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Objectives

• Development of techniques for data reconciliation
exploiting a-priori knowledge of process behavior.

• Techniques for state reconstruction of approximate
process models.

• Development of MPC techniques enabling broad
bandwidth, high performance control along optimal
trajectories.

• Integrated implementation of these techniques
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Why use estimation/control?

• Disturbances are continuously upsetting the plant
– actuator/sensor failures
– set-point changes, feed fluctuations

• There always exists plant-model mismatch
– uncertain reaction kinetics and physical properties
– uncertain heat and mass transfer

• The initial conditions are always unknown
– models suited for production are usually not suited

for start-up simulation

Need control to implement optimal dynamic trajectories
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Estimation in the INCOOP project

Time Scale
Separation

Dynamic
Real Time

Optimisation

Model
Predictive

Control

Estimation

Plant (including base control)

optimal reference
trajectories

state and disturbance 
estimates (slow)

measurements control setpoints

state and disturbance 
estimates (fast)
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Purpose of state estimation

 Contrary to linear MPC we need to initialize the model

• The input-output behavior depends on the state

– along grade/load changes considerable change in
dynamics

•  The output prediction is based on simulation with the
nonlinear model starting from an initial state

•  Disturbances and uncertain parameters are
estimated using the state estimator

– the disturbance models are dynamic and have
their own states
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State estimation problem
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Set of measurements of process variables:

•  Set of manipulated variables

•  Dynamic model (simplified for presentation):
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Problem formulation (cont.)
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minimizing variance on estimation error:

Find the estimate     by finding function    ,(Cox,64, Lee,95):kkx |ˆ ϕ

• w: process disturbance, covariance: W
• v: measurement noise, covariance: V
•         initial state update, covariance: P
• N length of data sets

Nkx −∆ˆ
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Extended Kalman Filter

Earlier studies showed ext. Kalman filter (Lewis,86) was:

But if used, must adapt for constraints

• easier to tune than horizon estimator

• not less accurate than horizon estimator

• much faster than horizon estimator

• regularizes itself in case of singular covariances

• do regularization yourself via I/O model
reduction

• need QP to find estimate
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Extended Kalman Filter
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• x states
• w (all) disturbances
• y measured outputs
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to propagate variance:

Choice to work 
recursively:

Make a specific 
linear choice for      !ϕ
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Compute open-loop prediction

dtutxfx
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And corresponding output prediction, (automatic)

Compute state prediction using nonlinear
model, can use any dynamic simulation tool
such as GPROMS:



10From state estimation to long horizon MPC for non-linear industrial applications

QP formulation
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• can add arbitrary linear constraints on x,w
• must regularize P such that it has inverse
• ‘input’-’output’ Gramian based model-reduction
provides one way (Moore, 76).
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And arrive at QP:
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Unconstrained solution
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Note that unconstrained case:

compares to familiar Riccati solution:

kk Kx ε=∆
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MPC in the INCOOP project

Time Scale
Separation

Dynamic
Real Time

Optimisation

Model
Predictive

Control

Estimation

Plant (including base control)

optimal reference
trajectories

state and disturbance 
estimates (slow)

measurements control setpoints

state and disturbance 
estimates (fast)
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NMPC problem formulation

The problem of finding a control sequence for a
continuous time plant
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Minimizing some continuous time control objective:

One can go many ways !
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MPC concept
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Typical choices

A full NMPC problem  generally much too much time
consuming to enable high performance.

• Discretize continuous time objective (trapezoidal rule)

• Use local dynamics to approx. sensitivity functions:
Linear Time Varying (LTV) control

• Very reliable for proper choice of sample time

• Much faster for many of optimization variables

• After a few iterations you get `SQP’ behaviour

Desire small sample time and long prediction horizon!

Approach:
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Linear-Time-Varying MPC

• Integrate nonlinear model along previous input
sequence: gives output and state predictions:

• Derive linear time varying (LTV) model along this
trajectory (time-discretize local dynamics)
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Optimizing control input
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LTV-MPC
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constraints:

•LTV-MPC problem amounts to find an optimal control
sequence
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Nominal control input concept

•Then solve resulting QP and add solution to previous
control sequence:
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Nonlinear MPC
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Nominal input signal

Nonlinear
model
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Outlook

Standard QP solvers:

State variables are
eliminated

Structured IPM:

State variables are not
eliminated

Computational time increases with the 3rd

power of the number of variables

Computational time increases linearly
with the number of variables

-> Allows long horizon prediction/ large
bandwidth

uNn

•Active Set Methods
(ASM)

•Interior-Point Methods
(IPM): Mosek, etc.
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Example: Evaporation process

3 MVs:

200,100,2 FPF

Structured IPM is faster than

•ASM for N > 25

•Mosek for N > 160
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Evaporation process results
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Example 2: Distillation process

2 MVs:
LReflux

Boilup b
V

Structured IPM is faster than

ASM for N > 140



25From state estimation to long horizon MPC for non-linear industrial applications

Distillation process results
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Conclusions

• Estimator+MPC have been implemented within
INCOOP software architecture.

• Tested and operative for both Bayer and Shell
process.

• For large scale problems QP computation time is no
longer a bottleneck. Model simulation (MPC
prediction) is the main computational burden in the
environment.


