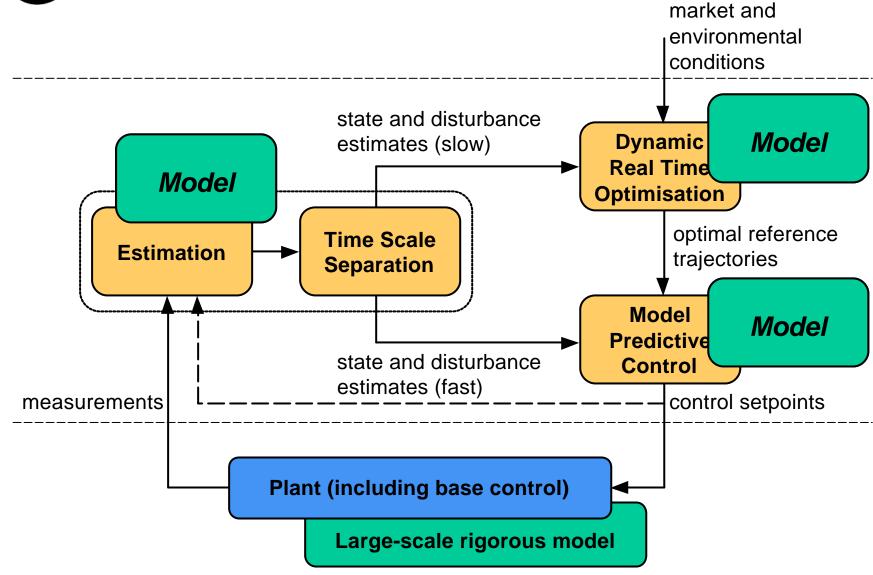
LSM: Wrap - up

- Focus has been on model synthesis
- Structured approach is essential to reduce modelling errors
- Decomposition / aggregation at the finer scales ?
- Model synthesis more an art than a science
- Not covered: many other important aspects
 - differential index problems
 - scaling and initialisations of DAE's
 - global sensitivity analysis
 - experimental validation aspects

Large scale plant model will now serve as 'source' model for reduction to models suitable for on-line use in control and optimisations



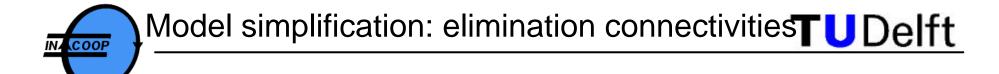
Models for control and optimization **TUDelft**



Reduction of model complexity

Options for reduction:

- reduce the modelling space
 - lumping of species, reactions, phases
 - combining compartments, lumping by OCFE
 - ...
- simplify equations (structure):
 - by linearisation;
 - (non-linear) approximations of complex expressions;
 e.g for physical properties and kinetics
- reduce number of equations / order reduction
 - remove trivial linear connectivity equations and variables
 - order reduction



Modular modeling (e.g. in gPROMS)

- ⇒ large number of redundant equations of type X = Y
 (e.g. connection of different trays in distillation column)
- ⇒ increased model size without additional physical information

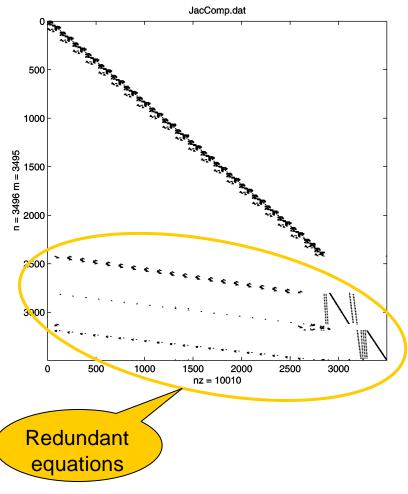
Idea:

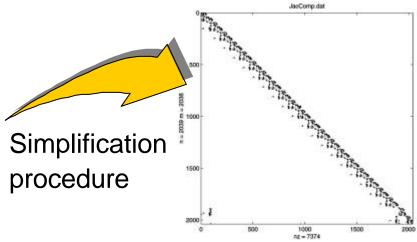
- ⇒ Determine redundant equations and variables by automatic analysis of the system's incident matrix
- ⇒ Perform automatic mapping of variables in simulation /optimization software

Prototype

⇒ Implemented in sequential approach dynamic optimization software

Application to distillation column I





- Model size reduced from 3496 to 2039
- Computation time in optimization reduced by 53%

Model reduction by projection

Singular perturbation:

$$\dot{x}_2 = 0$$

$$\dot{x}_1 = f_1(x_1, x_2, u)
\dot{x}_2 = f_2(x_1, x_2, u)
\Rightarrow
\dot{x}_1 = f_1(x_1, x_2, u)
0 = f_2(x_1, x_2, u)$$

Truncation:

$$x_2 = c$$

$$\dot{x}_1 = f_1(x_1, x_2, u)
\dot{x}_2 = f_2(x_1, x_2, u)
\Rightarrow
\dot{x}_1 = f_1(x_1, c, u)
c = x_2$$

Example of singular perturbation

Batch reactions:

(slow):
$$B + C <=> D$$

(fast):
$$A + D <=> B + E$$

Model:

(slow): B + C <=> D
$$c_{A}' = -r_{2} r_{1} = k_{1}(c_{B}.c_{C} - c_{D} / K_{1})$$

 $c_{B}' = -r_{1} + r_{2} r_{2} = k_{2}(c_{A}.c_{D} - c_{B}.c_{E} / K_{2})$
(fast): A + D <=> B + E $c_{C}' = -r_{1} k_{2} = k_{1} / e$
 $c_{C}' = +r_{1} - r_{2}$
 $c_{C}' = +r_{2} + r_{3}$

Transform model to separate fast and slow modes

$$\xi_1' = r_1$$

$$\xi_2' = r_2 = e. \xi_2' = \underline{r}_2$$

$$c_A = c_A^0 - \xi_2$$

$$C_B = C_B^0 - \xi_1 + \xi_2$$

$$c_C = c_C^0 - \xi_1$$

$$c_D = c_D^0 + \xi_1 - \xi_2$$

$$c_{\mathsf{E}} = c_{\mathsf{E}}^{\,0} \qquad + \,\xi_2$$

Singular perturbation:

$$\xi_1' = r_1(\xi_1, \xi_2)$$

$$0 = r_1(\xi_1, \xi_2)$$

Model reduction by projection (I)

Generic procedure

1. Transform original state space into a state space better revealing important process dynamics

$$x-x^*=Uz$$

2. Decomposition into two complementary subspaces

$$Uz = U_1 z_1 + U_2 z_2, \qquad U = [U_1, U_2]$$

Substitution into original DAE system and decomposition yields

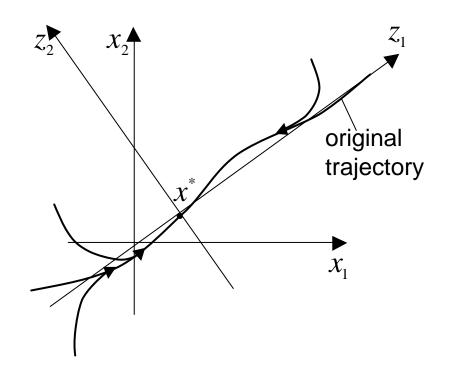
$$\dot{z}_{1} = U_{1}^{T} f(x^{*} + U_{1}z_{1} + U_{2}z_{2}, y, u)$$

$$\dot{z}_{2} = U_{2}^{T} f(x^{*} + U_{1}z_{1} + U_{2}z_{2}, y, u)$$

$$z_{1}(0) = U_{1}^{T} (x_{0} - x^{*})$$

$$z_{2}(0) = U_{2}^{T} (x_{0} - x^{*})$$

$$0 = g(x^{*} + U_{1}z_{1} + U_{2}z_{2}, y, u)$$



Model reduction by projection (II)

3. Deduction of a reduced model

a) Truncation $(z_2 = 0)$

$$\dot{z}_{1} = U_{1}^{T} f(x^{*} + U_{1}z_{1}, y, u)$$

$$z_{1}(0) = U_{1}^{T} (x_{0} - x^{*})$$

$$0 = g(x^{*} + U_{1}z_{1}, y, u)$$

- lower number of equations and variables than original model
- not steady-state accurate

b) Residualization $(\dot{z}_2 = 0)$

$$\dot{z}_{1} = U_{1}^{T} f (x^{*} + U_{1} z_{1} + U_{2} z_{2}, y, u)$$

$$0 = U_{2}^{T} f (x^{*} + U_{1} z_{1} + U_{2} z_{2}, y, u)$$

$$z_{1}(0) = U_{1}^{T} (x_{0} - x^{*})$$

$$0 = g (x^{*} + U_{1} z_{1} + U_{2} z_{2}, y, u)$$

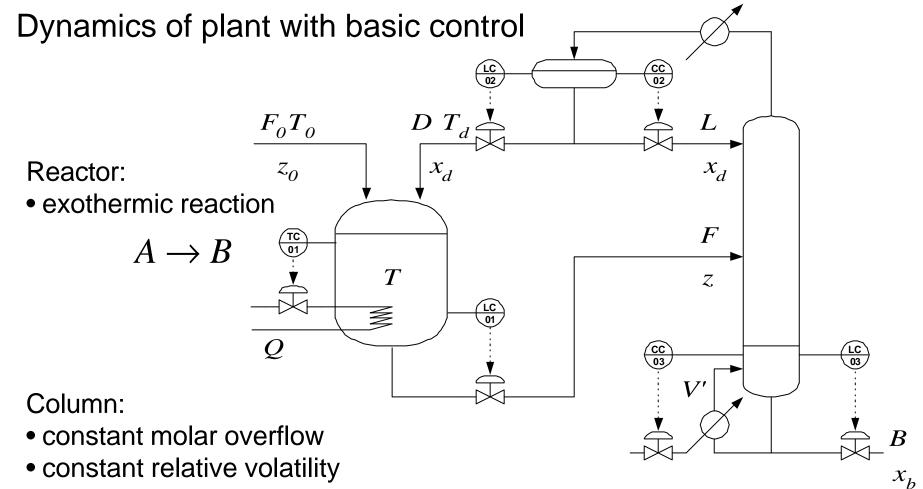
- same size as original model, but less differential and more algebraic equations and variables
- steady-state accurate

Model reduction by projection

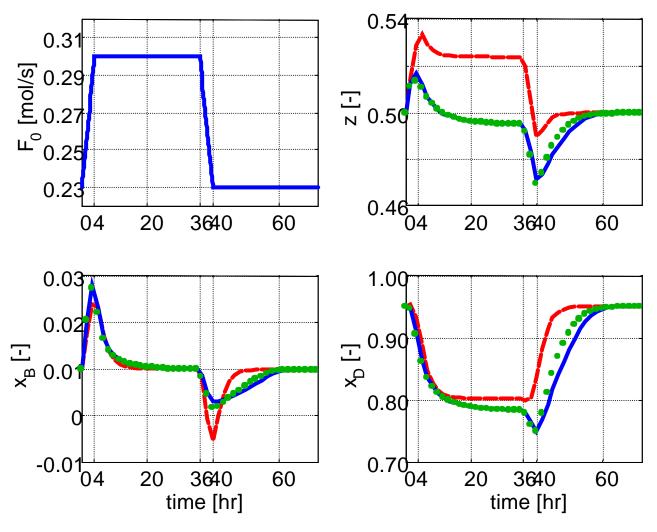
- Problem
 - How to compute this transformation matrix?
- Options
 - Physical based lumping
 - Gramian based input output balancing transformations
 - Proper orthogonal decomposition
- Properties
 - Reduces the number of differential equations
 - Linear control problems are reduced with n-cubed
 - Increases the complexity of the model
 - Effort numerical integration will not be reduced if structure was exploited by the solver

• 41 trays

Model reduction by Gramian based truncation UDelft



Model reduction by Gramian based truncation TUDelft



legend: original 45th order, linearized 45th order, reduced 4th order.

Proper orthogonal decomposition (POD) **TUDelft**

Starting point: Representative trajectory for given x_0 and u(t)

1. Uniformly sample trajectory: *snapshot matrix*

$$X = [\Delta x(t_1), \Delta x(t_2), ..., \Delta x(t_p)]$$
with $x(t_k) - x^* = \Delta x(t_k)$

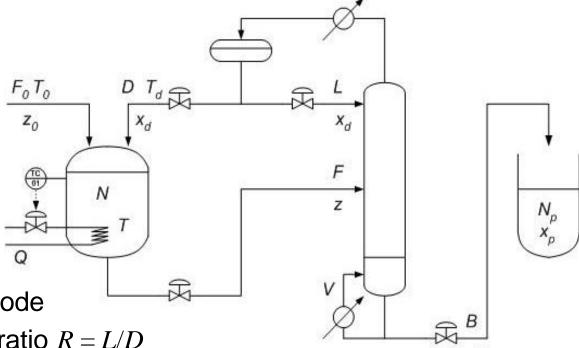
2. Singular value decomposition of *X* yields basis

$$U=[d_1,d_2,...d_p]$$

- 3. a) Select $p_1 \ll p$ left singular vectors of X
 - \Rightarrow associated with largest singular values \Rightarrow capture dominant dynamics
 - ⇒ corresponds to *truncation*
 - b) Use all p singular vectors of X as basis
 - ⇒ can apply *residualization*

Case study optimization

Test plant



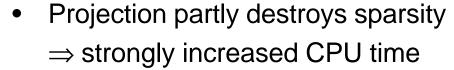
- Operated in semi-batch mode
- degree of freedom: reflux ratio R = L/D
- objective: minimize operation time t_f
- endpoint constraints
 - fixed amount of product $N_p(t_f) = 2000 \text{ mol}$
 - product composition $x_p(t_f) = 0.01$
 - path constraint
 - reactor hold-up $350 \text{ mol} \ll N(t) \ll 600 \text{ mol}$

Solution with truncated model (I)

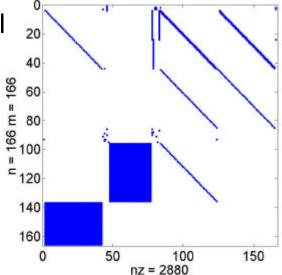
- Apply projection and truncation to column model
- Original column model: 41 trays = states
- 5 levels of reduction:

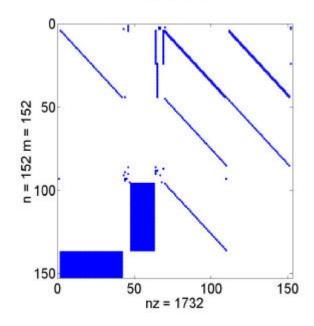
$$n_7 = \{30, 20, 18, 16, 8\}$$

	model order	ite- rations	inte- grations	obj. fun. value	CPU time [s]
nominal	41	31	73	8918.618	169.7
truncation	30	31	73	8918.622	758.1
	20	30	68	8921.933	562.4
	18	27	54	8889.999	397.6
	16	25	64	8958.987	317.5
	8	problem infeasible			



Projection deteriorates optimality



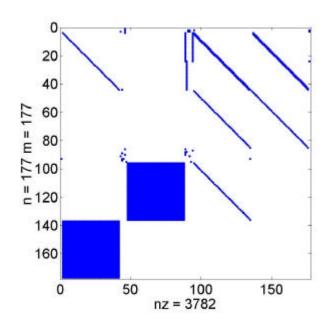


Solution with residualized model

- Apply projection and residualization to column model
- Original column model: 41 trays = states
- 3 levels of reduction:

$$n_z = \{30, 16, 8\}$$

	model order	ite- rations	inte- grations	obj. fun. value	CPU time [s]
nominal	41	31	73	8918.618	169.7
residu- alization	30	31	73	8918.618	975.6
	16	32	77	8918.614	1083.2
	8	31	74	8916.406	1025.8



- Solution almost identical to nominal case
- Matrix fill-up independent of reduction level
 - ⇒ CPU time in the same order of magnitude, but much higher as nominal

Nonlinear Estimation I

Problem

- Need state to initialize model
- Given measured data produce state-estimate

Solution

- Least squares horizon estimation
- LTV approximation instead of true nonlinear
- Single step LTV gives Extended Kalman Filter (EKF)

Features:

- Multi-rate measurements
- Constraints on process variables
- Delayed measurements
- Primitive line-search

Nonlinear Estimation II

Problem

- Large number of parameters > nx+H*nw
- Ill-conditioning of estimation problem
- Tuning estimation function difficult

Solution

- Select only relevant input/output behaviour
- Reduce number of differential variables
- Uncertain feeds/energy flows to measured process variables
- I/O balanced model-reduction

Properties

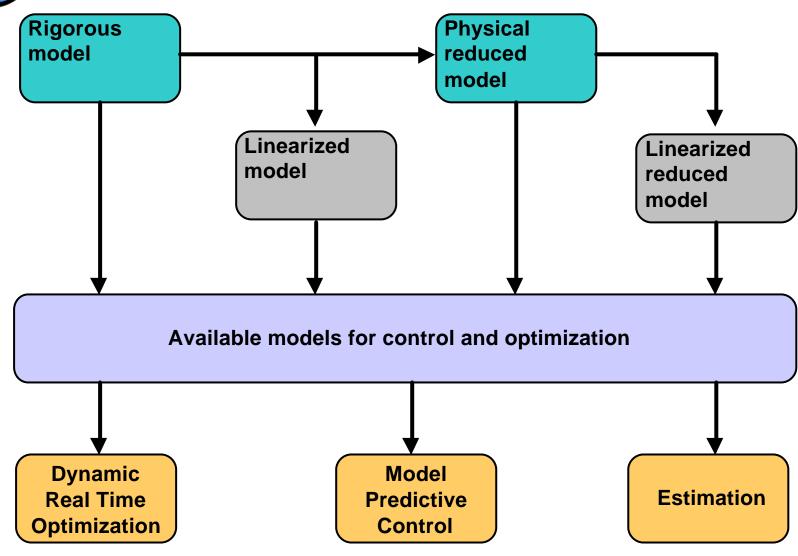
- Well conditioned small problem
- Physical interpretation in dominant modes
- Online feasible / reliable from certain number of states downwards

Model reduction for Estimation III

Compute Jacobian of the model	$\dot{x} = f(x, y, u)$
	0 = g(x, y, u)
Derive linear model	$\Delta \dot{x} = A \Delta x + B \Delta u$
	$\Delta y = C\Delta x + D\Delta u$
First reduction linear model with fixed	$\Delta \dot{z} = \widetilde{A} \Delta z + \widetilde{B} \Delta u$
projection (e.g. remove connectivity)	$\Delta y = \widetilde{C}\Delta z + D\Delta u$
Second reduction on reduced linear	$\Delta \dot{z}_b = \hat{A} \Delta z_b + \hat{B} \Delta u$
model by balanced truncation (online)	$\Delta y = \hat{C} \Delta z_b + D \Delta u$

Significant computational savings obtained due to n³ effect in control computations

Available models for control and optimization UDelft



 Is it possible to reduce the model while retaining structure?

Can one reduce the number of equation significantly?

 Can the application aspect be directly considered in the reduction procedure?

Conclusions

Model synthesis: systematic approach needed

- Model reduction for ChE DAE systems: mixed results
 Reducing number of equations helps better than shifting the
 balance between ODE's and AE's in DAE problems.
 If algorithms exploit sparsity, order reduction is less effective.
- Modelling and model complexity reduction for integrated d-optimisation & control largely open Key issues:
 - combination of fundamental and empirical model components
 - physical based lumping (species, phases, reactions)
 - model complexity reduction
 - real time adaptation of structure of reduced models
 - consistency of reduced models for various tasks
 - closed loop model validation

