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Simplified Process Flowsheet

Full model size

§ # units: two dozen

§ # variables/equations: 10-20k

§ # differential equations: 1k-2k

§ Time constant: hours & mins
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Full model challenges

§ Combined lumped, staged,

distributed

§ 2x recycle, heat-integration, 20-

40 control loops

§ Level of detail
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Example part of Mathematical Model

In tubular reactor::

§ C are concentrations

§ F are flows

§ r are reaction rates

§ v is velocity

§ Vliq is specific liquid volume

Note

§ use of flows (calculation time)

§ propriety physical properties

§ scaling

§ implementation in gPROMS
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Example simulation

Response to step change in feed on (red dashed) level in condenser
and (black solid) a potentially observable temperature in reactor
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Towards Optimal Complexity

• Avoiding theoretical shortcuts including
kinetic energy terms in energy balance
in reactor.

• Adding theoretical requirements:
pressure drop in liquid phase reactor ie
the momentum balance.

• Adding practicalities: finite mass of
mixers and reactor wall which could
induce short time constants.

• Adding existing controllers in mixers.
• Extreme cases with discrete event

modelling such as full trays.

Actual choice:
• No kinetic energy terms: caused

conflicts in equation oriented
environment.

• Retained pressure dependence as it
did not affect computation time much.

• Removed finite masses: difficult to
estimate and significantly reduced
computation time.

• Removed mixer controllers: robustness
• Retained discrete events: normally not

effective.

Criteria and tests:
• steady state initialisation, robustness with respect to different initial values – state

re-initialisation.
• Performance of required step change on feed and a complete trajectory over days

– range of operation for optimisation.
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Implementation bottlenecks

Modelling environment: gPROMS with propriety physical properties package.
§ Number of relevant components in separation unit much less than in

conversion unit. Equation-oriented package is not flexible for this.
§ Initialisation (and possible future reinitialisation) was constantly a point of

consideration. It was achieved with a single start point of all 15k variables,
although – after considerable effort – a limited set of 2k proved sufficient, in
a specific case.

§ The implementation of discrete events was at times necessary, however the
optimisation users of the model were requiring a model with at maximum
one discontinuity.

§ The tuning of the control loops proved a challenge. Because of the high
degree of coupling in the system, the standard tuning estimates were
inadequate.

§ The attempts to model a grade change all faltered possibly because of the
high demand on computer resources.
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Model validation

There were a number of tuneable parameters in the system:
§ A scale factor representing the catalyst activity.
§ A constant describing the friction of flows in the columns.
Experience and analysis of several sets of data showed
§ That a set of flow measurements could not be reconciled.
§ That variation in the catalyst feed composition occurred and that could be

adequately described with a first order system.
Some ten parameters were estimated. Then still some temperature profiles

differed by 10% (of the total temperature range in the system) from reality. It
is likely that the used laboratory data were insufficient to model at this
scale.

Alternative: use of wavelet decomposition to characterise data and simulation
and compare as wavelets: timescales better represented.
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Model validation – wavelet decomposition

Figure with wavelet from JPS completely scaled
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Liquid phase reactor

Vectorial form
•  F, C and v are variables
• Constitutive equation: no independent

choice of differential variables.
• High-index problem connected with

volume constraint
... But gPROMS simulates in total system!

Effect only found there where the
sensitivity equations were applied: the
sensitivity matrices are highly singular.
This affected the optimisation and the
control algorithms.

For control simplified reactor model used
circumventing volume constraint

... But are there other – rigorous –
solutions?
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Basic Control: Material Balance Control

The production rate  is set by the flow of B to R-1. A and cat. are
set in ratio with B. After R-1 rate changes are propagated by the
level controllers in the bottom of each column (push scheme).
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B
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A  recycle

C to tank

C-3

A

C-4

D to tank

E  to cat. rec. and bleed

Heat int.
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A + B -> C (+ C')
C' + B -> D
D + B -> E
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Basic Control: Quality Control

•To make sure R-1 achieves full conversion the inlet temperature
is controlled as well as the Delta T over a part of R-1 by cat. ratio.

•The compositions of all distillate flows are analyzed by GC’s, but
the results are not used in closed-loop control. The control of the
Split and Sharpness of fraction is given below.

C-1 C-2 C-3 C-4
Split temperature by

reboiler duty
ratio

distillate/feed
temperature by
reboiler duty

temperature by
reboiler duty

Sharp. of frac. reflux reboiler duty reflux reflux
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Observer: Type & Definition

•Control sample time 10 min,
•Estimation sample time 5 min.
•1100 states: 90% components in the system
•40 measured outputs:

•Mainly focused on flows and qualities
•Temperatures difficult to connect to theoretical trays

Type: Extended Kalman Filter
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Observer: Model Reduction

2 stage model reduction technique
Physically:

• components on connected trays,…

• PDE in tubular reactor model,…

Mathematically:

• Fixed projection reduces states 1100 to 500

• Input-output balanced truncation red. states from 500 to
50+

• Both methods use the local dynamics on-line

• Reduction needs analysis and is not automated

• Reduction also needs dedicated numerical tools (here
combination of own software with SLICOT routines)
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Observer: Speed

•Results: Just the observer (without MPC) has an execution period
of 1 - 2 minutes on a Pentium 4 PC (2 GHz, 1 Gb RAM).

• Computation time is divided over:

• Model initialization and integration over 2 time steps (LARGER PART,80%)

• Communication GPROMS-OPC-MATLAB

• On-line model reduction and linear algebra (time~nx^3)

• Line–search if GPROMS fails to initialize on state update(seldom)

• QP if constraints are defined
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Model Reduction

• Compute Jacobian of the model
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• Derive linear model

• First reduction linear model with fixed projection (e.g.
remove connectivity)

• Second reduction on reduced linear model by balanced
truncation (online)
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Model Predictive Control: Type & Definition

•Type: Input-output MPC (LTV approach) solved as a QP. The
numerical integration of the non-linear model is computationally
the most expensive part. This resulted in a short time horizon (300
minutes), but compensation was provided by end-point weighting.

•Definition: The CV’s are chosen based on process economics,
constraints and operational issues. This results in 8 CV’s:

Number Name Type
1 Relative D production Set point
2 Top quality C-1, A Set point
3 Top quality C-2, A Set point
4 Top quality C-2, C' Set point
5 Top quality C-3, C Set range
6 Top quality C-3, D Set point
7 Top quality C-4, C' Set point
8 A recycle Set range
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Model Predictive Control: Definition

•The MV’s were selected such that there is adequate control over
the CV’s (see below).

•In general CV’s 5 and 8 do not require any MV’s so normally the
application is “square” (6 by 6).

Number Name
1 Reboiler duty C-1
2 Reflux C-1
3 Ratio distillate/feed C-2
4 Reboiler duty C-2
5 Reboiler duty C-3
6 Reflux C-3



19The INCOOP Methodology applied to the Shell Case

Model Predictive Control: Reduction & Results

•The model reduction is as discussed before (for the end-point
weighting).

•Results: Just MPC (without observer) has an execution period of
4 minutes on a Pentium 4 PC (2 GHz, 1 Gb). So including
observer an execution time of 10 minutes is possible.   
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Dynamic Optimisation

• Type: Sequential approach dynamic optimisation

• Task: Faster, more efficient load change

• Challenges:

- size of the model: > 12,000 differential-algebraic equations

⇒ much larger than Bayer Case, can be handled by implementation

⇒ numerical state and sensitivity integration is slow due to size 
model

- model reduction not applicable in this context

⇒ higher computation time, less accurate

• Successfully applied to subset of the plant (distillation column with 2750
equations) ⇒ faster load change achieved
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Conclusions

•Despite improvements in the environment modelling remains
labour intensive requiring experience, know-how etc..

•Simulation of the non-linear model is 2-10 faster than real-time
(depends on type of inputs and the way they are communicated).

•The hybrid model is an adequate representation of the plant.

•Model reduction has proved to be a more difficult issue then
anticipated. The computational effort also depends at least on the
solver and there is a trade-off between speed and accuracy.

•Simulation of the non-linear model explains for the major part of
the computational effort.

•Using model reduction first, the developed extended Kalman filter
and MPC are able to work real-time for the Shell Case.


