

Dynamic Real-time Optimization

Jitendra Kadam, <u>Wolfgang Marquardt</u>, Martin Schlegel Lehrstuhl für Prozesstechnik RWTH Aachen

> INCOOP Workshop Düsseldorf, January 23 – 24, 2003

Operational strategies – the status

- plant in isolation
- steady-state operation
- limited flexibility
- disturbance handling
- largely autonomous

Manufacturing in the future

General operational objectives

Optimization-based control

2 coupled problems:

dynamic data reconciliation

$$\min_{\mathbf{x}_{r,0},d_r} \Phi_r(y_r, \mathbf{h}, x_{r,0}, d_r, t_c, t_f)$$

$$\min_{\boldsymbol{x}_{r,0},\boldsymbol{d}_r} \Phi_r(\boldsymbol{y}_r, \boldsymbol{h}, \boldsymbol{x}_{r,0}, \boldsymbol{d}_r, t_c, t_f)$$
s.t.
$$0 = f(\dot{\boldsymbol{x}}_r, \boldsymbol{x}_r, \boldsymbol{u}_r, \boldsymbol{d}_r)$$

$$\boldsymbol{y}_r = g(\boldsymbol{x}_r)$$

$$\boldsymbol{x}_r(t_r) = \boldsymbol{x}_{r,0}$$

$$\boldsymbol{u}_r = U(\boldsymbol{u}_c(\cdot))$$

$$0 \ge h_r(\boldsymbol{x}_r, \boldsymbol{d}_r)$$

$$t \in [t_r, t_c]$$

optimal control

 $\min \Phi_c(x_c, u_c, t_c, t_f)$

s.t.
$$0 = f(\dot{x}_c, x_c, u_c, d_c)$$
$$y_c = g(x_c)$$
$$x_c(t_c) = x_r(t_c)$$
$$d_c = D(d_r(\cdot))$$
$$0 \ge h_c(x_c, u_c)$$
$$t \in [t_c, t_f]$$

Direct solution approach

- solution of optimal control reconciliation problems at controller sampling frequency
- computationally demanding
- model complexity limited (INCOOP benchmarks
 ⇒ large models!)
- lack of transparency, redundancy and reliability

(Terwiesch et al., 1994; Helbig et al., 1998; Wisnewski & Doyle, 1996; Biegler & Sentoni, 2000)

Horizontal decomposition

- decentralization typically oriented at functional constituents of the plant
- coordination strategies enable approximation of "true" optimum
- not adequately covered in optimization-based control and operations yet
- (Mesarovic et al., 1970; Findeisen et al., 1980; Morari et al., 1980; Lu, 2000)

Vertical decomposition

decision

maker

- generalizes steady-state real-time optimization and constrained predictive control
- requires (multiple) timescale separation, e.g.

$$d(t) = d_0(t) + \Delta d(t)$$
 with trend $d_0(t)$ zero mean fluctuation $\Delta d(t)$

Vertical decomposition – INCOOP approach

Focus: D-RTO block

Challenges:

- Develop numerical solution methods which solve the problem robustly and sufficiently fast
- Develop techniques for triggering a re-optimization based on external conditions
- Implement software framework for enabling interaction with MPC and estimator

A closer look on dynamic optimization

Mathematical problem formulation

$$\min_{\substack{u(t),p,t_f\\ \text{S.t.}}} \Phi(x(t_f)) \qquad \text{objective function (e.g. cost)}$$
 s.t.
$$M \ \dot{x} = F(x,u,p,t), \quad t \in [t_0,t_f], \\ 0 = x(t_0) - x_0, \qquad \qquad \} \text{ DAE system (process model)}$$

$$0 \geq P(x,u,p,t), \quad t \in [t_0,t_f], \quad \text{path constraints (e.g. temp. bound)}$$

$$0 \geq E(x(t_f)) \qquad \qquad \text{endpoint constraints (e.g. prod. spec.)}$$

Degrees of freedom: u(t) time-variant control variables

p time-invariant parameters

 t_f final time

Example: Bayer Benchmark Process (I)

MV 1: Recycle Monomers [kg/h]

(From: Dünnebier & Klatt: Industrial challenges and requirements for optimization of polymerisation

Example: Bayer Benchmark Process (II)

Polymerization process

- minimize time for load change
- three degrees of freedom
- path constraints on specifications

(From: Dünnebier & Klatt: Industrial challenges and requirements for optimization of polymerisation

Solution approaches

Indirect solution methods
Necessary optimality conditions
lead to multipoint boundary value
problems:

- Highly accurate solutions with shooting techniques.
- Solution requires detailed a-priori knowledge of the optimal solution structure and appropriate estimates for adjoint variables.

Direct solution methods

Conversion of dynamic optimization problem into nonlinear programming problem (NLP) by discretization...

- ...of state and control variables.
- (simultaneous methodore. collocation, mul used in g
- ...of control variation only. (sequential method, i.e. single shooting)
- Successfully applied with large-scale process models

IN COOP

Solution algorithm

Sequential approach → single shooting

Control vector parameterization

$$u_i(t) \approx \sum_{k \in \Lambda_i} c_{i,k} \, \mathbf{f}_{i,k}(t)$$

- $m{f}_{i,k}(t)$ parameterization functions
- $c_{i,k}$ parameters
- \Rightarrow Reformulation as nonlinear programming problem (NLP) $\min \Phi(x(a, n, t, s))$

$$\min_{c,p,t_f} \Phi(x(c,p,t_f))$$
 s.t
$$0 \ge P(x,c,p,t_i), \quad \forall t_i \in T,$$

$$0 \ge E(x(t_f))$$

DAE system solved by underlying numerical integration

- DAE system solved by underlying numerical integration
- Gradients for NLP solver typically obtained by integration of sensitivity systems
- ⇒ Numerical integration computationally most expensive (> 90 % of CPU time)
- ⇒ Computational effort strongly depends on size and complexity of process model

Algorithmic improvements – sequential approach

Efficient sensitivity integration solver

Dynamic optimization problem:

$$\min_{z} \Phi(x, z, t) \\
\text{s.t. } M \dot{x} = f(t, x, z) \\
0 = x(t_0) - x_0 \\
0 \ge P(x, z, t) \\
0 \ge E(x(t_f))$$

$$\frac{\partial}{\partial z} \\
x = \{c, p, t_f\}$$

$$M \dot{s} = \left(\frac{\partial f}{\partial x}\right) s_i + \frac{\partial f}{\partial z_i} \qquad i = 1, ..., n_z$$

Typical solution approaches based on BDF-type integrators

• Caracotsios & Stewart (1985), Maly & Petzold (1996), Feehery et al. (1997)

New idea: Use one-step extrapolation method

- Based on LIMEX algorithm (Deuflhard et al. (1983,87))
- Extension for sensitivity computation: Schlegel et al. (2002)

Combined state and sensitivity system

Reuse LU

decomposition

$$M \dot{x} = F(x, z, t)$$

$$M \dot{s} = \left(\frac{\partial F}{\partial x}\right) s_i + \frac{\partial F}{\partial z_i} \qquad i = 1, ..., n_z$$

$$M \dot{X} = f(X, z, t)$$

$$\text{with } X = [x, s_1, ..., s_{n_z}]^T$$

Efficient solution of the combined system

- *M* is identical in both systems.
- *A* is already required for state integration.

Solution algorithm

Extrapolation algorithm for simultaneous state and sensitivity integration

Compute
$$A_0 = \frac{\partial}{\partial y}(f(y_0,p))$$
 for $j=1,\ldots,j_{max}$ while convergence criterion not satisfied
$$h_j = H/j$$
 Reuse LU
$$LU = A_0 - \frac{B}{h_j}$$
 for $k=0,\ldots,j-1$
$$y_{k+1} = y_k - (LU)^{-1} f(y_k,p)$$

$$s_{i,k+1} = s_{i,k} - (LU)^{-1} \left(A(y_k)s_{i,k} + \frac{\partial f}{\partial p_i}(y_k)\right) \quad i=1,\ldots,n_z$$

$$T_{i,1} = Y_i$$

if j>1 compute $T_{i,j}$ and check convergence

$$X_{new} = X_{j,j}$$

(here simplified for M = const.)

Small example problem, solved for two different tolerances

- ⇒ One-step extrapolation faster than multistep BDF with increasing level of discretization
- ⇒ Used as standard for optimization of INCOOP benchmark problems

Algorithmic improvements – sequential approach

Multiscale representation

Different **representations** of the **same function** ...

... for problem discretization:

$$u = \sum_{(j,k)\in\Lambda_j} c_{j,k} \mathbf{j}_{j,k}(t)$$

... for grid point elimination analysis:

$$u = c_{0,0} \mathbf{j}_{0,0}(t) + \sum_{(j,k) \in \Lambda_{\mathbf{y}}} d_{j,k} \mathbf{y}_{j,k}(t)$$

Adaptive refinement algorithm

- Concepts from signal analysis
- Grid point elimination
- Grid point insertion

coarse initial mesh

Repetitive procedure

• Re-optimize problem on refined mesh

0.2

- Profile from previous solution as initial guess
- Decouple optimization and adaptation

Elimination of parameterization functions

Approximation: Norm equivalence

$$\|u\|_{L_2} \sim \|d\|_{l_2}$$

Discarding small $d_{j,k}$ causes only small changes in approximate representation

Insertion of parameterization functions

Example: Batch reactive distillation

Objective:

Minimize energy demand with given:

- Fixed batch time
- Amount of distillate D≥ 6.0 kmol
- Product purity $x_D \ge 0.46$

Controls:

- Reflux ratio R(t)
- Vapor rate V(t)

Dynamic model:

- 10 theoretical trays
- gPROMS model contains 418
 DAEs
 (63 differential equations)

Results: Batch reactive distillation

equidistant

61.5

equidistant

Iteration

Application in direct approach setting

Adaptive approach (Binder et al., 2000):

- numerical lower for the adaptive refinement approach
- intermediate solutions are available
 - back-up values in real-time environment
 - direct employment on the process at early time

Software development – sequential approach

Dynamic optimization software DyOS (LPT)

Simultaneous approach → collocation (I)

differential variables continuous

algebraic and control variables discontinuous

Simultaneous approach → collocation (II)

Conversion into NLP problem yields

$$\min \mathbf{y}(z_i, y_{i,q}, u_{i,q}, p, t_f)$$

s.t.
$$\left(\frac{dz}{dt}\right)_{i,j} = F\left(z_{i-1}, \frac{dz}{dt}_{i,j}, z_{i}, y_{i,j}, u_{i,j}, p\right)$$

$$0 = G\left(z_{i-1}, \frac{dz}{dt}_{i,j}, z_{i}, y_{i,j}, u_{i,j}, p\right)$$

$$z_{i} = f\left(\frac{dz}{dt}_{i-1,j}, z_{i-1}\right)_{i}$$

large-scale NLP problem

$$\min_{x \in R^n} f(x)$$

s.t
$$c(x) = 0$$

$$x^L \leq x \leq x^l$$

Requires specially tailored solution techniques:

- advanced interior-point solver
- filter-line search techniques
 (implemented as IPOPT, Biegler et al., 2001)

 $z_0^{o} = z(0)$

 $z_i^l \leq z_i \leq z_i^u$

 $u_{i,j}^{l} \leq u_{i,j} \leq u_{i,j}^{u}$

 $p^l \le p \le p^u$

 $y_{i,i}^{l} \leq y_{i,i} \leq y_{i,i}^{u}$

Barrier function formulation

original formulation

$$\min_{x \in R^n} f(x)$$

s.t
$$c(x) = 0$$

$$x \ge 0$$

can be generalized for

$$a \le x \le b$$

$$\min_{x \in R^n} \mathbf{j}_{\mathbf{m}}(x) = f(x) - \mathbf{m} \sum_{i=1}^n \ln s_i$$

barrier approach

s.t
$$c(x) = 0$$

$$s - x = 0$$

$$\Rightarrow$$
 as $\mathbf{m} \rightarrow 0$, $\mathbf{x}^*(\mathbf{m}) \rightarrow \mathbf{x}^*$

Solution of the barrier problem (I)

⇒ Newton Directions (KKT System)

$$\nabla f(x) + A(x)\mathbf{1} - v = 0$$

$$SVe - \mathbf{m}e = 0$$

$$c(x) = 0$$

$$s - x = 0$$

⇒ solve primal-dual version

$$\begin{bmatrix} H & 0 & A & -I \\ 0 & S^{-1}V & 0 & I \\ A^{T} & 0 & 0 & 0 \\ -I & I & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{x} \\ d_{s} \\ d_{1} \\ d_{v} \end{bmatrix} = - \begin{bmatrix} \nabla f + A\mathbf{1} - v \\ v - \mathbf{m}S^{-1}e \\ c \\ 0 \end{bmatrix}$$

Solution of the barrier problem (II)

$$A^T d_x + c = 0$$

$$\Rightarrow d_R = -C^{-1}c$$

⇒ Null Space Step (reduced QP)

$$\min_{d_Q} \left(Q^T \nabla \boldsymbol{j}_{m} + Q^T (H + \Sigma) R d_R \right)^T d_Q + \frac{1}{2} d_Q^T Q^T (H + \Sigma) Q d_Q$$

$$d_{Q} = -\left[Q^{T}(H+\Sigma)Q\right]^{-1}\left(Q^{T}\nabla \boldsymbol{j}_{m} + Q^{T}(H+\Sigma)Rd_{R}\right)$$

reduced Hessian

cross term

Illustration of filter concept

Software development – simultaneous approach

Dynamic optimization software DYNOPC/IPOPT (CMU)

Comparison of approaches

	Sequential approach	Simultaneous approach
size of NLP	small	large
DAE model fulfilled in each step?	yes	no
initial guess required for	controls	states and controls

Experience from solving INCOOP benchmark problems

- sequential approach more robust and capable of handling bigger problems
- simultaneous approach can be faster with good initial guess, but more sensitive to initial guess
- accuracy problems with simultaneous approach for stiff problems (error controlled integration vs. fixed-grid collocation)

Results for Bayer Benchmark Problem

Interplay between D-RTO and MPC

- Soft constraints can be moved from MPC to D-RTO
- Longer time horizon for D-RTO to ensure feasibility
- D-RTO trigger for a possible reoptimization
- Delta-mode MPC computes updates to the control profiles for tracking the process in the strict operation envelope: rejects fast frequency process disturbances

D-RTO trigger (I)

Lagrange function sensitivities w.r.t. all estimated disturbances

compute
$$S_j = dL_j \left/ d\hat{d}_j \right|_{\tilde{t}_{0j}};$$

$$L_j = \overline{\Phi}(u_i^{ref}, \hat{d}_j) + \mathbf{m}_i^T h(u_i^{ref}, \hat{d}_j)$$

- One sensitivity integration of process model at each sampling time \bar{t}_{0i} using previous D-RTO results (and active constraint set) at \tilde{t}_{0i} is required
- Compute change in sensitivities ($\Delta S_j = S_j S_i$) and Lagrange function ($\Delta L_j = L_j L_i$) can be then calculated

D-RTO trigger (II)

Optimal solution sensitivities w.r.t. all estimated disturbances

compute
$$U_j = du_{j}^{ref} / d\hat{d}_j \Big|_{\tilde{t}_{0j}}$$

and changed active constraint set

- Solution to QP problem:
 - using second order information (Hessian of Lagrange function)
 ⇒ optimal sensitivities
 - using first order information
 ⇒ feasible only sensitivities
- updates as $u_j^{ref} = u_i^{ref} + U_i^T (\hat{d}_j \overline{d}_i)$
- If ΔS_j and ΔL_j are larger than a threshold value S_{th} and changed active constraint set is predicted, a re-optimization should be done
- ullet Else linear updates based on optimal solution sensitivities U_i are sufficient

results with re-optimization and feasible updates

re-optimization results (2)

- Reaction parameters randomly perturbed between their bounds
- Re-optimization done only when necessary
 - ⇒ steer to desired grade
- +4% change in parameter 1

- D-RTO problem needs to be solved only necessary
- the hybrid integrated D-RTO and control with embedded sensitivity analysis is well suited for large-scale industrial process operation

Summarizing comments

Off-line dynamic optimization:

Today already many numerical and software techniques available for efficient and convenient solution of such problems

but...

dynamic optimization still not state-of-the-art (especially not in industry):

- Though pure solution time for solving one mathematical problem only in the order of hours,
- overall engineering time to solve the real application problem in the order of weeks or months.
- Problems: Modeling issues, problem formulation, convergence problems, ...

It is still not "pushing the button".

INACOOP

Future perspectives

Experience from INCOOP: for large-scale process models application of dynamic optimization in real-time still time-critical

Dynamic real-time optimization

- further enhance sequential approach dynamic optimization
- more elaborate adaptation strategies
- interaction NLP solver / integrator
- adapt integration accuracy
- incorporate second order information

Integration of control and optimization

- further exploit re-optimization features
- apply adaptation strategies in real-time context
- gain speed by feasible-first optimizations
- interlink MPC and D-RTO by shifting the prediction to the D-RTO level